首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multidimensional energy landscapes are an intrinsic property of proteins and define their dynamic behavior as well as their response to external stimuli. In order to explore the energy landscape and its implications on the dynamic function of proteins dynamic force spectroscopy and steered molecular dynamics (SMD) simulations have proved to be important tools. In this study, these techniques have been employed to analyze the influence of the direction of the probing forces on the complex of an antibody fragment with its peptide antigen. Using an atomic force microscope, experiments were performed where the attachment points of the 12 amino acid long peptide antigen were varied. These measurements yielded clearly distinguishable basal dissociation rates and potential widths, proving that the direction of the applied force determines the unbinding pathway. Complementary atomistic SMD simulations were performed, which also show that the unbinding pathways of the system are dependent on the pulling direction. However, the main barrier to be crossed was independent of the pulling direction and is represented by a backbone hydrogen bond between GlyH-H40 of the antibody fragment and Glu-6peptide of the peptide. For each pulling direction, the observed barriers can be correlated with the rupture of specific interactions, which stabilize the bound complex. Furthermore, although the SMD simulations were performed at loading rates exceeding the experimental rates by orders of magnitude due to computational limitations, a detailed comparison of the barriers that were overcome in the SMD simulations with the data obtained from the atomic force microscope unbinding experiments show excellent agreement.  相似文献   

2.
Durner J  Gailus V  Böger P 《Plant physiology》1991,95(4):1144-1149
The sulfonylurea herbicide chlorsulfuron and the imidazolinone herbicide imazaquin were shown to be noncompetitive and uncompetitive inhibitors, respectively, of purified acetolactate synthase from barley (Hordeum vulgare L.) with respect to pyruvate. From double-reciprocal plots of the time-dependent biphasic inhibition by chlorsulfuron, an initial apparent inhibition constant of 68 nanomolar was calculated (a 0 to 4 minute assay was used for the initial inhibition), and a final steady-state dissociation constant of 3 nanomolar was estimated. The corresponding constants for imazaquin were 10 and 0.55 micromolar. Specific binding of [14C]chlorsulfuron and [14C]imazaquin to purified acetolactate synthase from barley and partially purified enzyme from corn (Zea mays L.) could be demonstrated by gel filtration and equilibrium dialysis. Evidence is presented that the binding of the inhibitors to the enzyme follows the previously described mechanism of slow reversibility once excess inhibitor has been removed. However, after formation of the slowly reversible complex and subsequent dissociation, both chlorsulfuron and imazaquin seem to permanently inactivate acetolactate synthase. These results add a new feature to the mode of action of these herbicides with respect to their high herbicidal potency.  相似文献   

3.
Saxena PK  King J 《Plant physiology》1990,94(3):1111-1115
Two cell lines of Datura innoxia resistant to two imidazolinone herbicides, imazapyr and imazaquin, were isolated from mutagenized, predominantly haploid cell suspension cultures. Both of the resistant variants were >1000-fold more resistant than the wild-type to the two imidazolinones. The variant resistant to imazapyr showed cross-resistance to imazaquin and vice versa, but no cross-resistance to a structurally different inhibitor, chlorsulfuron, a sulfonylurea herbicide, was observed. The target enzyme, acetolactate synthase, extracted from imidazolinone-resistant cell lines was not inhibited by imazapyr or imazaquin but was sensitive to chlorsulfuron indicating separable sites of action for these inhibitors. The variation in resistance and cross-resistance of chlorsulfuron-resistant (PK Saxena, J King [1988] Plant Physiol 86: 863-867) and imidazolinone-resistant cell lines of Datura innoxia demonstrates the possibility of separate mutations of acetolactate synthase gene resulting in specific phenotypes.  相似文献   

4.
Because of the pivotal role that the nerve enzyme, acetylcholinesterase plays in terminating nerve impulses at cholinergic synapses. Its active site, located deep inside a 20 Å gorge, is a vulnerable target of the lethal organophosphorus compounds. Potent reactivators of the intoxicated enzyme are nucleophiles, such as bispyridinium oxime that binds to the peripheral anionic site and the active site of the enzyme through suitable cation–π interactions. Atomic scale molecular dynamics and free energy calculations in explicit water are used to study unbinding pathways of two oxime drugs (Ortho‐7 and Obidoxime) from the gorge of the enzyme. The role of enzyme‐drug cation–π interactions are explored with the metadynamics simulation. The metadynamics discovered potential of mean force (PMF) of the unbinding events is refined by the umbrella sampling (US) corrections. The bidimensional free energy landscape of the metadynamics runs are further subjected to finite temperature string analysis to obtain the transition tube connecting the minima and bottlenecks of the unbinding pathway. The PMF is also obtained from US simulations using the biasing potential constructed from the transition tube and are found to be consistent with the metadynamics‐US corrected results. Although experimental structural data clearly shows analogous coordination of the two drugs inside the gorge in the bound state, the PMF of the drug trafficking along the gorge pathway point, within an equilibrium free energy context, to a multistep process that differs from one another. Routes, milestones and subtlety toward the unbinding pathway of the two oximes at finite temperature are identified. Proteins 2014; 82:1799–1818. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
Acetolactate synthase (ALS) was isolated from a field population of cocklebur (Xanthium strumarium) that developed resistance to the herbicide Scepter following three consecutive years of application. The active ingredient of Scepter, imazaquin, gave an inhibitor concentration required to produce 50% inhibition of the enzyme activity that was more than 300 times greater for the resistant enzyme than for the wild-type cocklebur ALS. Tests with flumetsulam and chlorimuron show that the resistant ALS was not cross-resistant to these two other classes of ALS inhibitors.  相似文献   

6.
7.
Plants resistant to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) were produced through the genetic engineering of a novel detoxification pathway into the cells of a species normally sensitive to 2,4-D. We cloned the gene for 2,4-D monooxygenase, the first enzyme in the plasmid-encoded 2,4-D degradative pathway of the bacterium Alcaligenes eutrophus, into a cauliflower mosaic virus 35S promoter expression vector and introduced it into tobacco plants by Agrobacterium-mediated transformation. Transgenic tobacco plants expressing the highest levels of the monooxygenase enzyme exhibited increased tolerance to 2,4-D in leaf disc and seed germination assays, and young plants survived spraying with levels of herbicide up to eight times the usual field application rate. The introduction of the gene for 2,4-D monooxygenase into broad-leaved crop plants, such as cotton, should eventually allow 2,4-D to be used as an inexpensive post-emergence herbicide on economically important dicot crops.  相似文献   

8.
Zhang JL  Zheng QC  Li ZQ  Zhang HX 《PloS one》2012,7(6):e39546
The research on the binding process of ligand to pyrazinamidase (PncA) is crucial for elucidating the inherent relationship between resistance of Mycobacterium tuberculosis and PncA's activity. In the present study, molecular dynamics (MD) simulation methods were performed to investigate the unbinding process of nicotinamide (NAM) from two PncA enzymes, which is the reverse of the corresponding binding process. The calculated potential of mean force (PMF) based on the steered molecular dynamics (SMD) simulations sheds light on an optimal binding/unbinding pathway of the ligand. The comparative analyses between two PncAs clearly exhibit the consistency of the binding/unbinding pathway in the two enzymes, implying the universality of the pathway in all kinds of PncAs. Several important residues dominating the pathway were also determined by the calculation of interaction energies. The structural change of the proteins induced by NAM's unbinding or binding shows the great extent interior motion in some homologous region adjacent to the active sites of the two PncAs. The structure comparison substantiates that this region should be very important for the ligand's binding in all PncAs. Additionally, MD simulations also show that the coordination position of the ligand is displaced by one water molecule in the unliganded enzymes. These results could provide the more penetrating understanding of drug resistance of M. tuberculosis and be helpful for the development of new antituberculosis drugs.  相似文献   

9.
Imazaquin, imazethapyr and pendimethalin showed high toxicity to sorghum plants grown in a greenhouse soil mix. However, mycorrhizal sorghum plants were less affected by herbicide toxicity than non-mycorrhizal ones, at low to moderate herbicide concentrations. VAM herbicide safening effects were more evident on imazaquin-treated plants, than for those treated with the other two herbicides. Applications of imazethapyr and pendimethalin at the two highest concentrations, but not imazaquin, reduced VAM colonization rates in sorghum. Applications of the VAM stimulating isoflavonoids, biochanin A and formononetin, at 5 ppm solutions to a field soil sample containing toxic levels of imazaquin (13 ppb) and indigenous VAM fungi, reduced herbicide-induced injury in corn and sorghum under growth chamber conditions. The benefits of isoflavonoids were reduced when additional propagules of Glomus intraradix were added into field-soil samples, and were eliminated when VAM fungi were inactivated by autoclaving. This indicates that herbicide safening effects of biochanin A, and formononetin are VAM-mediated and also suggests the potential use of these isoflavonoids as herbicide safeners.  相似文献   

10.
The binding sites of 5-HT3 and other Cys-loop receptors have been extensively studied, but there are no data on the entry and exit routes of ligands for these sites. Here we have used molecular dynamics simulations to predict the pathway for agonists and antagonists exiting from the 5-HT3 receptor binding site. The data suggest that the unbinding pathway follows a tunnel at the interface of two subunits, which is approximately 8 A long and terminates approximately 20 A above the membrane. The exit routes for an agonist (5-HT) and an antagonist (granisetron) were similar, with trajectories toward the membrane and outward from the ligand binding site. 5-HT appears to form many hydrogen bonds with residues in the unbinding pathway, and experiments show that mutating these residues significantly affects function. The location of the pathway is also supported by docking studies of granisetron, which show a potential binding site for granisetron on the unbinding route. We propose that leaving the binding pocket along this tunnel places the ligands close to the membrane and prevents their immediate reentry into the binding pocket. We anticipate similar exit pathways for other members of the Cys-loop receptor family.  相似文献   

11.
An 1-ns unbinding trajectory of retinol from the bovine serum retinol-binding protein has been obtained from molecular dynamics simulations. The behavior of water during ligand unbinding has never been studied in detail. I described a new method for defining a binding site, located the water molecules involved in the binding site, and examined their movements during unbinding. I found that there were only small changes in the binding site. During unbinding, the number of water molecules inside the binding site decreased, with some water molecules exhibiting movements similar in magnitude to bulk water, and there were rearrangements of the hydrogen bonds. This work represents the first detailed study of the behavior of water during an unbinding process.  相似文献   

12.
Angiotensin-converting enzyme (ACE), a membrane-bound zinc metallopeptidase, catalyzes the formation of Angiotensin-II (AngII) and the deactivation of bradykinin in the renin–angiotensin-aldosterone and kallikrein–kinin systems. As a hydrolysis product of ACE, AngII is regarded as an inhibitor and displays stronger competitive inhibition in the C-domain than the N-domain of ACE. However, the AngII binding differences between the two domains and the mechanisms behind AngII dissociation from the C-domain are rarely explored. In this work, molecular docking, Molecular Mechanics/Poisson–Boltzmann Surface Area calculation, and steered molecular dynamics (SMD) are applied to explore the structures and interactions in the binding or unbinding of AngII with the two domains of human somatic ACE. Calculated free energy values suggest that the C-domain–AngII complex is more stable than the N-domain–AngII complex, consistent with available experimental data. SMD simulation results imply that electrostatic interaction is dominant in the dissociation of AngII from the C-domain. Moreover, Gln106, Asp121, Glu123, and Tyr213 may be the key residues in the unbinding pathway of AngII. The simulation results in our work provide insights into the interactions between the two domains of ACE and its natural peptide inhibitor AngII at a molecular level. Moreover, the results provide theoretical clues for the design of new inhibitors.  相似文献   

13.
Molecular dynamics simulation techniques have been used to study the unbinding pathways of 1α,25-dihydroxyvitamin D3 from the ligand-binding pocket of the vitamin D receptor (VDR). The pathways observed in a large number of relatively short (<200 ps) random acceleration molecular dynamics (RAMD) trajectories were found to be in fair agreement, both in terms of pathway locations and deduced relative preferences, compared to targeted molecular dynamics (TMD) and streered molecular dynamics simulations (SMD). However, the high-velocity ligand expulsions of RAMD tend to favor straight expulsion trajectories and the observed relative frequencies of different pathways were biased towards the probability of entering a particular exit channel. Simulations indicated that for VDR the unbinding pathway between the H1–H2 loop and the β-sheet between H5 and H6 is more favorable than the pathway located between the H1–H2 loop and H3. The latter pathway has been suggested to be the most likely unbinding path for thyroid hormone receptors (TRs) and a likely path for retinoic acid receptor. Ligand entry/exit through these two pathways would not require displacement of H12 from its agonistic position. Differences in the packing of the H1, H2, H3 and β-sheet region explain the changed relative preference of the two unbinding pathways in VDR and TRs. Based on the crystal structures of the ligand binding domains of class 2 nuclear receptors, whose members are VDR and TRs, this receptor class can be divided in two groups according to the packing of the H1, H2, H3 and β-sheet region. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
5-Enolpyruvylshikimate 3-phosphate synthase (3-phosphoshikimate 1-carboxyvinyltransferase; EC 2.5.1.19) from shoot tissue of pea seedlings was purified to apparent homogeneity by sequential ammonium-sulphate precipitation, ion-exchange and hydrophobic-interaction chromatography and substrate elution from cellulose phosphate. Gel electrophoresis and gel-permeation chromatography showed that the purified enzyme was monomeric with molecular weight 50,000. The herbicide glyphosate was a potent inhibitor of the forward enzyme-catalyzed reaction.Abbreviations DEAE diethylaminoethyl - EPSP 5-enolpyruvylshikimate 3-phosphate  相似文献   

15.
一氧化氮合酶的若干研究进展   总被引:15,自引:0,他引:15  
一氧化氮合酶(NOS)是一氧化氮(NO)生物学与医学研究的重要内容.近年来,对NOS酶本质及其生化与分子生物学特性甚至某些分子遗传学方面的认识都在迅速发展和深化.研究表明,干预NOS-NO途径的某些环节,如酶激活、NO合成、释放与转运甚至有关酶的编码基因及其表达,将为某些临床问题的解决提供新的思路和手段.  相似文献   

16.
The unbinding of fluorescein from the single-chain Fv fragment of the 4D5Flu antibody is investigated by biased molecular dynamics with an implicit solvation model. To obtain statistically meaningful results, a large number of unbinding trajectories are calculated; they involve a total simulation time of more than 200 ns. Simulations are carried out with a time-dependent perturbation and in the presence of a constant force. The two techniques, which provide complementary information, induce unbinding by favoring an increase in the distance between the ligand and the antibody. This distance is an appropriate progress variable for the dissociation reaction and permits direct comparison of the unbinding forces in the simulations with data from atomic force microscopy (AFM). The time-dependent perturbation generates unfolding pathways that are close to equilibrium and can be used to reconstruct the mean force; i.e. the derivative of the potential of mean force, along the reaction coordinate. This is supported by an analysis of the overall unbinding profile and the magnitude of the mean force, which are similar to those of the unbinding force (i.e. the external force due to the time-dependent perturbation) averaged over several unbinding events.The multiple simulations show that unbinding proceeds along a rather well-defined pathway for a broad range of effective pulling speeds. Initially, there is a distortion of the protein localized in the C-terminal region followed by the fluorescein exit from the binding site. This occurs in steps that involve breaking of specific electrostatic and van der Waals interactions. It appears that the simulations do not explore the same barriers as those measured in the AFM experiments because of the much higher unfolding speed in the former. The dependence of the force on the logarithm of the loading rate is linear and the slope is higher than in the AFM, in agreement with experiment in other systems, where different slopes were observed for different regimes. Based on the unbinding events, mutations in the 4D5Flu antigen binding site are predicted to result in significant changes in the unbinding force.  相似文献   

17.
The glyoxalase pathway is responsible for conversion of cytotoxic methylglyoxal (MG) to d-lactate. MG toxicity arises from its ability to form advanced glycation end products (AGEs) on proteins, lipids and DNA. Studies have shown that inhibitors of glyoxalase I (GLO1), the first enzyme of this pathway, have chemotherapeutic effects both in vitro and in vivo, presumably by increasing intracellular MG concentrations leading to apoptosis and cell death. Here, we present the first molecular inhibitor, 4-bromoacetoxy-1-(S-glutathionyl)-acetoxy butane (4BAB), able to covalently bind to the free sulfhydryl group of Cys60 in the hydrophobic binding pocket adjacent to the enzyme active site and partially inactivate the enzyme. Our data suggests that partial inactivation of homodimeric GLO1 is due to the modification at only one of the enzymatic active sites. Although this molecule may have limited use pharmacologically, it may serve as an important template for the development of new GLO1 inhibitors that may combine this strategy with ones already reported for high affinity GLO1 inhibitors, potentially improving potency and specificity.  相似文献   

18.
内质网应激是细胞内广泛存在的一种应激反应。研究表明,内质网应激与肿瘤的发生发展密切相关。针对内质网应激及其相应信号通路进行肿瘤的预防或治疗受到了广泛关注。IRE1(inositol-requiring enzyme 1)通路是内质网应激诱发的最保守的信号通路。研究证实,IRE1及其主要的下游效应分子剪切型X 盒结合蛋白1与肿瘤进展密切相关。本文对IRE1通路与肿瘤发生发展、血管新生、肿瘤转移、肿瘤耐药性和恶性程度的相关性进行了阐述,同时分析了IRE1在不同肿瘤样本中的突变率、突变类型与病人存活状态的关系。作为肿瘤治疗的有效靶点,针对IRE1通路的调控能够有效延缓肿瘤的发生发展。  相似文献   

19.
20.
In this study, we have developed a method of mechanical force detection for ligands bound to receptors on a cell surface, both of which are involved in a signal transduction pathway. This pathway is an autocrine pathway, involving the production of insulin‐like growth factor‐II (IGF‐II) and activation of the IGF‐I receptor, involved in myoblast differentiation induced by MyoD in C3H10T1/2 mouse mesenchymal stem cells. Differentiation of C3H10T1/2 was induced with the DNA demethylation agent 5‐azacytidine (5‐aza). The etched AFM tip used in the force detection had a flat surface of which about 10 µm2 was in contact with a cell surface. The forces required to rupture the interactions of IGF‐IIs on a cell and anti mouse IGF‐II polyclonal antibody immobilized on an etched AFM tip were measured within 5 days of induction of differentiation. The mean unbinding force for a single paired antibody–ligand on a cell was about 81 pN, which was measured at a force loading rate of about 440 nN/s. The percentage of unbinding forces over 100 pN increased to 32% after 2 days from the addition of 5‐aza to the medium. This method could be used in non‐invasive and successive evaluation of a living cell's behavior. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号