首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
This contribution focuses on the use of ladder particle swarm optimisation (LPSO) on modelling of oxadiazole- and triazole-substituted naphthyridines as human immunodeficiency virus-1 integrase inhibitors. Artificial neural network (ANN) and Monte Carlo cross-validation techniques were combined with LPSO to develop a quantitative structure–activity relationship model. The techniques of LPSO, ANN and sample set partitioning based on joint xy distances were applied as feature selection, mapping and model evaluation, respectively. The variables selected by LPSO were used as inputs of Bayesian regularisation ANN. The statistical parameters of correlation of deterministic, R 2, and root-mean-square error for the test set were 0.876 and 0.23, respectively. Robustness of the model was confirmed by Y-randomisation method. Comparison of the LPSO–ANN results with those of stepwise multiple linear regression (MLR), LPSO–MLR and LPSO–MLR–ANN showed the superiority of LPSO–ANN. Inspection of the selected variables indicated that atomic mass, molecular size and electronic structure of the molecules play a significant role in inhibitory behaviour of oxadiazole- and triazole-substituted naphthyridines.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
Denitrification and its regulating factors are of great importance to aquatic ecosystems, as denitrification is a critical process to nitrogen removal. Additionally, a by-product of denitrification, nitrous oxide, is a much more potent greenhouse gas than carbon dioxide. However, the estimation of denitrification rates is usually clouded with uncertainty, mainly due to high spatial and temporal variations, as well as complex regulating factors within wetlands. This hampers the development of general mechanistic models for denitrification as well, as most previously developed models were empirical or exhibited low predictability with numerous assumptions. In this study, we tested Artificial Neural Network (ANN) as an alternative to classic empirical models for simulating denitrification rates in wetlands. ANN, multiple linear regression (MLR) with two different methods, and simplified mechanistic models were applied to estimate the denitrification rates of 2-year observations in a mesocosm-scale constructed wetland system. MLR and simplified mechanistic models resulted in lower prediction power and higher residuals compared to ANN. Although the stepwise linear regression model estimated similar average values of denitrification rates, it could not capture the fluctuation patterns accurately. In contrast, ANN model achieved a fairly high predictability, with an R2 of 0.78 for model validation, 0.93 for model calibration (training), and a low root mean square error (RMSE) together with low bias, indicating a high capacity to simulate the dynamics of denitrification. According to a sensitivity analysis of the ANN, non-linear relationships between input variables and denitrification rates were well explained. In addition, we found that water temperature, denitrifying enzyme activity (DEA), and DO accounted for 70% of denitrification rates. Our results suggest that the ANN developed in this study has a greater performance in simulating variations in denitrification rates than multivariate linear regressions or simplified nonlinear mechanistic model.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号