首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adhesion and motility of fouling diatoms on a silicone elastomer   总被引:1,自引:0,他引:1  
Recent demands for non-toxic antifouling technologies have led to increased interest in coatings based on silicone elastomers that 'release' macrofouling organisms when hydrodynamic conditions are sufficiently robust. However, these types of coatings accumulate diatom slimes, which are not released even from vessels operating at high speeds (>30 knots). In this study, adhesion strength and motility of three common fouling diatoms (Amphora coffeaeformis var. perpusilla (Grunow) Cleve, Craspedostauros australis Cox and Navicula perminuta Grunow) were measured on a poly-dimethylsiloxane elastomer (PDMSE) and acid-washed glass. Adhesion of the three species was stronger to PDMSE than to glass but the adhesion strengths varied. The wall shear stress required to remove 50% of cells from PDMSE was 17 Pa for Craspedostauros, 24 Pa for Amphora and >53 Pa for Navicula; the corresponding values for glass were 3, 10 and 25 Pa. In contrast, the motility of the three species showed little or no correlation between the two surfaces. Craspedostauros moved equally well on glass and PDMSE, Amphora moved more on glass initially before movement ceased and Navicula moved more on PDMSE before movement ceased. The results show that fouling diatoms adhere more strongly to a hydrophobic PDMSE surface, and this feature may contribute to their successful colonization of low surface energy, foul-release coatings. The results also indicate that diatom motility is not related to adhesion strength, and motility does not appear to be a useful indicator of surface preference by diatoms.  相似文献   

2.
Many experiments utilize static immersion tests to evaluate the performance of ship hull coatings. These provide valuable data; however, they do not accurately represent the conditions both the hull and fouling organisms encounter while a ship is underway. This study investigated the effect of static and dynamic immersion on the adhesion and settlement of diatoms to one antifouling coating (BRA 640), four fouling-release coatings (Intersleek® 700, Intersleek® 900, Hempasil X3, and Dow Corning 3140) and one standard surface (Intergard® 240 Epoxy). Differences in community composition were observed between the static and dynamic treatments. Achnanthes longipes was present on all coatings under static immersion, but was not present under dynamic immersion. This was also found for diatoms in the genera Bacillaria and Gyrosigma. Melosira moniformis was the only diatom present under dynamic conditions, but not static conditions. Several common fouling diatom genera were present on panels regardless of treatment: Amphora, Cocconeis, Entomoneis Cylindrotheca, Licmophora, Navicula, Nitzschia, Plagiotropis, and Synedra. Biofilm adhesion, diatom abundance and diatom diversity were found to be significantly different between static and dynamic treatments; however, the difference was dependent on coating and sampling date. Several coatings (Epoxy, DC 3140 and IS 700) had significantly higher biofilm adhesion on dynamically treated panels on at least one of the four sampling dates, while all coatings had significantly higher diatom abundance on at least one sampling date. Diversity was significantly greater on static panels than dynamic panels for Epoxy, IS 700 and HX3 at least once during the sampling period. The results demonstrate how hydrodynamic stress will significantly influence the microfouling community. Dynamic immersion testing is required to fully understand how antifouling surfaces will respond to biofilm formation when subjected to the stresses experienced by a ship underway.  相似文献   

3.
Jagadish S. Patil 《Biofouling》2013,29(3-4):189-206
Abstract

Diatoms, which are early autotrophic colonisers, are an important constituent of the biofouling community in the marine environment. The effects of substratum and temporal variations on the fouling diatom community structure in a monsoon-influenced tropical estuary were studied. Fibreglass and glass coupons were exposed every month for a period of 4 days and the diatom population sampled at 24 h intervals, over a period of 14 months. The planktonic diatom community structure differed from the biofilm community. Pennate diatoms dominated the biofilms whilst centric diatoms were dominant in the water column. Among the biofilm diatoms, species belonging to the genera Navicula, Amphora, Nitzschia, Pleurosigma and Thalassionema were dominant. On certain occasions, the influence of planktonic blooms was also seen on the biofilm community. A comparative study of biofilms formed on the two substrata revealed significant differences in density and diversity. However species composition was almost constant. In addition to substratum variations, the biofilm diatom community structure also showed significant seasonal variations, which were attributed to physico-chemical and biological changes in both the water and substratum. Temporal variations in the tychopelagic diatoms of the water were also observed to exert an influence on the biofilm diatom community. Variations in diatom communities may determine the functional ecosystem of the benthic environment.  相似文献   

4.
Smita Mitbavkar 《Biofouling》2013,29(6):415-426
Seasonal variations in the fouling diatom community from a monsoon influenced tropical estuary were investigated. The community composition did not differ significantly between stainless steel and polystyrene substrata due to dominance by Navicula spp. The experimental evidence suggests that Amphora, which is a dominant fouling diatom in temperate waters, ultimately dominates the community in tropical regions when conditions are favourable. These observations reveal that a faster onset of macrofouling interferes with the microfouling community wherein the faster recruiters that have a higher abundance in ambient waters, dominate the community. Seasonal variations were observed in the fouling diatom community. Navicula delicatula dominated during the post-monsoon and tychopelagic diatoms (Melosira and Odontella) were observed during the monsoon. Low diatom abundance was recorded during the pre-monsoon season. The results indicate that although the fouling diatom community composition does not vary between substrata, there is a seasonal change in the community depending on the physical, chemical and biological interactions.  相似文献   

5.
Previous work has shown that organosilica-based xerogels have the potential to control biofouling. In this study, modifications of chemistry were investigated with respect to their resistance to marine slimes and to settlement of barnacle cyprids. Adhesion force measurements of bovine serum albumin (BSA)-coated atomic force microscopy (AFM) tips to xerogel surfaces prepared from aminopropylsilyl-, fluorocarbonsilyl-, and hydrocarbonsilyl-containing precursors, indicated that adhesion was significantly less on the xerogel surfaces in comparison to a poly(dimethylsiloxane) elastomer (PDMSE) standard. The strength of adhesion of BSA on the xerogels was highest on surfaces with the highest and the lowest critical surface tensions, γC and surface energies, γS, and duplicated the ‘Baier curve’. The attachment to and removal of cells of the diatom Navicula perminuta from a similar series of xerogel surfaces were examined. Initial attachment of cells was comparable on all of the xerogel surfaces, but the percentage removal of attached cells by hydrodynamic shear stress increased with γC and increased wettability as measured by the static water contact angle, θWs, of the xerogel surfaces. The percentage removal of cells of Navicula was linearly correlated with both properties (R 2 = 0.74 for percentage removal as a function of θWs and R 2 = 0.69 for percentage removal as a function of γC). Several of the aminopropylsilyl-containing xerogels showed significantly greater removal of Navicula compared to a PDMSE standard. Cypris larvae of the barnacle B. amphitrite showed preferred settlement on hydrophilic/higher energy surfaces. Settlement was linearly correlated with θWs (R 2 = 0.84) and γC (R 2 = 0.84). Hydrophilic xerogels should prove useful as coatings for boats in regions where fouling is dominated by microfouling (protein and diatom slimes).  相似文献   

6.
The composition of the diatom community on the bryozoans Electra pilosa, Membranipora membranacea, Flustra foliacea, and Alcyonidium gelatinosum from the German Bight was studied by light and scanning electron microscopy. In total, members of 26 diatom genera were found, with Cocconeis, Tabularia, Licmophora, Amphora, and Navicula being the most abundant. The amount and the composition of the diatom covering seem to be typical for single bryozoan species. Electra pilosa and Membranipora membranacea showed a rather dense covering with 71–547 cells/mm2 and 77–110 cells/mm2, respectively. The most prominent genus on Electra pilosa was Cocconeis, reaching up to 58% of all diatoms in one sample, followed by Navicula, Tabularia and Amphora. The most abundant genera on Membranipora membranacea were Tabularia and Licmophora, making up almost 70% of all diatoms in one sample, followed by Navicula, Cocconeis and Amphora. The diatom composition was very stable on all Electra samples, but varied on Membranipora samples. With <1–27 cells/mm2, diatoms were much less abundant on Alcyonidium gelatinosum. Members of the genera Tabularia and Navicula were the most frequently found benthic diatoms, whereas the planktonic forms Coscinodiscus, Cyclotella, and Thalassiosira made up 35% of the diatoms. On Flustra foliacea, diatoms were virtually absent, with fewer than 5 cells/mm2. The low diatom numbers are probably due to toxic metabolites produced by the host. The same may be true for Alcyonidium gelatinosum, but here they might also be a consequence of the surface properties of the bryozoan. Electronic Publication  相似文献   

7.
Diatoms are an important component of marine biofilms found on ship hulls. However, there are only a few published studies that describe the presence and abundance of diatoms on ships, and none that relate to modern ship hull coatings. This study investigated the diatom community structure on two in-service cruise ships with the same cruise cycles, one coated with an antifouling (AF) system (copper self-polishing copolymer) and the other coated with a silicone fouling-release (FR) system. Biofilm samples were collected during dry docking from representative areas of the ship and these provided information on the horizontal and vertical zonation of the hull, and intact and damaged coating and niche areas. Diatoms from the genera Achnanthes, Amphora and Navicula were the most common, regardless of horizontal ship zonation and coating type. Other genera were abundant, but their presence was more dependent on the ship zonation and coating type. Samples collected from damaged areas of the hull coating had a similar community composition to undamaged areas, but with higher diatom abundance. Diatom fouling on the niche areas differed from that of the surrounding ship hull and paralleled previous studies that investigated differences in diatom community structure on static and dynamically exposed coatings; niche areas were similar to static immersion and the hull to dynamic immersion. Additionally, diatom richness was greater on the ship with the FR coating, including the identification of several new genera to the biofouling literature, viz. Lampriscus and Thalassiophysa. These results are the first to describe diatom community composition on in-service ship hulls coated with a FR system. This class of coatings appears to have a larger diatom community compared to copper-based AF systems, with new diatom genera that have the ability to stick to ship hulls and withstand hydrodynamic forces, thus creating the potential for new problematic species in the biofilm.  相似文献   

8.
The development of novel, fouling‐release surfaces has led to the need for better test methods to evaluate their performance. A water channel has been designed to measure the adhesion strength of microfouling organisms to test surfaces. The apparatus allows six replicate microscope slides to be mounted in a fully‐developed, turbulent channel flow. Wall shear stress in the test section can be varied from 0.9–30 Pa over a Reynolds number range of 2,800 to 27,000 based on the bulk mean velocity and channel height. Calibration of the device indicates that the accuracy and repeatability in the wall shear stress is within 4% throughout the range. Experiments using the fouling diatom Amphora settled on acid‐washed glass slides are presented. The results show significant differences in the shear stress required to remove Amphora cells with settlement time. No significant differences among the replicate slides were observed, indicating flow uniformity in the test section.  相似文献   

9.
A comparison of viable benthic diatom propagules based on the observations recorded immediately and after 5 years of ageing at 5 °C is presented. The number of viable benthic diatom propagules decreased with ageing. However, they exhibited an apparently longer lag phase. Although diatoms belonging to the genera Amphora, Navicula and Thalassiosira were dominant during immediate observation, only Amphora and Navicula survived the ageing process. The non-viability of Thalassiosira indicates that ageing for five years was beyond its critical period of survival. The other diatom genera that survived the ageing process were Odontella and Grammatophora.  相似文献   

10.
The proteinaceous nature of the adhesives used by most fouling organisms to attach to surfaces suggests that coatings incorporating proteolytic enzymes may provide a technology for the control of biofouling. In the present article, the antifouling (AF) and fouling release potential of model coatings incorporating the surface-immobilized protease, Subtilisin A, have been investigated. The enzyme was covalently attached to maleic anhydride copolymer thin films; the characteristics of the bioactive coatings obtained were adjusted through variation of the type of copolymer and the concentration of the enzyme solution used for immobilization. The bioactive coatings were tested for their effect on the settlement and adhesion strength of two major fouling species: the green alga Ulva linza and the diatom Navicula perminuta. The results show that the immobilized enzyme effectively reduced the settlement and adhesion strength of zoospores of Ulva and the adhesion strength of Navicula cells. The AF efficacy of the bioactive coatings increased with increasing enzyme surface concentration and activity, and was found to be superior to the equivalent amount of enzyme in solution. The results provide a rigorous analysis of one approach to the use of immobilized proteases to reduce the adhesion of marine fouling organisms and are of interest to those investigating enzyme-containing coating technologies for practical biofouling control.  相似文献   

11.
Grooming is a proactive method to keep a ship’s hull free of fouling. This approach uses a frequent and gentle wiping of the hull surface to prevent the recruitment of fouling organisms. A study was designed to compare the community composition and the drag associated with biofilms formed on a groomed and ungroomed fouling release coating. The groomed biofilms were dominated by members of the Gammaproteobacteria and Alphaproteobacteria as well the diatoms Navicula, Gomphonemopsis, Cocconeis, and Amphora. Ungroomed biofilms were characterized by Phyllobacteriaceae, Xenococcaceae, Rhodobacteraceae, and the pennate diatoms Cyclophora, Cocconeis, and Amphora. The drag forces associated with a groomed biofilm (0.75 ± 0.09 N) were significantly less than the ungroomed biofilm (1.09 ± 0.06 N). Knowledge gained from this study has helped the design of additional testing which will improve grooming tool design, minimizing the growth of biofilms and thus lowering the frictional drag forces associated with groomed surfaces.  相似文献   

12.
Laboratory assessment of the adhesion of diatoms to non-toxic fouling-release coatings has tended to focus on single cells rather than the more complex state of a biofilm. A novel culture system based on open channel flow with adjustable bed shear stress values (0–2.4?Pa) has been used to produce biofilms of Navicula incerta. Biofilm development on glass and polydimethylsiloxane elastomer (PDMSe) showed a biphasic relationship with bed shear stress, which was characterised by regions of biofilm stability and instability reflecting cohesion between cells relative to the adhesion to the substratum. On glass, a critical shear stress of 1.3–1.4?Pa prevented biofilm development, whereas on PDMS, biofilms continued to grow at 2.4?Pa. Studies of diatom biofilms cultured on zwitterionic coatings using a bed shear stress of 0.54?Pa showed lower biomass production and adhesion strength on poly(sulfobetaine methacrylate) compared to poly(carboxybetaine methacrylate). The dynamic biofilm approach provides additional information to supplement short duration laboratory evaluations.  相似文献   

13.
The antimicrobial performance of two fouling-release coating systems, Intersleek 700® (IS700; silicone technology), Intersleek 900® (IS900; fluoropolymer technology) and a tie coat (TC, control surface) was investigated in a short term (10 days) field experiment conducted at a depth of ca 0.5 m in the Marina Bandar Rawdha (Muscat, Oman). Microfouling on coated glass slides was analyzed using epifluorescence microscopy and adenosine-5′-triphosphate (ATP) luminometry. All the coatings developed biofilms composed of heterotrophic bacteria, cyanobacteria, seven species of diatoms (2 species of Navicula, Cylindrotheca sp., Nitzschia sp., Amphora sp., Diploneis sp., and Bacillaria sp.) and algal spores (Ulva sp.). IS900 had significantly thinner biofilms with fewer diatom species, no algal spores and the least number of bacteria in comparison with IS700 and the TC. The ATP readings did not correspond to the numbers of bacteria and diatoms in the biofilms. The density of diatoms was negatively correlated with the density of the bacteria in biofilms on the IS900 coating, and, conversely, diatom density was positively correlated in biofilms on the TC. The higher antifouling efficacy of IS900 over IS700 may lead to lower roughness and thus lower fuel consumption for those vessels that utilise the IS900 fouling-release coating.  相似文献   

14.
Adhesion of raphid diatoms to surfaces, mediated by the secretion of extracellular polymeric substances (EPS), is an important strategy for growth and survival. Diatom biofilms are also important in the context of biofouling. Diatoms exhibit selectivity in adhering to surfaces, but little is understood about how they perceive the properties of a substratum and translate that perception into altered adhesion properties. In this study, we demonstrate that Seminavis robusta Danielidis et D. G. Mann, like many other pennate diatoms, adheres more strongly to hydrophobic surfaces (such as silicone elastomer foul‐release coatings) than to hydrophilic surfaces. To explore the cellular mechanisms that may underlie this selectivity, we tested the hypothesis that diatoms may perceive a hydrophilic surface as unconducive to adhesion through a form of stress response involving nitric oxide (NO) production. Single‐cell imaging with the fluorescent indicator DAF‐FM DA (4‐amino‐5‐methylamino‐2′,7′‐difluorofluorescein diacetate), revealed NO levels that were 4‐fold higher in cells adhered to a hydrophilic surface (acid‐washed glass) compared with a hydrophobic surface (polydimethylsiloxane elastomer, PDMSE). Elevated levels of NO caused by the addition of the NO donor S‐nitroso‐N‐acetylpenicillamine (SNAP) did not affect growth, but cells showed reduced adhesion strength to both glass and PDMSE. Addition of the nitric oxide synthase inhibitor NG‐monomethyl‐l ‐arginine (NMMA) caused a small but significant increase in adhesion strength. Overall, the results suggest that NO acts as a signal of the wettability properties of substrata for Seminavis.  相似文献   

15.
Five diatom species were isolated from settlementplates at Southern Ocean Mariculture, Victoria,Australia (Navicula sp., Naviculajeffreyi, Cylindrotheca closterium, Cocconeis sp., Amphora sp.) and tested insettlement experiments with Haliotis rubralarvae. Settlement was very low on single speciesdiatom films and varied between 1%–6%. Depending onthe species combination larvae preferred to settle onfilms with mixed diatom species than single speciesfilms. The highest settlement was achieved with amixed film of Navicula sp. and Amphora sp.Five and ten-day-old germlings of Sporolithondurum induced settlement of the abalone Haliotisrubra. However, the settlement rate was significantlylower on germlings than on the whole thallus of thealga. Germlings inoculated with the diatom Navicula sp. induced higher settlement than films ofthe diatom species alone. High settlement of up to52% was also achieved with germlings of the greenalga Ulvella lens. Settlement was reduced onU. lens squares inoculated with the diatom Navicula sp. but higher than on films of the diatomalone. The settlement rate was higher if plates withU. lens were previously grazed by juvenileabalone.Post-larval growth rates were higher on monospecificdiatom films than on U. lens or on S.durum. The best growth rate was obtained with Navicula sp. U. lens and S. durum areboth good settlement inducers, but are notsufficient to support rapid growth of young H.rubra post-larvae. Survival was low on U. lensand on the diatom C. closterium. We suggest thatcommercial nursery plates seeded with U. lenswill result in high and consistent settlement, whilean inoculum with Navicula sp. will ensuresufficient food for rapid growth of the post-larvae.  相似文献   

16.
The antifouling efficacy of a series of 18 textured (0.2–1000 μm) and non-textured (0 μm) polydimethylsiloxane surfaces with the profiles of round- and square-wave linear grating was tested by recording the settlement of fouling organisms in the laboratory and in the field by monitoring the recruitment of a multi-species fouling community. In laboratory assays, the diatoms Nitzschia closterium and Amphora sp. were deterred by all surface topographies regardless of texture type. Settlement of propagules of Ulva sp. was lower on texture sizes less than the propagule size, and settlement of larvae of Saccostrea glomerata and Bugula neritina was lower on texture sizes closest to, but less than, the sizes of larvae. After a six month field trial, all textured surfaces lost their deterrent effect; however, the foul-release capabilities of textures were still present. High initial attachment was correlated with most fouling remaining after removal trials, indicating that fouling organisms recruited in higher numbers to surfaces upon which they attached most strongly.  相似文献   

17.
Diatoms are a major component of the slime layers that form on artificial surfaces in marine environments. In this article, the role played by diatoms during the pioneering stages of colonization of three marine antifouling (AF) coatings, viz Intersmooth 360®, Super Yacht 800® and a fouling-release (FR) coating Intersleek 700®, was investigated. The study was conducted over three distinct seasons in two very different marine environments in Australia, ie temperate Williamstown, Victoria and tropical Cairns, Queensland. Diatom fouling occurred more rapidly on the FR coating Intersleek 700, compared to both biocidal AF paints. However, colonization by diatoms on all three coatings was generally slow during the 16-day study. Benthic diatoms do not subsist by floating around in the water column, rather they only gain the opportunity to colonize new surfaces when they either voluntarily release or are displaced from their benthic habitat, thereafter entering the water column where the opportunity to adhere to a new surface presents itself. However, once settled, fouling diatoms grow exponentially from the site of attachment, spreading out until they populate large areas of the surface. This mode of surface colonization correlates more with an ‘infection’ type, epidemiology model, a mechanism that accounts for the colonization of significant regions of the coating surface from a single fouling diatom cell, forming ‘clonal patches’. This is in comparison to the bacterial colonization of the surface, which exhibits far more rapid recruitment and growth of cells on the substratum surface. Therefore, it is hypothesized that fouling diatoms may be characterized more by their ability to adhere and grow on surfaces already modified by bacterial biofilms, rather than on their strength of adhesion. Cell morphology and the ability to avoid shear may also be an important factor.  相似文献   

18.
Diatoms are single-celled microalgae with silica-based cell walls (frustules) that are abundantly present in aquatic habitats, and form the basis of the food chain in many ecosystems. Many benthic diatoms have the remarkable ability to glide on all natural or man-made underwater surfaces using a carbohydrate- and protein-based adhesive to generate traction. Previously, three glycoproteins, termed FACs (F rustule A ssociated C omponents), have been identified from the common fouling diatom Craspedostauros australis and were implicated in surface adhesion through inhibition studies with a glycan-specific antibody. The polypeptide sequences of FACs remained unknown, and it was unresolved whether the FAC glycoproteins are indeed involved in adhesion, or whether this is achieved by different components sharing the same glycan epitope with FACs. Here we have determined the polypeptide sequences of FACs using peptide mapping by LC–MS/MS. Unexpectedly, FACs share the same polypeptide backbone (termed CaFAP1), which has a domain structure of alternating Cys-rich and Pro-Thr/Ser-rich regions reminiscent of the gel-forming mucins. By developing a genetic transformation system for C. australis, we were able to directly investigate the function of CaFAP1-based glycoproteins in vivo. GFP-tagging of CaFAP1 revealed that it constitutes a coat around all parts of the frustule and is not an integral component of the adhesive. CaFAP1-GFP producing transformants exhibited the same properties as wild type cells regarding surface adhesion and motility speed. Our results demonstrate that FAC glycoproteins are not involved in adhesion and motility, but might rather act as a lubricant to prevent fouling of the diatom surface.  相似文献   

19.
Abstract

This paper explores diatom attachment to a range of laser etched polyimide surfaces to directly test ‘attachment point theory’. Static bioassays were conducted on microtextured polyimide surfaces using four diatom species, Fallacia carpentariae, Nitzschia cf. paleacea, Amphora sp. and Navicula jeffreyi with cell sizes ranging from 1 – 14 μm. The microtextured polyimides were modelled from natural fouling resistant bivalve surfaces and had wavelengths above, below and at the same scale as the diatom cell sizes. Diatoms attached in significantly higher numbers to treatments where the numbers of attachment points was highest. The lowest diatom attachment occurred where cells were slightly larger than the microtexture wavelength, resulting in only two theoretical points of attachment. The results support attachment point theory and highlight the need to address larval/cell size in relation to the number of attachment points on a surface. Further studies examining a range of microtexture scales are needed to apply attachment point theory to a suite of fouling organisms and to develop structured surfaces to control the attachment and development of fouling communities.  相似文献   

20.
M. Alles 《Biofouling》2013,29(5):469-480
Fouling release (FR) coatings are increasingly applied as an environmentally benign alternative for controlling marine biofouling. As the technology relies on removing fouling by water currents created by the motion of ships, weakening of adhesion of adherent organisms is the key design goal for improved coatings. In this paper, a microfluidic shear force assay is used to quantify how easily diatoms can be removed from surfaces. The experimental setup and the optimization of the experimental parameters to study the adhesion of the diatom Navicula perminuta are described. As examples of how varying the physico-chemical surface properties affects the ability of diatoms to bind to surfaces, a range of hydrophilic and hydrophobic self-assembled monolayers was compared. While the number of cells that attached (adhered) was barely affected by the coatings, the critical shear stress required for their removal from the surface varied significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号