首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The H+-ATPase of Beta vacuolar membrane (tonoplast) comprises at least three functionally distinct subunits of Mr = 67,000, 57,000, and 16,000, respectively (Manolson, M. F., Rea, P. A., and Poole, R. J. (1985) J. Biol. Chem. 260, 12273-12279). The hydrophobic carboxyl reagent N,N'-dicyclohexylcarbodiimide (DCCD) inactivates the enzyme with pseudo-first order kinetics, and the concentration dependence of the reaction indicates that DCCD interacts with a single site on the enzyme to exert its inhibitory effect. The apparent pseudo-first order rate constant (k0) is reciprocally dependent on membrane protein concentration, which is expected if a large fraction of the DCCD partitions into the lipid phase. k0 has a nominal value of 1000 M-1 min-1 at a protein concentration of 250 micrograms/ml, although when phase partitioning is taken into account, the true, protein concentration-independent value of k0 is calculated to be about an order of magnitude lower. [14C]DCCD primarily labels the Mr = 16,000 polypeptide of native tonoplast vesicles. Binding is venturicidin-insensitive and occurs at a rate similar to the rate of enzyme inactivation, implying that inhibition is a direct result of covalent modification of the Mr = 16,000 polypeptide. Labeling of the containing Mr = 8,000 subunit of mitochondrial F0F1-ATPase is, on the other hand, faster by a factor of 5 and totally abolished by venturicidin. These results confirm that the Mr = 16,000 polypeptide which copurifies with tonoplast H+-ATPase activity is a subunit of the enzyme. Most of the DCCD-reactive Mr = 16,000 subunit is extracted from acetone:ethanol-washed tonoplast vesicles by chloroform:methanol. [14C]DCCD bound to the Mr = 16,000 polypeptide is enriched in the chloroform:methanol extract by 5-fold compared with native tonoplast and the specific activity (nmol of [14C]DCCD/mg of protein) can be increased a further 37-fold by chromatography on DEAE-Sephadex. It is concluded that the Mr = 16,000 subunit of the tonoplast H+-ATPase is a proteolipid.  相似文献   

2.
The time course of electron transfer in vitro between soluble domains of the Rieske iron-sulfur protein (ISP) and cytochrome f subunits of the cytochrome b(6)f complex of oxygenic photosynthesis was measured by stopped-flow mixing. The domains were derived from Chlamydomonas reinhardtii and expressed in Escherichia coli. The expressed 142-residue soluble ISP apoprotein was reconstituted with the [2Fe-2S] cluster. The second-order rate constant, k(2)((ISP-f)) = 1.5 x 10(6) m(-1) s(-1), for ISP to cytochrome f electron transfer was <10(-2) of the rate constant at low ionic strength, k(2)((f-PC))(> 200 x 10(6) m(-1) s(-1)), for the reduction of plastocyanin by cytochrome f, and approximately 1/30 of k(2)((f-PC)) at the ionic strength estimated for the thylakoid interior. In contrast to k(2)((f-PC)), k(2)((ISP-f)) was independent of pH and ionic strength, implying no significant role of electrostatic interactions. Effective pK values of 6.2 and 8.3, respectively, of oxidized and reduced ISP were derived from the pH dependence of the amplitude of cytochrome f reduction. The first-order rate constant, k(1)((ISP-f)), predicted from k(2)((ISP-f)) is approximately 10 and approximately 150 times smaller than the millisecond and microsecond phases of cytochrome f reduction observed in vivo. It is proposed that in the absence of electrostatic guidance, a productive docking geometry for fast electron transfer is imposed by the guided trajectory of the ISP extrinsic domain. The requirement of a specific electrically neutral docking configuration for ISP electron transfer is consistent with structure data for the related cytochrome bc(1) complex.  相似文献   

3.
Pascher T 《Biochemistry》2001,40(19):5812-5820
Utilizing the stability difference between the ferro and ferri forms of horse heart cytochrome c (cyt c), folding of reduced cyt c was triggered by laser-induced reduction of unfolded oxidized cyt c. Measurements were made of the kinetics of the main folding phase (1 ms-10 s) in which collapsed reduced cyt c transforms to the native conformation. The folding rates were studied extensively as a function of temperature (5-75 degrees C) and guanidine hydrochloride (GdnHCl) concentration (1.6-4.9 M). At constant [GdnHCl], the Arrhenius plot of the folding rate constant (k) is nonlinear. At temperatures above 40 degrees C, the decrease in protein stability counteracts the expected increase in folding rate. Introducing free energy (DeltaG), derived from protein stability data, into the Eyring and Arrhenius equations leads to: ln k = ln(k(b)T/h) + DeltaS()/R - DeltaH()/RT - theta(m)DeltaG/RT = ln A - E(a)/RT - theta(m)DeltaG/RT, where theta(m) is the ratio between the denaturant dependence of the folding rate and the stability. By using this equation at constant DeltaG [or constant equilibrium constant (K)], linear Arrhenius plots are obtained. For the main folding phase of reduced cyt c, a positive DeltaS() is obtained indicating that the transition state is less ordered than the reactant. A model is proposed in which reduced cyt c first collapses into a compact intermediate, which needs to expand to reach the transition state of the rate-limiting folding reaction.  相似文献   

4.
The mechanism of ajmaline-induced inhibition of the transient outward current (I(to)) has been investigated in right ventricular myocytes of rat using the whole cell patch clamp technique. Ajmaline decreased the amplitude and the time integral of I(to) in a concentration-dependent, but frequency- and use-independent manner. In contrast to the single exponential time course of I(to)-inactivation in control conditions (tau(i) = 37.1 +/- 2.7 ms), the apparent inactivation was fitted by a sum of two exponentials under the effect of ajmaline with concentration-dependent fast and slow components (tau(f) = 11.7 +/- 0.8 ms, tau(s) = 57.6 +/- 2.7 ms at 10 micromol/l) suggesting block development primarily in the open channel state. An improved expression enabling to calculate the association and dissociation rate constants from the concentration dependence of tau(f) and tau(s) was derived and resulted in k(on) = 4.57 x 10(6) +/- 0.32 x 10(6) mol(-1).l.s(-1) and k(off) = 20.12 +/- 5.99 s(-1). The value of K(d) = 4.4 micromol/l calculated as k(off) / k(on) was considerably lower than IC(50) = 25.9 +/- 2.9 micromol/l evaluated from the concentration dependence of the integrals of I(to). Simulations on a simple model combining Hodgkin-Huxley type gating kinetics and drug-channel interaction entirely in open channel state agreed well with the experimental data including the difference between the K(d) and IC(50). According to the model, the fraction of blocked channels increases upon depolarization and declines if depolarization is prolonged. The repolarizing step induces recovery from block with time constant of 52 ms. We conclude that in the rat right ventricular myocytes, ajmaline is an open channel blocker with fast recovery from the block at resting voltage.  相似文献   

5.
The dependence of the frequency of recessive lethal (two groups), chlorophyll and morphological mutations on the mutagen concentration was determined in M2 after subjection to N-nitroso-N-methylurea applied to seeds ofArabidopsis in three concentrations (0·05, 0·10 and 0·20mm). The observed frequencies were compared with the theoretically expected ones for the linear and for two exponential types of dependence, by using the t-test, according to the formulas m=k. C, m=k. C3/2, m=k. C2. No satisfactory agreement with any expected type of dependence was found when directly observed frequencies were used. Since a considerable deficit of mutation frequency was observed in high concentrations, the correction of frequency values was done with respect to the probability of occurence of double mutations. After such a correction, a clear exponential relation was found in both types of lethals and a linear one in chlorophyll and morphological mutations. The probable occurence of multiple mutations should be, therefore, taken into account if the dependence of mutation frequency on the concentration of mutagen is discussed.  相似文献   

6.
Lyle KS  Haas JA  Fox BG 《Biochemistry》2003,42(19):5857-5866
Stearoyl-ACP Delta9 desaturase (Delta9D) catalyzes the NADPH- and O(2)-dependent insertion of a cis double bond between the C9 and C10 positions of stearoyl-ACP (18:0-ACP) to produce oleoyl-ACP (18:1-ACP). This work revealed the ability of reduced [2Fe-2S] ferredoxin (Fd) to act as a catalytically competent electron donor during the rapid conversion of 18:0-ACP into 18:1-ACP. Experiments on the order of addition for substrate and reduced Fd showed high conversion of 18:0-ACP to 18:1-ACP (approximately 95% per Delta9D active site in a single turnover) when 18:0-ACP was added prior to reduced Fd. Reactions of the prereduced enzyme-substrate complex with O(2) and the oxidized enzyme-substrate complex with reduced Fd were studied by rapid-mix and chemical quench methods. For reaction of the prereduced enzyme-substrate complex, an exponential burst phase (k(burst) = 95 s(-1)) of product formation accounted for approximately 90% of the turnover expected for one subunit in the dimeric protein. This rapid phase was followed by a slower phase (k(linear) = 4.0 s(-1)) of product formation corresponding to the turnover expected from the second subunit. For reaction of the oxidized enzyme-substrate complex with excess reduced Fd, a slower, linear rate (k(obsd) = 3.4 s(-1)) of product formation was observed over approximately 1.5 turnovers per Delta9D active site potentially corresponding to a third phase of reaction. An analysis of the deuterium isotope effect on the two rapid-mix reaction sequences revealed only a modest effect on k(burst) ((D)k(burst) approximately 1.5) and k(linear) (D)k(linear) approximately 1.4), indicating C-H bond cleavage does not contribute significantly to the rate-limiting steps of pre-steady-state catalysis. These results were used to assemble and evaluate a minimal kinetic model for Delta9D catalysis.  相似文献   

7.
The survival rate and reversions to tryptophan-independence of Escherichia coli after XeCl laser irradiation (lambda = 308 nm) within the dose range from 10(3) to 10(5) J/m2 have been studied to show that LD37 is 10(4) J/m2, the survival rate at a maximum dose of 10(5)J/m2 is 1 per cent, and the number of mutants per 10(6) cells survived is 100.  相似文献   

8.
T Dobashi  H Goto  A Sakanishi  S Oka 《Biorheology》1987,24(2):153-162
We have measured volume fraction dependence of the sedimentation curve of swine erythrocytes in a physiological saline solution at 10 degrees C, 20 degrees C, 30 degrees C and 40 degrees C. The sedimentation curves were found to consist of initial constant velocity region and final plateau region at the lower temperatures of 10 degrees C and 20 degrees C, while modified S-shaped curves were observed at the higher temperatures of 30 degrees C and 40 degrees C. The volume fraction dependence of the initial slope v of the sedimentation curve was fitted well to the following exponential type equation at all the temperatures: v = vs,exp (1 - H)exp[-(BH + CH2)] where vs,exp is the velocity in infinite dilution corresponding to the Stokes velocity and H is the volume fraction of erythrocytes. The volume fraction dependence of the relative velocity v/vs,exp was in close agreement with a semi-empirical equation derived for slurrys in the field of chemical engineering at the lower temperatures, while a small deviation between the observed and calculated curves was found at the higher temperatures. The volume fraction dependence of v at 20 degrees C was also analyzed on a theory recently developed by Oka. The explicit functional form of the medium up-flow factor phi (H) and the deformability factor f in the theory were determined using the experimental data.  相似文献   

9.
A microcantilever technique was used to apply force to receptor-ligand molecules involved in leukocyte rolling on blood vessel walls. E-selectin was adsorbed onto 3-microm-diameter, 4-mm-long glass fibers, and the selectin ligand, sialyl Lewis(x), was coupled to latex microspheres. After binding, the microsphere and bound fiber were retracted using a computerized loading protocol that combines hydrodynamic and Hookean forces on the fiber to produce a range of force loading rates (force/time), r(f). From the distribution of forces at failure, the average force was determined and plotted as a function of ln r(f). The slope and intercept of the plot yield the unstressed reverse reaction rate, k(r)(o), and a parameter that describes the force dependence of reverse reaction rates, r(o). The ligand was titrated so adhesion occurred in approximately 30% of tests, implying that >80% of adhesive events involve single bonds. Monte Carlo simulations show that this level of multiple bonding has little effect on parameter estimation. The estimates are r(o) = 0.048 and 0.016 nm and k(r)(o) = 0.72 and 2.2 s(-1) for loading rates in the ranges 200-1000 and 1000-5000 pN s(-1), respectively. Levenberg-Marquardt fitting across all values of r(f) gives r(o) = 0.034 nm and k(r)(o) = 0.82 s(-1). The values of these parameters are in the range required for rolling, as suggested by adhesive dynamics simulations.  相似文献   

10.
Zotin AA  Kleĭmenov SIu 《Ontogenez》2006,37(3):221-226
We studied the rate of oxygen consumption by the Lymnaea stagnalis embryos. The rate of oxygen consumption increased consistently during embryogenesis. The volume specific rate of oxygen consumption increased initially from the early cleavage stages until the gastrula stage and then decreased gradually to the eclosion of snails. There are three periods in embryogenesis of L. stagnalis, which differ in the coefficients of allometric dependence between the rate of oxygen consumption and volume of embryos: (1) early embryogenesis, when the increase in the rate of oxygen consumption is not accompanied by the growth of volume of the embryos; (2) larval period (trochophore and veliger stages; exponential coefficient k = 0.514), and (3) postlarval period (exponential coefficient k = 0.206).  相似文献   

11.
We sought to understand how leg muscle function determines the metabolic cost of walking. We first indirectly assessed the metabolic cost of swinging the legs and then examined the cost of generating muscular force during the stance phase. Four men and four women walked at 0.5, 1.0, 1.5, and 2.0 m/s carrying loads equal to 0, 10, 20, and 30% body mass positioned symmetrically about the waist. The net metabolic rate increased in nearly direct proportion to the external mechanical power during moderate-speed (0.5-1.5 m/s) load carrying, suggesting that the cost of swinging the legs is relatively small. The active muscle volume required to generate force on the ground and the rate of generating this force accounted for >85% of the increase in net metabolic rate across moderate speeds and most loading conditions. Although these factors explained less of the increase in metabolic rate between 1.5 and 2.0 m/s ( approximately 50%), the cost of generating force per unit volume of active muscle [i.e., the cost coefficient (k)] was similar across all conditions [k = 0.11 +/- 0.03 (SD) J/cm3]. These data indicate that, regardless of the work muscles do, the metabolic cost of walking can be largely explained by the cost of generating muscular force during the stance phase.  相似文献   

12.
Micropipette pressurization of giant bilayer vesicles was used to measure both elastic bending k(c) and area stretch K(A) moduli of fluid-phase phosphatidylcholine (PC) membranes. Twelve diacyl PCs were chosen: eight with two 18 carbon chains and degrees of unsaturation from one double bond (C18:1/0, C18:0/1) to six double bonds per lipid (diC18:3), two with short saturated carbon chains (diC13:0, diC14:0), and two with long unsaturated carbon chains (diC20:4, diC22:1). Bending moduli were derived from measurements of apparent expansion in vesicle surface area under very low tensions (0.001-0.5 mN/m), which is dominated by smoothing of thermal bending undulations. Area stretch moduli were obtained from measurements of vesicle surface expansion under high tensions (>0.5 mN/m), which involve an increase in area per molecule and a small-but important-contribution from smoothing of residual thermal undulations. The direct stretch moduli varied little (< +/-10%) with either chain unsaturation or length about a mean of 243 mN/m. On the other hand, the bending moduli of saturated/monounsaturated chain PCs increased progressively with chain length from 0.56 x 10(-19) J for diC13:0 to 1.2 x 10(-19) J for diC22:1. However, quite unexpectedly for longer chains, the bending moduli dropped precipitously to approximately 0.4 x 10(-19) J when two or more cis double bonds were present in a chain (C18:0/2, diC18:2, diC18:3, diC20:4). Given nearly constant area stretch moduli, the variations in bending rigidity with chain length and polyunsaturation implied significant variations in thickness. To test this hypothesis, peak-to-peak headgroup thicknesses h(pp) of bilayers were obtained from x-ray diffraction of multibilayer arrays at controlled relative humidities. For saturated/monounsaturated chain bilayers, the distances h(pp) increased smoothly from diC13:0 to diC22:1 as expected. Moreover, the distances and elastic properties correlated well with a polymer brush model of the bilayer that specifies that the elastic ratio (k(c)/K(A))(1/2) = (h(pp) - h(o))/24, where h(o) approximately 1 nm accounts for separation of the headgroup peaks from the deformable hydrocarbon region. However, the elastic ratios and thicknesses for diC18:2, diC18:3, and diC20:4 fell into a distinct group below the correlation, which showed that poly-cis unsaturated chain bilayers are thinner and more flexible than saturated/monounsaturated chain bilayers.  相似文献   

13.
Reaction of Muscimol with 4-Aminobutyrate Aminotransferase   总被引:1,自引:1,他引:0  
Abstract: The reaction of muscimol as amino donor substrate for GABA transaminase (GABA-T) has been studied using enzyme purified from rabbit brain. Enzyme activity was assayed by measuring the glutamate produced using glutamate dehydrogenase. Kinetic parameters determined at 37°C were for GABA, K m (app) = 1.92 ± 0.24 m M , specific activity = 7.33 ± 0.27 μmol/min/mg ( k cat= 13.7s−1), and for muscimol, K m (app) = 1.27 ± 0.15 m M , specific activity = 0.101 ± 0.009 μmol/min/mg ( k cat= 0.19s−1). Addition of muscimol to the enzyme caused the spectral changes associated with conversion of the pyridoxaldimine form to the pyridoxamine form, and the first-order rate constant for the reaction showed a dependence on muscimol concentration that followed saturation kinetics, with a K = 1.1 ±0.18 m M and k max= 0.065 ± 0.004 s−1 (19°C). The rate of spectral change observed on addition of muscimol to ornithine transaminase was extremely slow—at least an order of magnitude slower than that seen with GABA-T.  相似文献   

14.
D-serine dehydratase (DSD) catalyses the conversion of d-serine to pyruvate and ammonia. d-Serine is a physiological modulator of glutamate neurotransmission in vertebrate brains. In mammals d-serine is degraded by d-amino-acid oxidase, whereas in chicken brain it is degraded by DSD, as we have recently demonstrated [Tanaka et al. (2007) Anal. Biochem. 362, 83-88]. To clarify the roles of DSD in avian species, we purified DSD from chicken kidney. The purified enzyme was a heterodimer consisting of subunits separable by SDS-PAGE but with identical N-terminal amino acid sequences. The prominent absorption at 416 nm and the inhibition of the enzyme both by hydroxylamine and by aminooxyacetate suggested that the enzyme contains pyridoxal 5'-phosphate as a cofactor. The enzyme showed the highest specificity to d-serine: the k(cat)/K(m) values of DSD for d-serine, d-threonine and l-serine were 6.19 x 10(3), 164 and 16 M(-1)s(-1), respectively. DSD was found immunohistochemically in the proximal tubules of the chicken kidney. Judging from the amino acid sequence deduced from the cDNA, chicken DSD is a homologue of cryptic DSD from Burkholderia cepacia and low-specificity d-threonine aldolase from Arthrobacter sp. strain DK-38, all of which have a cofactor binding motif of PHXK(T/A) in their N-terminal portions.  相似文献   

15.
RS Phillips  U Kalu  S Hay 《Biochemistry》2012,51(33):6527-6533
The effects of pH and hydrostatic pressure on the reaction of H463F tryptophan indole-lyase (TIL) have been evaluated. The mutant TIL shows very low activity for elimination of indole but is still competent to form a quinonoid intermediate from l-tryptophan [Phillips, R. S., Johnson, N., and Kamath, A. V. (2002) Biochemistry 41, 4012-4019]. Stopped-flow measurements show that the formation of the quinonoid intermediate at 505 nm is affected by pH, with a bell-shaped dependence for the forward rate constant, k(f), and dependence on a single basic group for the reverse rate constant, k(r), with the following values: pK(a1) = 8.14 ± 0.15, pK(a2) = 7.54 ± 0.15, k(f,min) = 18.1 ± 1.3 s(-1), k(f,max) = 179 ± 46.3 s(-1), k(r,min) = 11.4 ± 1.2 s(-1), and k(r,max) = 33 ± 1.6 s(-1). The pH effects may be due to ionization of Tyr74 as the base and Cys298 as the acid influencing the rate constant for deprotonation. High-pressure stopped-flow measurements were performed at pH 8, which is the optimum for the forward reaction. The rate constants show an increase with pressure up to 100 MPa and a subsequent decrease above 100 MPa. Fitting the pressure data gives the following values: k(f,0) = 15.4 ± 0.8 s(-1), ΔV(?) = -29.4 ± 2.9 cm(3) mol(-1), and Δβ(?) = -0.23 ± 0.03 cm(3) mol(-1) MPa(-1) for the forward reaction, and k(r,0) = 20.7 ± 0.8 s(-1), ΔV(?) = -9.6 ± 2.3 cm(3) mol(-1), and Δβ(?) = -0.05 ± 0.02 cm(3) mol(-1) MPa(-1) for the reverse reaction. The primary kinetic isotope effect on quinonoid intermediate formation at pH 8 is small (~2) and is not significantly pressure-dependent, suggesting that the effect of pressure on k(f) may be due to perturbation of an active site preorganization step. The negative activation volume is also consistent with preorganization of the ES complex prior to quinonoid intermediate formation, and the negative compressibility may be due to the effect of pressure on the enzyme conformation. These results support the conclusion that the preorganization of the H463F TIL Trp complex, which is probably dominated by motion of the l-Trp indole moiety of the aldimine complex, contributes to quinonoid intermediate formation.  相似文献   

16.
Temperature jump relaxation kinetics of the P-450cam spin equilibrium   总被引:1,自引:0,他引:1  
M T Fisher  S G Sligar 《Biochemistry》1987,26(15):4797-4803
The ferric spin-state equilibrium and relaxation rate of cytochrome P-450 has been examined with temperature jump spectroscopy using a number of camphor analogues known to induce different mixed spin states in the substrate-bound complexes [Gould, P., Gelb, M., & Sligar, S. G. (1981) J. Biol. Chem. 256, 6686]. All temperature-induced spectral changes were monophasic, and the spin-state relaxation rate reached a limiting value at high substrate concentrations. The ferric spin equilibrium constant, Kspin, is defined in terms of the rate constants k1 and k-1 via Kspin = k1/k-1 = [P-450(HS)]/[P-450(LS)] where HS and LS represent high-spin (S = 5/2) and low-spin (S = 1/2) ferric iron, respectively, and the spectrally observed spin-state relaxation rate by kobsd = k1 + k-1. A strong correlation between the fraction of high-spin species and the rate constant, k-1, is observed. For a 3 degrees C temperature jump (from 10 to 13 degrees C), the 23% high-spin tetramethylcyclohexanone complex (Kd = 45 +/- 20 microM) is characterized by a ferric spin relaxation rate of kobsd = 1990 s-1, while the rates for the d-fenchone (41% high spin, Kd = 42 +/- 10 microM) and kobsd = 1990 s-1, while the rates for the d-fenchone (41% high spin, Kd = 42 +/- 10 microM) and camphoroquinone (75% high spin, Kd = 15 +/- 5 microM) complexes are 1430 and 346 s-1, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The Michaelis constant (K(m)) and V(mas) (E0k(cat)) values for two mutant sets of enzymes were studied from the viewpoint of their definition in a rapid equilibrium reaction model and in a steady state reaction model. The "AMP set enzyme" had a mutation at the AMP-binding site (Y95F, V67I, and V67I/L76V), and the "ATP set enzyme" had a mutation at a possible ATP-binding region (Y32F, Y34F, and Y32A/Y34A). Reaction rate constants obtained using steady state model analysis explained discrepancies found by the rapid equilibrium model analysis. (i) The unchanged number of bound AMPs for Y95F and the wild type despite the markedly increased K(m) values for AMP of the AMP set of enzymes was explained by alteration of the rate constants of the AMP step (k(+2), k(-2)) to retain the ratio k(+2)/k(-2). (ii) A 100 times weakened selectivity of ATP for Y34F in contrast to no marked changes in K(m) values for both ATP and AMP for the ATP set of enzymes was explained by the alteration of the rate constants of the ATP steps. A similar alteration of the K(m) and k(cat) values of these enzymes resulted from distinctive alterations of their rate constants. The pattern of alteration was highly suggestive. The most interesting finding was that the rate constants that decided the K(m) and k(cat) values were replaced by the mutation, and the simple relationships between K(m), k(cat), and the rate constants of K(m)1 = k(+1)/k(-1) and k(cat) = k(f) were not valid. The nature of the K(m) and k(cat) alterations was discussed.  相似文献   

18.
A solvent deuterium isotope effect on the catalytic affinity (K(m)) and rate constant (k(cat)) of tyrosinase in its action on 4-tert-butylcatechol (TBC) was observed. Both parameters decreased as the molar fraction of deuterated water in the medium increased, while the k(cat)/K(m) ratio remained constant. In a proton inventory study, the representation of k(cat)(f(n))/k(cat)(f(0)) and K(m)(f(n))/K(m)(f(0)) vs. n (atom fractions of deuterium) was linear, indicating that, of the four protons transferred from the two molecules of substrate and which are oxidized in one turnover, only one is responsible for the isotope effects. The fractionation factor of 0.64+/-0.02 contributed to identifying the possible proton acceptor. Possible mechanistic implications are discussed.  相似文献   

19.
A steady-state kinetic analysis was made of thiocyanate (SCN-) oxidation catalyzed by human peroxidase (SPO) isolated from parotid saliva. For comparative purposes, bovine lactoperoxidase (LPO) was also studied. Both enzymes followed the classical Theorell-Chance mechanism under the initial conditions [H2O2] less than 0.2mM, [SCN-] less than 10mM, and pH greater than 6.0. The pH-independent rate constants (k1) for the formation of compound I were estimated to be 8 X 10(6) M-1 s-1 (SD = 1, n = 18) for LPO and 5 X 10(6) M-1 s-1 (SD = 1, n = 11) for SPO. The pH-independent second-order rate constants (k4) for the oxidation of thiocyanate by compound I were estimated to be 5 X 10(6) M-1 s-1 (SD = 1, n = 18) for LPO and 9 X 10(6) M-1 s-1 (SD = 2, n = 11) for SPO. Both enzymes were inhibited by SCN- at pH less than 6. The pH-independent equilibrium constant (Ki) for the formation of the inhibited enzyme-SCN- complex was estimated to be 24 M-1 (SD = 12, n = 8) for LPO and 44 M-1 (SD = 4, n = 10) for SPO. An apparent pH dependence of the estimated values for k4 and Ki for both LPO and SPO was consistent with a mechanism based on assumptions that protonation of compound I was necessary for the SCN- peroxidation step, that a second protonation of compound I gave an inactive form, and that the inhibited enzyme-SCN- complex could be further protonated to give another inactive form.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Bovine pancreatic ribonuclease A (RNase A) catalyzes the cleavage of the P-O(5') bond in RNA. Although this enzyme has been the object of much landmark work in bioorganic chemistry, the nature of its rate-limiting transition state and its catalytic rate enhancement had been unknown. Here, the value of k(cat)/K(m) for the cleavage of UpA by wild-type RNase A was found to be inversely related to the concentration of added glycerol. In contrast, the values of k(cat)/K(m) for the cleavage of UpA by a sluggish mutant of RNase A and the cleavage of the poor substrate UpOC(6)H(4)-p-NO(2) by wild-type RNase A were found to be independent of glycerol concentration. Yet, UpA cleavage by the wild-type and mutant enzymes was found to have the same dependence on sucrose concentration, indicating that catalysis of UpA cleavage by RNase A is limited by desolvation. The rate of UpA cleavage by RNase A is maximal at pH 6.0, where k(cat) = 1.4 × 10(3) s(-1) and k(cat)/K(m) = 2.3 × 10(6) M(-1)s(-1) at 25°C. At pH 6.0 and 25°C, the uncatalyzed rate of [5,6-(3)H]Up[3,5,8-(3)H]A cleavage was found to be k(uncat) = 5 × 10(-9) s(-1) (t(1/2) = 4 years). Thus, RNase A enhances the rate of UpA cleavage by 3 × 10(11)-fold by binding to the transition state for P-O(5') bond cleavage with a dissociation constant of <2 × 10(-15) M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号