首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 454 毫秒
1.
Patterns of biofilm succession on a sheltered rocky shore in Hong Kong   总被引:2,自引:0,他引:2  
Chan BK  Chan WK  Walker G 《Biofouling》2003,19(6):371-380
Successional patterns are dependent on the nature of the substratum, water flow, concentrations of organics as well as the availability of bacteria, algal spores and invertebrate larvae in the coastal environment. Bacteria play an especially important role in biofilm formation as they are generally the earliest colonizers. In the present study, both winter and summer biofilm succession patterns were examined on glass coverslips inverted on experimental racks attached at two tidal levels on a sheltered shore in Hong Kong. In the succession, bacteria were followed by diatoms and cyanobacteria. Encrusting algae appeared in the late stages of the experiment (day 80 in summer and day 60 in winter). Colonization by bacteria was much slower in summer and their density remained low throughout the experimental period. The first appearance of diatoms and cyanobacteria, however, was more rapid in the summer. Bacteria and diatoms on the low-shore surfaces also had a faster succession rate than on the high-shore surfaces, suggesting that desiccation/aerial temperature are the causal factors for such differences.  相似文献   

2.
Early stages of biofilm succession in a lentic freshwater environment   总被引:1,自引:0,他引:1  
Sekar  R.  Venugopalan  V.P.  Nandakumar  K.  Nair  K.V.K.  Rao  V.N.R. 《Hydrobiologia》2004,512(1-3):97-108
Initial events of biofilms development and succession were studied in a freshwater environment at Kalpakkam, East Coast of India. Biofilms were developed by suspending Perspex (Plexiglass) panels for 15 days at bimonthly intervals from January 1996 to January 1997. Changes in biofilm thickness, biomass, algal density, chlorophyll a concentration and species composition were monitored. The biofilm thickness, biomass, algal density and chlorophyll a concentration increased with biofilms age and colonization was greater during summer (March, May and July) than other months. The initial colonization was mainly composed of Chlorella vulgaris, Chlorococcum humicolo (green algae), Achnanthes minutissima, Cocconeis scutellum, C. placentula (diatoms) and Chroococcus minutus (cyanobacteria) followed by colonial green algae such as Pediastrum tetras, P. boryanumand Coleochaete scutata, cyanobacteria (Gloeocapsa nigrescens), low profile diatoms (Amphora coffeaeformis, Nitzschia amphibia, and Gomphonema parvulum) and long stalked diatoms (Gomphoneis olivaceumand Gomphonema lanceolatum). After the 10th day, the community consisted of filamentous green algae (Klebshormidium subtile, Oedogonium sp., Stigeoclonium tenue and Ulothrix zonata) and cyanobacteria (Calothrix elenkinii, Oscillatoria tenuis and Phormidium tenue). Based on the percentage composition of different groups in the biofilm, three phases of succession could be identified: the first phase was dominated by green algae, the second by diatoms and the third phase by cyanobacteria. Seasonal variation in species composition was observed but the sequence of colonization was similar throughout the study period.  相似文献   

3.
Nutrient dynamics and successional changes in a lentic freshwater biofilm   总被引:3,自引:0,他引:3  
SUMMARY 1. Colonisation, species composition, succession of microalgae and nutrient dynamics in biofilms grown under light and dark conditions were examined during the initial phases of biofilm development in a lentic freshwater environment.
2. Biofilms were developed on inert (perspex) panels under natural illuminated and experimental dark conditions and the panels were retrieved for analysis after different incubation periods. Analysed parameters included biofilm thickness, algal density, biomass, chlorophyll a , species composition, total bacterial density and nutrients such as nitrite, nitrate, phosphate and silicate.
3. Biofilm thickness, algal density, biomass, chlorophyll a and species richness were significantly higher in light-grown biofilms, compared with dark-grown biofilms. The light-grown biofilms showed a three-phased succession pattern, with an initial domination of Chlorophyceae followed by diatoms (Bacillariophyceae) and finally by cyanobacteria. Dark-grown biofilms were mostly dominated by diatoms.
4. Nutrients were invariably more concentrated in biofilms than in ambient water. Nutrient concentrations were generally higher in dark-grown biofilms except in the case of phosphate, which was more concentrated in light-grown biofilms. Significant correlations between nutrients and biofilm parameters were observed only in light-grown biofilms.
5. The N : P ratio in the biofilm matrix decreased sharply in the initial 4 days of biofilm growth; ensuing N-limitation status seemed to influence biofilm community structure. The N : P ratios showed significant positive correlations with the chlorophycean fraction in both light and dark-grown biofilms, and low N : P ratio in the older biofilms favoured cyanobacteria. Our data indicate that nutrient chemistry of biofilm matrix shapes community structure in microalgal biofilms.  相似文献   

4.
Examination of the three-dimensional structure of periphyton communities through time indicated that their microsuccession is analogous to higher plant succession. The development of attached diatom communities in two reservoirs was studied using artificial substrates, and the morphology of dominant organisms, patterns of spatial heterogeneity, and community interactions were documented with scanning electron microscopy. Of 93 taxa found, Gomphonema parvulum, G. olivaceum, Navicula graciloides, Nitzschia palea, and N. dissipata were dominant, depending upon season and reservoir. Comparisons of community diversity (SIMI) between reservoirs within seasons ranged from 0.023–0.843 (median = 0.254), indicating that the reservoirs were quite different with respect to diatoms present and their apportionments. Colonization was slow the first 2 wk in spring and fall, and throughout winter, but rapid during summer. Shifts in numerical dominance between certain species occurred in fall, spring, and summer. These inverse correlations of abundances and the functional dominance of overgrowth suggested competition for substrate surface area in the periphyton. The colonization sequence was often predictable—a presumably organic coating and a variety of bacteria, followed by low profile diatoms, and finally an upperstory of long-stalked and large-rosette diatoms and filamentous green algae. Periphyton microsuccession is similar to higher plant succession in the consistent change in vertical community structure from low to high physical stature, in the association of numerical dominance with large stature (via cell size or long mucilaginous stalks), and in the progressive slow-down in the rate of succession. Diatom mucilage also contributed to community structure by binding particulates and entrapping other algae and serving as the mechanism for substrate attachment.  相似文献   

5.
We studied fatty acid (FA) composition of littoral microalgae in the fast-flowing oligotrophic river, the Yenisei, Siberia, monthly for 3 years. Seasonal dynamics of species composition had similar patterns in all the studied years. In springs, a pronounced dominance of filamentous green algae occurred, in summer and autumn diatoms were abundant, and in late autumn and winter epilithic biofilms consisted primarily of cyanobacteria and detritus. In general, FA composition of the algal periphytic community was dominated by 16:0, 16:1ω7, 20:5ω3, 14:0, and 18:3ω3 throughout the studied period. Several groups of FAs, which had peculiar seasonal dynamics, were differentiated by statistical analysis based on a method of correlation graphs. The seasonal changes in FA composition could be partly explained by the seasonal succession of species composition of the community. Besides, we found that populations of both diatom and green algae grown in summer at a higher water temperature were lower in polyunsaturated fatty acids than those in spring, at a lower temperature. Hence, we suppose that the regular seasonal dynamics of FA composition of the studied littoral microalgae was driven both by changes in species composition and by temperature adaptations of the algal populations. The highest content of essential polyunsaturated FAs, eicosapentaenoic and docosahexaenoic acids, in the spring “psychrophilic” populations of diatoms could make them of the higher nutritive value for zoobenthic primary consumers.  相似文献   

6.
7.
8.
The impact of storm-flow on river biofilm architecture was investigated using transmission (TEM) and scanning (SEM) electron microscopy. TEM resin substrata were colonized under light-grown (LG) or dark-grown (DG) conditions for 33 weeks in the Clywedog River, North Wales, prior to exposure to ambient-flow (approx. 60 cm·s?1) or storm-flow (approx. 235 cm·s?1+ river sediment) in a laboratory flume. Line transect methodology was used to quantify information from TEM ultrathin sections of LG material. In the LG ambient-flow biofilm, bacteria were more abundant directly adjacent to the substratum and were noticeably denser directly under the adnate diatom Cocconeis. Higher in the biofilm, the bacteria were loosely dispersed in the matrix between other cells. Cyanobacteria occurred most frequently as single cells but were also found in large “palisade” formations adjacent to the substratum. Significant horizontal and vertical nearest-neighbor associations were noted for both bacteria and cyanobacteria. Cells of Cocconeis were common adjacent to the substratum, providing shelter to, and often elevated upon, an “organic pad” of bacteria, cyanobacteria, and densely staining exopolysaccharide. Cyanobacteria and Cocconeis were resistant to removal by storm-flow, but Cocconeis frustules were sometimes damaged. Bacteria in the LG storm-flow samples were less common adjacent to the substratum and were sometimes more dispersed higher in the biofilm than in ambient-flow samples. We suggest that storm-flow hydrodynamic forces may redistribute bacteria adjacent to the substratum into higher areas of the biofilm. In addition, bacteria and the exopolysaccharide matrix were sometimes removed down to the substratum by storm-flow, unless beneath Cocconeis. The DG biofilm consisted almost entirely of bacteria. Storm-flow only removed surface growth from DG biofilms, and SEM revealed peritrich stalk abrasion and “blow-down.” Pre-disturbance biofilm architecture appears to influence the form of destruction. We suggest that the “microcosms” of Cocconeis and their underlying cells not only serve as an inoculum to recolonize the surface when conditions permit but enhance immigration by interrupting flow patterns across the surface.  相似文献   

9.
In this study we exploit recent advances in high-resolution autonomous monitoring to investigate the impact of short-term variations in wind-induced mixing on the surface biomass and vertical distribution of buoyant and sinking phytoplankton species. An autonomous platform (the Automatic Water Quality Monitoring Station) moored in a Mediterranean reservoir provided minute-by-minute records of wind speed and the phytoplankton fluorescence during winter and summer. This information was then used here to quantify the impact of short-term changes in the weather on the vertical distribution of diatoms and cyanobacteria. Additionally, we apply an empirical model to determine the extent of entrainment of diatoms and cyanobacteria within the turbulent upper layers of the water column. During winter, the surface time series of fluorescence was positively correlated with the short-term variations in wind speed. In contrast, during the summer, fluorescence was negatively correlated with wind speed. In the latter case, turbulence overcame the flotation velocity of buoyant cyanobacteria, thus homogenizing their vertical distribution and decreasing surface biomass. In both cases, the dynamic response of surface phytoplankton biomass to short-term changes in wind stress was rapid, within the minute scale. As far as we know from the literature, this is the first study in which the interaction between wind stress and surface phytoplankton fluorescence has been quantified on such a fine temporal scale. Finally, relevance for forecasting and reservoir management is pointed out.  相似文献   

10.
Quorum sensing in streptococcal biofilm formation   总被引:10,自引:0,他引:10  
Bacteria in their natural ecosystems preferentially grow as polysaccharide-encased biofilms attached to surfaces. Although quorum-sensing (QS) systems directing the 'biofilm phenotype' have been extensively described in Gram-negative bacteria, there is little understanding of the importance of these systems in Gram-positive biofilm formation. Streptococci are a diverse group of Gram-positive bacteria that colonize epithelial, mucosal and tooth surfaces of humans. In several streptococci, competence-stimulating peptide (CSP)-mediated QS has been connected with competence development for genetic transformation. Recent work, especially with bacteria that inhabit the biofilm of dental plaque, has linked CSP stimuli to other cell-density adaptations, such as biofilm formation.  相似文献   

11.
Seasonal changes in light and physicochemical conditions have strong impacts on cyanobacteria, but how they affect community structure, metabolism, and biogeochemistry of cyanobacterial mats remains unclear. Light may be particularly influential for cyanobacterial mats exposed to sulphide by altering the balance of oxygenic photosynthesis and sulphide-driven anoxygenic photosynthesis. We studied temporal shifts in irradiance, water chemistry, and community structure and function of microbial mats in the Middle Island Sinkhole (MIS), where anoxic and sulphate-rich groundwater provides habitat for cyanobacteria that conduct both oxygenic and anoxygenic photosynthesis. Seasonal changes in light and groundwater chemistry were accompanied by shifts in bacterial community composition, with a succession of dominant cyanobacteria from Phormidium to Planktothrix, and an increase in diatoms, sulphur-oxidizing bacteria, and sulphate-reducing bacteria from summer to autumn. Differential abundance of cyanobacterial light-harvesting proteins likely reflects a physiological response of cyanobacteria to light level. Beggiatoa sulphur oxidation proteins were more abundant in autumn. Correlated abundances of taxa through time suggest interactions between sulphur oxidizers and sulphate reducers, sulphate reducers and heterotrophs, and cyanobacteria and heterotrophs. These results support the conclusion that seasonal change, including light availability, has a strong influence on community composition and biogeochemical cycling of sulphur and O2 in cyanobacterial mats.  相似文献   

12.
应用林窗模型LINKAGES对小兴安岭红松针阔混交林在不同季节增温方式下的未来演替过程进行了模拟预测.以温度增加5℃、降水无明显变化作为未来变暖气候的模拟假设,共设计3种气候变暖方式预案,分别为冬季增温幅度大于夏季、冬季与夏季增温幅度相同以及冬季增温幅度小于夏季.模拟结果表明,当冬季增温幅度大于夏季时,小兴安岭现存林分的演替受气候变暖的影响相对最小,树种组成仍然能够保持较为稳定的针阔混交林状态;当冬季增温幅度小于夏季时,现存林分的演替受气候变暖的影响最显著,树种衰退最迅速.可见,小兴安岭针阔混交林的演替与未来的增温方式关系密切,上限温度是现存树种能否继续存活的重要决定因子.  相似文献   

13.
Food webs in the rhithral zone rely mainly on allochthonous carbon from the riparian vegetation. However, autochthonous carbon might be more important in open canopy streams. In streams, most of the microbial activity occurs in biofilms, associated with the streambed. We followed the autochthonous carbon transfer toward bacteria and grazing protozoa within a stream biofilm food web. Biofilms that developed in a second-order stream (Thuringia, Germany) were incubated in flow channels under climate-controlled conditions. Six-week-old biofilms received either 13C- or 12C-labeled CO?, and uptake into phospholipid fatty acids was followed. The dissolved inorganic carbon of the flow channel water became immediately labeled. In biofilms grown under 8-h light/16-h dark conditions, more than 50% of the labeled carbon was incorporated in biofilm algae, mainly filamentous cyanobacteria, pennate diatoms, and nonfilamentous green algae. A mean of 29% of the labeled carbon reached protozoan grazer. The testate amoeba Pseudodifflugia horrida was highly abundant in biofilms and seemed to be the most important grazer on biofilm bacteria and algae. Hence, stream biofilms dominated by cyanobacteria and algae seem to play an important role in the uptake of CO? and transfer of autochthonous carbon through the microbial food web.  相似文献   

14.
Nitrogen fixation (nitrogenase activity, NA) of a microbial mat and a living stromatolite from Cuatro Cienegas, Mexico, was examined over spring, summer, and winter of 2004. The goal of the study was to characterize the diazotrophic community through molecular analysis of the nifH gene and using inhibitors of sulfate reduction and oxygenic and anoxygenic photosynthesis. We also evaluated the role of ultraviolet radiation on the diazotrophic activity of the microbial communities. Both microbial communities showed patterns of NA with maximum rates during the day that decreased significantly with 3-3,4-dichlorophenyl-1′,1′-dimethylurea, suggesting the potential importance of heterocystous cyanobacteria. There is also evidence of NA by sulfur-reducing bacteria in both microbial communities suggested by the negative effect exerted by the addition of sodium molybdate. Elimination of infrared and ultraviolet radiation had no effect on NA. Both microbial communities had nifH sequences that related to group I, including cyanobacteria and purple sulfur and nonsulfur bacteria, as well as group II nitrogenases, including sulfur reducing and green sulfur bacteria.  相似文献   

15.
Adverse conditions in the acid mine drainage (AMD) system at the Green Valley mine, Indiana, limit diatom diversity to one species, Nitzschia tubicola. It is present in three distinct microbial consortia: Euglena mutabilis-dominated biofilm, diatomdominated biofilm, and diatom-exclusive biofilm. E. mutabilis dominates the most extensive biofilm, with lesser numbers of N. tubicola, other eukaryotes, and bacteria. Diatom-dominated biofilm occurs as isolated patches containing N. tubicola with minor fungal hyphae, filamentous algae, E. mutabilis, and bacteria. Diatom-exclusive biofilm is rare, composed entirely of N. tubicola.

Diatom distribution is influenced by seasonal and intraseasonal changes in water temperature and chemistry. Diatoms are absent in winter due to cool water temperatures. In summer, isolated patchy communities are present due to warmer water temperatures. In 2001, the diatom community expanded its distribution following a major rainfall that temporarily diluted the effluent, creating hospitable conditions for diatom growth. After several weeks when effluent returned to preexisting conditions, the diatom biofilm retreated to isolated patches, and E. mutabilis biofilm flourished.

Iron-rich stromatolites underlie the biofilms and consist of distinct laminae, recording spatial and temporal oscillations in physicochemical conditions and microbial activity. The stromatolites are composed of thin, wavy laminae with partially decayed E. mutabilis biofilm, representing microbial activity and iron precipitation under normal AMD conditions. Alternating with the wavy layers are thicker, porous, spongelike laminae composed of iron precipitated on and incorporated into radiating colonies of diatoms. These layers indicate episodic changes in water chemistry, allowing diatoms to temporarily dominate the system.  相似文献   

16.
Bacteria colonizing plant surfaces are of great importance in agriculture, having either a negative (pathogens surviving on leaf surfaces) or a positive (beneficial root-colonizing bacteria) role. Plant-associated populations develop in a way that shows similarities to that observed in biofilm formation on abiotic surfaces, and certain genetic determinants are common to both processes. The mechanisms involved in biofilm formation and maintenance on plant surfaces, and their implications for agriculture will be discussed, both in terms of pathogenesis processes and the potential use of bacteria for biocontrol purposes.  相似文献   

17.
Plastic marine debris (PMD) affects spatial scales of life from microbes to whales. However, understanding interactions between plastic and microbes in the “Plastisphere”—the thin layer of life on the surface of PMD—has been technology‐limited. Research into microbe–microbe and microbe–substrate interactions requires knowledge of community phylogenetic composition but also tools to visualize spatial distributions of intact microbial biofilm communities. We developed a CLASI‐FISH (combinatorial labelling and spectral imaging – fluorescence in situ hybridization) method using confocal microscopy to study Plastisphere communities. We created a probe set consisting of three existing phylogenetic probes (targeting all Bacteria, Alpha‐, and Gammaproteobacteria) and four newly designed probes (targeting Bacteroidetes, Vibrionaceae, Rhodobacteraceae and Alteromonadaceae) labelled with a total of seven fluorophores and validated this probe set using pure cultures. Our nested probe set strategy increases confidence in taxonomic identification because targets are confirmed with two or more probes, reducing false positives. We simultaneously identified and visualized these taxa and their spatial distribution within the microbial biofilms on polyethylene samples in colonization time series experiments in coastal environments from three different biogeographical regions. Comparing the relative abundance of 16S rRNA gene amplicon sequencing data with cell‐count abundance data retrieved from the microscope images of the same samples showed a good agreement in bacterial composition. Microbial communities were heterogeneous, with direct spatial relationships between bacteria, cyanobacteria and eukaryotes such as diatoms but also micro‐metazoa. Our research provides a valuable resource to investigate biofilm development, succession and associations between specific microscopic taxa at micrometre scales.  相似文献   

18.
Although elevational gradients in microbial biodiversity have attracted increasing attention recently, the generality in the patterns and underlying mechanisms are still poorly resolved. Further, previous studies focused mostly on species richness, while left understudied evenness, another important aspect of biodiversity. Here, we studied the elevational patterns in species richness and evenness of stream biofilm bacteria and diatoms in six mountains in Asia and Europe. We also reviewed published results for elevational richness patterns for soil and stream microbes in a literature analysis. Our results revealed that even within the same ecosystem type (that is, stream) or geographical region, bacteria and diatoms showed contrasting patterns in diversity. Stream microbes, including present stream data, tend to show significantly increasing or decreasing elevational patterns in richness, contrasting the findings for soil microbes that typically showed nonsignificant or significantly decreasing patterns. In all six mountains for bacteria and in four mountains for diatoms, species richness and evenness were positively correlated. The variation in bacteria and diatom richness and evenness were substantially explained by anthropogenic driven factors, such as total phosphorus (TP). However, diatom richness and evenness were also related to different main drivers as richness was mostly related to pH, while evenness was most explained by TP. Our results highlight the lack of consistent elevational biodiversity patterns of microbes and further indicate that the two facets of biodiversity may respond differently to environmental gradients.  相似文献   

19.
Recent concerns about fouling problems caused by biofilms affecting optical oceanographic instruments have highlighted the need for a better understanding of their nature and extent in the marine environment. Glass slides were deployed in April and August for periods of up to 3 weeks at 5, 10, 20, 40, 80 and 160 m in the water column of Loch Fyne, Clyde Sea, W Scotland. Biofilms were enumerated using epifluorescence and bright field microscopy. During April the biofilm community varied significantly with depth, although this effect was attributable solely to changes in the diatom community. Diatom numbers peaked between 10 and 20 m. During August the biofilm community also showed a significant depth effect, although in this case there were significant effects for diatoms, rods, and filamentous bacteria. Cell numbers for diatoms, filamentous bacteria, and rod shaped bacteria peaked at 5 m. There was a significant linear relationship between the number of diatoms and bacteria on the slides deployed in August. No such relationship was found for the April data. The results indicate that optical performance may be significantly degraded after a few weeks and highlights the need for provision of suitable strategies to protect such surfaces from biofilm accumulation.  相似文献   

20.
To investigate changes in the bacterial species and hygienic safety of the biofilm at the end of the drinking water distribution system in Seoul (Korea), denaturing gradient gel electrophoresis (DGGE) and DNA sequencing were used to analyse the bacterial population in the biofilm of a semi-pilot galvanized iron pipe model. The presence of sequences from aerobic Sphingomonas sp., anaerobic Rhodobacter sp., and unculturable bacteria indicated that these organisms coexisted after 1 day of model operation, demonstrating the ease of biofilm formation on galvanized iron pipes in the end region of the water distribution system studied. Sequences similar to those of unculturable bacteria, E. coli, and anaerobic bacteria were detected during the course of succession on the biofilm. More complicated band patterns were observed after 70 days of operation. PCR-DGGE illustrated changes in the biofilm during succession as well as the possibilities of anaerobic conditions and faecal contamination of the drinking water system. PCR-DGGE and culture-dependent fatty acid methyl ester (FAME) analysis showed different patterns for the same samples (Lee & Kim 2003); however, PCR-DGGE showed less diversity than did FAME analysis. This study compared the culture-dependent FAME and culture-independent PCR-DGGE methods directly, and their use in promoting the hygienic safety of drinking water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号