首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims: The purpose of this study was to evaluate the antimicrobial efficacy of thirteen bismuth thiol preparations for bactericidal activity against established biofilms formed by two bacteria isolated from human chronic wounds. Methods: Single species biofilms of a Pseudomonas aeruginosa or a methicillin‐resistant Staphylococcus aureus were grown in either colony biofilm or drip‐flow reactors systems. Biofilms were challenged with bismuth thiols, antibiotics or silver sulfadiazine, and log reductions were determined by plating for colony formation. Conclusions: Antibiotics were ineffective or inconsistent against biofilms of both bacterial species tested. None of the antibiotics tested were able to achieve >2 log reductions in both biofilm models. The 13 different bismuth thiols tested in this investigation achieved widely varying degrees of killing, even against the same micro‐organism in the same biofilm model. For each micro‐organism, the best bismuth thiol easily outperformed the best conventional antibiotic. Against P. aeruginosa biofilms, bismuth‐2,3‐dimercaptopropanol (BisBAL) at 40–80 μg ml?1 achieved >7·7 mean log reduction for the two biofilm models. Against MRSA biofilms, bismuth‐1,3‐propanedithiol/bismuth‐2‐mercaptopyridine N‐oxide (BisBDT/PYR) achieved a 4·9 log reduction. Significance and Impact of the Study: Bismuth thiols are effective antimicrobial agents against biofilms formed by wound bacteria and merit further development as topical antiseptics for the suppression of biofilms in chronic wounds.  相似文献   

2.
Abstract

The persistence of microorganisms as biofilms on dry surfaces resistant to the usual terminal cleaning methods may pose an additional risk of transmission of infections. In this study, the Centre for Disease Control (CDC) dry biofilm model (DBM) was adapted into a microtiter plate format (Model 1) and replicated to create a novel in vitro model that replicates conditions commonly encountered in the healthcare environment (Model 2). Biofilms of Staphylococcus aureus grown in the two models were comparable to the biofilms of the CDC DBM in terms of recovered log10 CFU well?1. Assessment of the antimicrobial tolerance of biofilms grown in the two models showed Model 2 a better model for biofilm formation. Confirmation of the biofilms’ phenotype with an extracellular matrix deficient S. aureus suggested stress tolerance through a non-matrix defined mechanism in microorganisms. This study highlights the importance of conditions maintained in bacterial growth as they affect biofilm phenotype and behaviour.  相似文献   

3.
Abstract

The aim of this study was to investigate the antibacterial activity, antibiotic-associated synergy, and anti-biofilm activity of the ruthenium complex, cis-[RuCl2 (dppb) (bqdi)]2+ (RuNN). RuNN exhibited antimicrobial activity against Gram-positive bacteria with minimum inhibitory concentration (MIC) values ranging from 15.6 to 62.5?µg ml?1 and minimum bactericidal concentration (MBC) values ranging from 62.5 to 125?µg ml?1. A synergistic effect against Staphylococcus spp. was observed when RuNN was combined with ampicillin, and the range of associated fractional inhibitory concentration index (FICI) values was 0.187 to 0.312. A time-kill curve indicated the bactericidal activity of RuNN in the first 1–5?h. In general, RuNN inhibited biofilm formation and disrupted mature biofilms. Furthermore, RuNN altered the cellular morphology of S. aureus biofilms. Further, RuNN did not cause hemolysis of erythrocytes. The results of this study provide evidence that RuNN is a novel therapeutic candidate to treat bacterial infections caused by Staphylococcus biofilms.  相似文献   

4.
This investigation examined the effects of common aqueous biocides and disinfectant foams derived from them on Pseudomonas aeruginosa biofilms. Biofilms were grown on stainless steel coupons under standardised conditions in a reactor supplemented with low concentrations of organic matter to simulate conditions prevalent in industrial systems. Five-day-old biofilms formed under ambient conditions with continuous agitation demonstrated a low coefficient of variation (5.809%) amongst viable biofilm bacteria from independent trials. Scanning electron microscopy revealed biofilms on coupons with viable biofilm bacteria observed by confocal microscopy. An aqueous solution of a common foaming agent amine oxide (AO) produced negligible effects on bacterial viability in biofilms (p?>?0.05). However, significant biofilm inactivation was noted with aqueous solutions of common biocides (peracetic acid, sodium hypochlorite, sodium ethylenediaminetetraacetic acid) with or without AO (p?<?0.05). Aereation of a mixture of AO with each of these common biocides resulted in significant reductions in the viability of biofilm bacteria (p?<?0.05). In contrast, limited effects were noted by foam devoid of biocides. A relationship between microbial inactivation and the concentration of biocide in foam (ranging from 0.1?–?0.5%) and exposure period were noted (p?<?0.05). Although, lower numbers of viable biofilm bacteria were recovered after treatment with the disinfectant foam than by the cognate aqueous biocide, significant differences between these treatments were not evident (p?>?0.05). In summary, the studies revealed significant biofilm inactivation by biocidal foam prepared with common biocides. Validation of foam disinfectants in controlled trials at manufacturing sites may facilitate developments for clean in place applications. Advantages of foam disinfectants include reductions in the volumes of biocides for industrial disinfection and in their disposal after use.  相似文献   

5.

Aims

The aim of this study was to clarify the effects of homologous and heterologous extracellular DNAs (eDNAs) and histone‐like DNA‐binding protein (HLP) on Streptococcus intermedius biofilm development and rigidity.

Methods and Results

Formed biofilm mass was measured with 0·1% crystal violet staining method and observed with a scanning electron microscope. The localizations of eDNA and extracellular HLP (eHLP) in formed biofilm were detected by staining with 7‐hydoxyl‐9H‐(1,3‐dichloro‐9,9‐dimethylacridin‐2‐one) and anti‐HLP antibody without fixation, respectively. DNase I treatment (200 U ml?1) markedly decreased biofilm formation and cell density in biofilms. Colocalization of eHLP and eDNA in biofilm was confirmed. The addition of eDNA (up to 1 μg ml?1) purified from Strep. intermedius, other Gram‐positive bacteria, Gram‐negative bacteria, or human KB cells into the Strep. intermedius culture increased the biofilm mass of all tested strains of Strep. intermedius, wild‐type, HLP‐downregulated strain and control strains. In contrast, the addition of eDNA (>1 μg ml?1) decreased the biofilm mass of all Strep. intermedius strains.

Conclusions

These findings demonstrated that eDNA and eHLP play crucial roles in biofilm development and its rigidity.

Significance and Impact of the Study

eDNA‐ and HLP‐targeting strategies may be applicable to novel treatments for bacterial biofilm‐related infectious diseases.  相似文献   

6.
Infectious diseases caused by bacteria and fungi are the major cause of morbidity and mortality across the globe. Multi-drug resistance in these pathogens augments the complexity and severity of the diseases. Various studies have shown the role of biofilms in multi-drug resistance, where the pathogen resides inside a protective coat made of extracellular polymeric substances. Since biofilms directly influence the virulence and pathogenicity of a pathogen, it is optimal to employ a strategy that effectively inhibits the formation of biofilm. Pomegranate is a common food and is also used traditionally to treat various ailments. This study assessed the anti-biofilm activity of a methanolic extract of pomegranate against bacterial and fungal pathogens. Methanolic extract of pomegranate was shown to inhibit the formation of biofilms by Staphylococcus aureus, methicillin resistant S. aureus, Escherichia coli, and Candida albicans. Apart from inhibiting the formation of biofilm, pomegranate extract disrupted pre-formed biofilms and inhibited germ tube formation, a virulence trait, in C. albicans. Characterization of the methanolic extract of pomegranate revealed the presence of ellagic acid (2,3,7,8-tetrahydroxy-chromeno[5,4,3-cde]chromene-5,10-dione) as the major component. Ellagic acid is a bioactive tannin known for its antioxidant, anticancer, and anti-inflammatory properties. Further studies revealed the ability of ellagic acid to inhibit the growth of all species in suspension at higher concentrations (>75?μg?ml?1) and biofilm formation at lower concentrations (<40?μg?ml?1) which warrants further investigation of the potential of ellagic acid or peel powders of pomegranate for the treatment of human ailments.  相似文献   

7.
Abstract

P22 phage >105 PFU ml?1 could be used to inhibit Salmonella Typhimurium biofilm formation by 55–80%. Concentrations of EDTA >1.25?mM and concentrations of nisin >1,200?µg ml?1 were also highly effective in reducing S. Typhimurium biofilm formation (≥96% and ≥95% reductions were observed, respectively). A synergistic effect was observed when EDTA and nisin were combined whereas P22 phage in combination with nisin had no synergistic impact on biofilm formation. Triple combination of P22 phage, EDTA and nisin could be also used to inhibit biofilm formation (≥93.2%) at a low phage titer (102 PFU ml?1), and low EDTA (1.25?mM) and nisin (9.375?µg ml?1) concentrations. A reduction of 70% in the mature biofilm was possible when 107 PFU ml?1 of P22 phage, 20?mM of EDTA and 150?μg ml?1 of nisin were used in combination. This study revealed that it could be possible to reduce biofilm formation by S. Typhimurium by the use of P22 phage, EDTA and nisin, either alone or in combination. Although, removal of the mature biofilm was more difficult, the triple combination could be successfully used for mature biofilm of S. Typhimurium.  相似文献   

8.
Following the appearance of several antimicrobial agents to control the spread of infections, two major challenges have emerged: (i) the occurrence and blowout of multiresistant bacteria and the increase of chronic diseases and (ii) difficult-to-eradicate infections. In this study, we tested five benzoylthiourea derivatives for their ability to inhibit and stop bacterial growth and evaluated the possible influence of 1,2,4-triazolyl-benzoylthiourea derivative 4 on the formation and eradication of Staphylococcus aureus biofilms. Benzoylthiourea derivatives 4 , 6 , 10 , 11 and 13 were obtained in one or two steps with low cost and subjected to tests to identify their minimum inhibitory concentration (MIC) and minimum bactericidal concentration. In vitro tests were also performed to assess their effects on biofilm formation and in preformed biofilms and scanning electron microscopy was used to visualize the effects on biofilm formation. The 1,2,4-triazolyl-benzoylthiourea derivative 4 showed bacteriostatic activity against the S. aureus HU25 clinical strain with an MIC of 16 µg ml−1, which is below the toxic concentration (at 2500 µg ml−1, 62·25% of the cells remained viable). Compound 4 also effectively prevented biofilm formation at the three subinhibitory concentrations tested (1/2 MIC, 1/4 MIC and 1/8 MIC) as confirmed by scanning electron microscopy. For breakdown of formed biofilms, the main influence was at a subinhibitory concentration (1/2 MIC). These findings make compound 4 a strong candidate for studies on the development of new antimicrobial and antibiofilm agents.  相似文献   

9.
Christian Traba 《Biofouling》2013,29(7):763-772
Formation of bacterial biofilms at solid–liquid interfaces creates numerous problems in both industrial and biomedical sciences. In this study, the susceptibility of Staphylococcus aureus biofilms to discharge gas generated from plasma was tested. It was found that despite distinct chemical/physical properties, discharge gases from oxygen, nitrogen, and argon demonstrated very potent and almost the same anti-biofilm activity. The bacterial cells in S. aureus biofilms were killed (>99.9%) by discharge gas within minutes of exposure. Under optimal experimental conditions, no bacteria and biofilm re-growth from discharge gas treated biofilms was found. Further studies revealed that the anti-biofilm activity of the discharge gas occurred by two distinct mechanisms: (1) killing bacteria in biofilms by causing severe cell membrane damage, and (2) damaging the extracellular polymeric matrix in the architecture of the biofilm to release biofilm from the surface of the solid substratum. Information gathered from this study provides an insight into the anti-biofilm mechanisms of plasma and confirms the applications of discharge gas in the treatment of biofilms and biofilm related bacterial infections.  相似文献   

10.
Abstract

The emergent need for new treatment methods for multi-drug resistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) has focused attention on novel potential tools like nanoparticles (NPs). In the present study, a drug-free cationic nanoparticles (CNPs) system was developed and its anti-MRSA effects were firstly investigated. The results showed that CNPs (261.7?nm, 26.1?mv) showed time- and concentration-dependent activity against MRSA growth, killing ~ 90% of planktonic bacterial cells in 3?h at 400?μg ml?1, and completely inhibiting biofilm formation at 1000?μg ml?1. Moreover, CNPs at 400?μg ml?1 reduced the minimum inhibitory concentration (MIC) of vancomycin on inhibition of planktonic MRSA growth (~ 25%) and biofilm formation (~ 50%). The CNPs–bacteria interaction force was up to 22 nN. Overall, these data suggest that CNPs have a good potential in clinical applications for the prevention and treatment of MRSA infection.  相似文献   

11.
This study investigated the antimicrobial effects of the ethanolic extract of Brazilian red propolis (BRP) on multispecies biofilms. A seven-day-old subgingival biofilm with 32 species was grown in a Calgary device. Biofilms were treated with BRP (1,600, 800, 400 and 200?μg ml?1) twice a day for 1?min, starting from day 3. Chlorhexidine (0.12%) and dilution-vehicle were used as positive and negative controls, respectively. On day 7, metabolic activity and the microbial composition of the biofilms by DNA-DNA hybridization were determined. The viability data were analyzed by one-way ANOVA followed by Tukey’s post hoc, whereas the microbial composition data were transformed via BOX-COX and analyzed using Dunnett’s post hoc. BRP (1,600?μg ml?1) decreased biofilm metabolic activity by 45%, with no significant difference from chlorhexidine-treated samples. BRP (1,600?μg ml?1) and chlorhexidine significantly reduced levels of 14 bacterial species compared to the vehicle control. Taken together, BRP showed promising antimicrobial properties which may be useful in periodontal disease control.  相似文献   

12.
Abstract

This study describes an ex vivo model that creates an environment for dermatophyte biofilm growth, with features that resemble those of in vivo conditions, designing a new panorama for the study of antifungal susceptibility. Regarding planktonic susceptibility, MIC ranges were 0.125-1?µg ml?1 for griseofulvin and 0.000097-0.25?µg ml?1 for itraconazole and terbinafine. sMIC50 ranges were 2->512?µg ml?1 for griseofulvin and 0.25->64?µg ml?1 for itraconazole and terbinafine. CLSM images demonstrated a reduction in the amount of cells within the biofilm, but hyphae and conidia were still observed and biofilm biomass was maintained. SEM analysis demonstrated a retraction in the biofilm matrix, but fungal structures and water channels were preserved. These results show that ex vivo biofilms are more tolerant to antifungal drugs than in vitro biofilms, suggesting that environmental and nutritional conditions created by this ex vivo model favor biofilm growth and robustness, and hence drug tolerance.  相似文献   

13.
Aims: Research on biofilms requires validated quantitative models that focus both on matrix and viable bacterial mass. In this study, a new microplate model for the detection of Staphylococcus aureus biofilms was developed. Methods and Results: Dimethyl methylene blue (DMMB) dye was used to quantify biofilm matrix colorimetrically. Initially developed for the detection of glycosaminoglycans, the DMMB protocol was optimized for S. aureus biofilm research. In addition, the redox indicator resazurin was used to determine the viable bacterial biofilm burden. Conclusion: A new, simple and reproducible microplate test system based on DMMB and resazurin, offering a reliable differentiation between biofilm matrix and cellular activity, was developed and validated for the detection of S. aureus biofilms. Significance and Impact of the Study: The DMMB–resazurin microtitre plate model is a valuable tool for high capacity screening of biocides and for the development of synergistic mixtures of biocides, destroying both biofilm matrix and bacteria.  相似文献   

14.
An in vitro model was developed to assess the effects of topical antimicrobials on taxonomically defined wound biofilms. Biofilms were exposed over seven days to povidone-iodine, silver acetate or polyhexamethylene biguanide (PHMB) at concentrations used in wound dressings. The rank order of tolerance in multi-species biofilms, based on an analysis of the average bacterial counts over time was P. aeruginosa > methicillin-resistant Staphylococcus aureus (MRSA) > B. fragilis > S. pyogenes. The rank order of effectiveness for the antimicrobials in the biofilm model was povidone-iodine > PHMB > silver acetate. None of the test compounds eradicated P. aeruginosa or MRSA from the biofilms although all compounds except silver acetate eliminated S. pyogenes. Antimicrobial effectiveness against bacteria grown in multi-species biofilms did not correlate with planktonic susceptibility. Defined biofilm populations of mixed-species wound pathogens could be maintained in the basal perfusion model, facilitating the efficacy testing of treatments regimens and potential dressings against multi-species biofilms composed of wound isolates.  相似文献   

15.
The presence of intrauterine contraceptive devices (IUDs) gives a solid surface for attachment and an ideal niche for biofilm to form and flourish. Pelvic actinomycosis is often associated with the use of IUDs. Treatment of IUD-associated pelvic actinomycosis requires the immediate removal of the IUD. Therefore, this article presents in vitro evidence to support the use of novel antibiotics in the treatment of actinomycete biofilms. Twenty one clinical actinomycetes isolates from endocervical swabs of IUD wearers were assessed for their biofilm forming ability. An in vitro biofilm model with three isolates, Streptomyces strain A4, Nocardia strain C15 and Nocardia strain C17 was subjected to treatment with nystatin. Inhibition of biofilm formation by nystatin was found to be concentration dependent, with MBIC50 values in the range 0.08–0.16 mg ml?1. Furthermore, at a concentration of 0.16 mg ml?1, nystatin inhibited the twitching motility of the isolates, providing evidence for a possible mechanism of biofilm inhibition.  相似文献   

16.
This study aimed to determine the minimum inhibitory concentration (MIC) of kaempferol and quercetin against planktonic and biofilm forms of the Candida parapsilosis complex. Initially, nine C. parapsilosis sensu stricto, nine C. orthopsilosis and nine C. metapsilosis strains were used. Planktonic susceptibility to kaempferol and quercetin was assessed. Growing and mature biofilms were then exposed to the flavonoids at MIC or 10xMIC, respectively, and theywere also analyzed by confocal laser scanning microscopy. The MIC ranges were 32-128 µg ml?1 for kaempferol and 0.5-16 µg ml?1 for quercetin. Kaempferol and quercetin decreased (P?<?0.05) the metabolic activity and biomass of growing biofilms of the C. parapsilosis complex. As for mature biofilms, the metabolic effects of the flavonoids varied, according to the cryptic species, but kaempferol caused an overall reduction in biofilm biomass. Microscopic analyses showed restructuring of biofilms after flavonoid exposure. These results highlight the potential use of these compounds as sustainable resources for the control of fungal biofilms.  相似文献   

17.
Dental plaque is a biofilm of water-soluble and water-insoluble polysaccharides, produced primarily by Streptococcus mutans. Dextranase can inhibit biofilm formation. Here, a dextranase gene from the marine microorganism Arthrobacter oxydans KQ11-1 is described, and cloned and expressed using E. coli DH5α competent cells. The recombinant enzyme was then purified and its properties were characterized. The optimal temperature and pH were determined to be 60°C and 6.5, respectively. High-performance liquid chromatography data show that the final hydrolysis products were glucose, maltose, maltotriose, and maltotetraose. Thus, dextranase can inhibit the adhesive ability of S. mutans. The minimum biofilm inhibition and reduction concentrations (MBIC50 and MBRC50) of dextranase were 2 U ml?1 and 5 U ml?1, respectively. Scanning electron microscopy and confocal laser scanning microscope (CLSM) observations confirmed that dextranase inhibited biofilm formation and removed previously formed biofilms.  相似文献   

18.
Abstract

The objective of this work was to develop a subgingival biofilm model using a stirred bioreactor. Discs of bovine teeth were adapted to a stirred bioreactor filled with a culture medium containing bacterial species associated with periodontal health or disease. After anaerobic incubation, the biofilms growing on the substratum surfaces were collected and analyzed. The mean number of Colony-forming Units (CFUs) varied, but with no difference between 3 and 7?days of biofilm formation (p?>?0.05). Scanning Electron Microscopy (SEM) analysis showed a uniform biofilm layer covering the cement layer of the root surface containing bacteria with diverse morphology. In checkerboard DNA-DNA hybridization, bacterial species were identified in both biofilms. In conclusion, a subgingival biofilm model was developed using a stirred bioreactor, allowing the in vitro reproduction of complex microbial communities. This is an advanced model that may be useful to mimic complex clinical periodontal biofilms.  相似文献   

19.
UV light irradiation is being increasingly applied as a primary process for water disinfection, effectively used for inactivation of suspended (planktonic) cells. In this study, the use of UV irradiation was evaluated as a pretreatment strategy to control biofouling. The objective of this research was to elucidate the relative effectiveness of various targeted UV wavelengths and a polychromatic spectrum on bacterial inactivation and biofilm control. In a model system using Pseudomonas aeruginosa, the inactivation spectra corresponded to the DNA absorption spectra for all wavelengths between 220 and 280 nm, while wavelengths between 254 nm and 270 nm were the most effective for bacterial inactivation. Similar wavelengths of 254-260-270 nm were also more effective for biofilm control in most cases than targeted 239 and 280 nm. In addition, the prevention of biofilm formation by P. aeruginosa with a full polychromatic lamp was UV dose-dependent. It appears that biofilm control is improved when larger UV doses are given, while higher levels of inactivation are obtained when using a full polychromatic MP lamp. However, no significant differences were found between biofilms produced by bacteria that survived UV irradiation and biofilms produced by control bacteria at the same microbial counts. Moreover, the experiments showed that biofilm prevention depends on the post-treatment incubation time and nutrient availability, in addition to targeted wavelengths, UV spectrum and UV dose.  相似文献   

20.
Staphylococcus aureus is now amongst the most important pathogenic bacteria responsible for bloodstream nosocomial infections and for biofilm formation on indwelling medical devices. Its increasing resistance to common antibiotics, partly attributed to its ability to form biofilms, is a challenge for the development of new antimicrobial agents. Accordingly, the goal of this study was to evaluate the effect of a coral associated actinomycete (CAA) - 3 on S. aureus biofilms both in vitro and in vivo. Methanolic extracts of CAA-3 showed a reduction in in vitro biofilm formation by S. aureus ATCC 11632, methicillin resistant S. aureus ATCC 33591 and clinical isolates of S. aureus at the biofilm inhibitory concentration (BIC) of 0.1 mg ml?1. Furthermore, confocal laser scanning microscope (CLSM) studies provide evidence of CAA-3 inhibiting intestinal colonisation of S. aureus in the nematode Caenorhabditis elegans. To conclude, this study for the first time, reports CAA as a promising source of anti-biofilm compounds, for developing novel drugs against highly resistant staphylococcal biofilms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号