首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 230 毫秒
1.
Biofouling is one of the most important problems associated with heat exchangers, leading to a loss of thermal performance in their cycle. To maintain them in optimum working condition, biofouling must be kept under control and, to do so, instrumentation is required for its monitoring. The development of the biofouling layer can be qualitatively followed, but only during maintenance shutdown periods is it possible to attain a quantitative assessment. The CMDIMB [Combined Monitor for Direct and Indirect Measurement of Biofouling] was conceived as a means of discovering the evolution of the frictional resistance (f) and the heat transfer resistance (R(f)) of a fluid because these are variables that indirectly define the biofouling deposited in the tubes of a seawater-cooled heat exchanger. They likewise serve to directly indicate its mass and thickness according to the total solid matter adhered over time. The results obtained allowed the values of the variables taken by the CMDIMB to be extrapolated to the heat exchanger that was set up in parallel. The CMDIMB is proposed as a highly useful tool for directly and indirectly monitoring biofouling growth in heat exchangers that do not possess the necessary instrumentation to monitor this phenomenon.  相似文献   

2.
Biofouling causes significant losses in efficiency in heat exchangers recovering waste heat from treated sewage. The influence of the temperature field on biofouling was investigated using a flat plate heat exchanger which simulated the channels in a plate and frame unit. The test surface was a 316 stainless steel plate, and a solution of Bacillus sp. and Aeromonas sp. was used as a model process liquid. The test cell was operated under co-current, counter-current, and constant wall temperature configurations, which gave different temperature distributions. Biofouling was monitored via changes in heat transfer and biofilm thickness. The effect of uniform temperature on biofouling formation was similar to the effect of uniform temperature on planktonic growth of the organisms. Further results showed that the temperature field, and particularly the wall temperature, influenced the rate of biofouling strongly. The importance of wall temperature suggests that fouling could be mitigated by using different configurations in summer and winter.  相似文献   

3.
Countermeasures to biofouling in simulated ocean thermal energy conversion heat exchangers have been studied in single-pass flow systems, using cold deep and warm surface ocean waters off the island of Hawaii. Manual brushing of the loops after free fouling periods removed most of the biofouling material. However, over a 2-year period a tenacious film formed. Daily free passage of sponge rubber balls through the tubing only removed the loose surface biofouling layer and was inadequate as a countermeasure in both titanium and aluminum alloy tubes. Chlorination at 0.05, 0.07, and 0.10 mg liter-1 for 1 h day-1 lowered biofouling rates. Only at 0.10 mg liter-1 was chlorine adequate over a 1-year period to keep film formation and heat transfer resistance from rising above the maximum tolerated values. Lower chlorination regimens led to the buildup of uneven or patchy films which produced increased flow turbulence. The result was lower heat transfer resistance values which did not correlate with the amount of biofouling. Surfaces which were let foul and then treated with intermittent or continuous chlorination at 0.10 mg of chlorine or less per liter were only partially or unevenly cleaned, although heat transfer measurements did not indicate that fact. It took continuous chlorination at 0.25 mg liter-1 to bring the heat transfer resistance to zero and eliminate the fouling layer. Biofouling in deep cold seawater was much slower than in the warm surface waters. Tubing in one stainless-steel loop had a barely detectable fouling layer after 1 year in flow. With aluminum alloys sufficient corrosion and biofouling material accumulated to require that some fouling coutermeasure be used in long-term operation of an ocean thermal energy conversion plant.  相似文献   

4.
Xiang Shen  Yiping Zhao 《Biofouling》2013,29(8):991-1003
Biofouling of membrane surfaces by the attachment of microorganisms is one of the major obstacles for ensuring the effectiveness of membrane separation processes. This work presents the construction of a zwitterionic PVDF membrane surface with improved resistance to biofouling. An amphiphilic copolymer of poly(vinylidene fluoride)-graft-poly(N,N-dimethylamino-2-ethylmethacrylate) (PVDF-g-PDMAEMA) was first synthesized via radical graft copolymerization and then the flat membrane was cast with immersed phase inversion. The PDMAEMA side chains tended to aggregate on the membrane surface, pore surface and internal pore channel surface, and were converted with 1,3-propane sultone (1,3-PS) to yield a zwitterionic membrane surface. A higher conversion of PDMAEMA chains and distribution of zwitterions were obtained using a longer treatment time. A biofouling assay indicated that incorporation of zwitterions suppressed the adsorption of extracellar polymer substances and the adhesion of Escherichia coli bacterial cells to the membrane surface, endowing the membrane with a high flux recovery and biofouling resistance in the filtration process.  相似文献   

5.
Abstract

Biofouling is one of the most serious problems facing numerous industrial processes. In the case of a heat exchanger unit, biological deposits adhering to the inside surface of its tubes reduce heat transfer and, thus, the thermal performance of the cycle. Control of this phenomenon is proving fundamental for both land and marine equipment to operate in optimum working conditions. Hence, it is necessary to apply antifouling methods capable of keeping surfaces free of any kind of biofouling. This paper reports on the behaviour resulting from use of the flow inversion method vs that obtained by using various chemical treatments. The study compares the effectiveness of certain chemical treatments (Na hypochlorite, peracetic acid and a compound formed by Na bromide + Na hypochlorite) for removing a biofouling film that has already formed on the inside surfaces of tubes in a heat exchanger pilot plant. The paper also addresses the issue of optimising the concentration of biocide dose as a function of the residual biocide in order minimise the environmental impact caused by effluent from industrial plants. The results indicate that it is possible to eliminate a biofilm formed on the inside surfaces of tubes by the use of intermittent doses of chemical treatments at low concentrations and over long application times. Furthermore, once the stabilisation phase is reached 6 d after starting the treatment, it is possible to maintain the conditions achieved using only 20% of the initial dosage.  相似文献   

6.
A project to investigate biofouling, under conditions relevant to ocean thermal energy conversion heat exchangers, was conducted during July through September 1977 at a site about 13 km north of St. Croix (U.S. Virgin Islands). Seawater was drawn from a depth of 20 m, within the surface mixed layer, through aluminum pipes (2.6 m long, 2.5-cm internal diameter) at flow velocities of about 0.9 and 1.8 m/s. The temperature of the seawater entering the mock heat exchanger units was between 27.8 and 28.6°C. After about 10 weeks of exposure to seawater, when their thermal conductivity was reported to be significantly impaired, the pipes were assayed for the accumulation of biological material on their inner surfaces. The extent of biofouling was very low and independent of flow velocity. Bacterial populations, determined from plate counts, were about 107 cells per cm2. The ranges of mean areal densities for other biological components were: organic carbon, 18 to 27 μg/cm2; organic nitrogen, 1.5 to 3.0 μg/cm2; adenosine 5′-triphosphate, 4 to 28 ng/cm2; carbohydrate (as glucose in the phenol assay), 3.8 to 7.0 μg/cm2; chlorophyll a, 0.2 to 0.8 ng/cm2. It was estimated from the adenosine 5′-triphosphate and nitrogen contents that the layer of live bacteria present after 10 weeks was only of the order of 1μm thick. The C/N ratio of the biological material suggested the presence of extracellular polysaccharidic material. Such compounds, because of their water-retaining capacities, could account for the related increase in thermal resistance associated with the pipes. This possibility merits further investigation, but the current results emphasize the minor degree of biofouling which is likely to be permissible in ocean thermal energy conversion heat exchangers.  相似文献   

7.
Biofouling is one of the challenges that can strongly affect the finfish farm economy. Although several studies on biofouling in aquaculture have been conducted in the Mediterranean Sea, they focused on specific taxa or were limited to a particular period of sampling. The present study investigated for the first time the development, composition and variation in a biofouling community in a finfish farm with immersion time, season and depth. The results indicate that all these factors influence biofouling succession and recruitment. Moreover, the species that had a crucial role in structuring the community and in the farm cleaning activities were the ascidian Styela plicata and the bivalve Mytilus galloprovincialis. Compared with the literature data, the results highlight the heterogeneity in the composition of the biofouling present in the Mediterranean Sea. Moreover, such knowledge of the biofouling community could provide important information about management efforts and the costs that farmers will face when siting new fish farms.  相似文献   

8.
Bacteria of different Gram-types have inherently different outer cell structures, influencing cell surface properties and bacterial attachment. Dynamic biofouling experiments were conducted over four days in a bench-scale forward osmosis (FO) system with Gram-negative Pseudomonas aeruginosa or Gram-positive Anoxybacillus sp. Biofouling resulted in ~10% decline in FO permeate water flux and was found to be significant for Anoxybacillus sp. but not for P. aeruginosa. Additionally, a stronger permeate water flux decline for P. aeruginosa in experiments with a superhydrophilic feed spacer demonstrated that mitigation methods require testing with different bacterial Gram-types. It was found that although permeate water flux decline can be affected by bacterial Gram-type the stable performance under enhanced biofouling conditions highlights the potential of FO for wastewater reclamation.  相似文献   

9.
Augmentative biocontrol, defined as the use of indigenous natural enemies to control pest populations, has not been explored extensively in marine systems. This study tested the potential of the anemone Anthothoe albocincta as a biocontrol agent for biofouling on submerged artificial structures. Biofouling biomass was negatively related to anemone cover. Treatments with high anemone cover (>35%) led to significant changes in biofouling assemblages compared to controls. Taxa that contributed to these changes differed among sites, but included reductions in cover of problematic fouling organisms, such as solitary ascidians and bryozoans. In laboratory trials, A. albocincta substantially prevented the settlement of larvae of the bryozoan Bugula neritina when exposed to three levels of larval dose, suggesting predation as an important biocontrol mechanism, in addition to space pre-emption. This study demonstrated that augmentative biocontrol using anemones has the potential to reduce biofouling on marine artificial structures, although considerable further work is required to refine this tool before its application.  相似文献   

10.
Biofouling produces concentrated microbial populations with highly resistive biofilms and is considered to be a serious obstacle for a wide range of membrane technology applications. An antibacterial super-hydrophilic barrier could help to reduce biofouling by preventing direct contact between membranes and bacteria. In this study, an antibacterial super-hydrophilic barrier consisting of a layer of TiO2 nanoparticles (NPs) was developed on polyvinylidene fluoride (PVDF)-based membrane via a facile technique. The results demonstrated that the presence of TiO2 NPs eliminated the first step of biofouling, ie bacterial adhesion to the membrane. In addition, after bacterial deposition onto the membrane during ultrafiltration (UF), the TiO2 NPs significantly retarded bacterial growth and reproduction (the second step of biofouling). During UF, the membrane flux decreased due to bacterial deposition, but 85% of the flux was recovered through physical cleaning using water. This study sheds light on the potential advantages of antibacterial super-hydrophilic membranes for biofouling mitigation.  相似文献   

11.
Biofouling is one of the most serious problems facing numerous industrial processes. In the case of a heat exchanger unit, biological deposits adhering to the inside surface of its tubes reduce heat transfer and, thus, the thermal performance of the cycle. Control of this phenomenon is proving fundamental for both land and marine equipment to operate in optimum working conditions. Hence, it is necessary to apply antifouling methods capable of keeping surfaces free of any kind of biofouling. This paper reports on the behaviour resulting from use of the flow inversion method vs that obtained by using various chemical treatments. The study compares the effectiveness of certain chemical treatments (Na hypochlorite, peracetic acid and a compound formed by Na bromide + Na hypochlorite) for removing a biofouling film that has already formed on the inside surfaces of tubes in a heat exchanger pilot plant. The paper also addresses the issue of optimising the concentration of biocide dose as a function of the residual biocide in order minimise the environmental impact caused by effluent from industrial plants. The results indicate that it is possible to eliminate a biofilm formed on the inside surfaces of tubes by the use of intermittent doses of chemical treatments at low concentrations and over long application times. Furthermore, once the stabilisation phase is reached 6 d after starting the treatment, it is possible to maintain the conditions achieved using only 20% of the initial dosage.  相似文献   

12.
S E Bradley  P J Fryer 《Biofouling》2013,29(4):295-314

Fouling cannot always be prevented; it is important to consider the design of fouling‐resistant heat exchangers. To examine these exchangers, a test fluid whose fouling behaviour is understood should be used. Experiments have been conducted to examine the response of two model systems, a pulsatile flow and a fluid bed heat exchanger, to fouling from whey protein concentrates. Both systems are effective in certain cases, although the enhanced mass transfer possible in the pulsatile flow exchanger can increase fouling when mass transfer controls deposition. This demonstrates the possible danger in installing “antifouling”; systems. The possible mechanisms by which antifouling exchangers operate is discussed; they may work both by slowing the kinetics of fouling or enhancing the heat transfer coefficient. A simple model to demonstrate the design of antifouling exchangers is presented.  相似文献   

13.
Abstract

Biofouling control in reverse osmosis membranes (ROMs) is challenging due to the high cost of treatments, and reduction in the life of ROMs. This study characterizes the biofouling in the ROMs from a desalination plant and reports its effective removal using the supernatant obtained from Alteromonas sp. strain Ni1-LEM. The characterization of the bacterial community revealed that the most abundant taxa in ROMs were the genera Fulvivirga and Pseudoalteromonas, and unclassified species of the families Flavobacteriaceae and Sphingomonadaceae. This bacterial community significantly decreased upon treatment with the supernatant from Alteromonas sp. Ni1-LEM, resulting in the prevalence of the genus Pseudoalteromonas. Furthermore, this bacterial supernatant significantly inhibited cell adhesion of seven benthic microalgae isolated from ROMs as well as promoting cell detachment of the existing microbial biofilms. The study showed that the extracellular supernatant modified the conformation of extracellular polymeric substances (EPS) in the biofouling of ROMs without any biocidal effects.  相似文献   

14.
Corrosion and biofouling phenomena of cast iron and brass were evaluated under natural conditions to determine the degradation process of archeological artifacts. Field exposure studies of experimental materials were conducted over 15 months at an offshore position in the sea of Campeche in the Gulf of Mexico. Corrosion was determined by gravimetric measurements. The community structure of the benthic assemblage inhabiting the surfaces of both materials was evaluated. A total of 53 species was identified. The community in both cases was composed of a small number of species. Encrusting, attached and erect life forms were dominant on iron. Attached life forms were dominant on brass. Biofouling produced a decrease in the weight loss measurements of cast iron samples. Biofouling provided a beneficial factor for in situ preservation of iron archeological artifacts in wreck sites.  相似文献   

15.
Abstract

A CUSUM chart method is presented as an alternative tool for continuous monitoring of an electromagnetic field-based (EMF) antifouling (AF) treatment of a heat exchanger cooled by seawater. During an initial experimental phase, biofilm growth was allowed in a heat exchanger formed of four tubes until sufficient growth had been established. In two of the tubes, continuous EMF treatment was then applied. The heat transfer resistance and heat duty (heat transfer per unit time) results showed that biofilm adhesion was reduced by the EMF treatment. EMF treatments resulted in a 35% improvement in the heat transfer resistance values. The proposed CUSUM chart method showed that the EMF treatment increased the useful life of the heat exchanger by ~20?days. Thus, CUSUM charts proved to be an efficient tool for continuous monitoring of an AF treatment using data collected online and can also be used to reduce operation and maintenance costs.  相似文献   

16.
Microbial succession during the initial stages of marine biofouling has been rarely studied, especially in the Arabian Gulf. This study was undertaken to follow temporal shifts in biofouling communities in order to identify primary and secondary colonizers. Quantitative analysis revealed a significant increase in total biomass, coverage of macrofoulers, chlorophyll a concentrations, and bacterial counts with time. The relative abundance of the adnate diatoms increased with time, whereas it decreased in the case of the plocon diatoms. Non-metric multidimensional scaling (NMDS) ordination based on MiSeq data placed the bacterial communities in three distinct clusters, depending on the time of sampling. While the relative abundance of Alphaproteobacteria and Flavobacteriia decreased with time, suggesting their role as primary colonizers, the relative abundance of Actinobacteria and Planctomycetia increased with time, suggesting their role as secondary colonizers. Biofouling is a dynamic process that involves temporal quantitative and qualitative shifts in the micro- and macrofouling communities.  相似文献   

17.
Geographical variation in traits related to fitness is often the result of adaptive evolution. Stress resistance traits in Drosophila often show clinal variation, suggesting that selection affects resistance traits either directly or indirectly. Multiple stress resistance traits were investigated in 45 natural populations of Drosophila ananassae collected from all over India. There was significant positive correlation between starvation resistance and lipid content. Significant negative correlations between desiccation and lipid content and between desiccation and heat resistance were also found. Flies from lower latitudes had higher starvation resistance, heat resistance and lipid content but the pattern was reversed for desiccation resistance. These results suggest that flies from different localities varied in their susceptibility to starvation because of difference in their propensity to store body lipid. Multiple regression analysis provided evidence of climatic selection driven by latitudinal variation in the seasonal amplitude of temperature and humidity changes within the Indian. Finally, our results suggest a high degree of variation in stress resistance at the population level in D. ananassae.  相似文献   

18.
Biofouling has long been recognised as a major pathway for the introduction of non-indigenous species. This study records the decapods and stomatopod crustaceans fouling a semisubmersible oil platform dry docked for hull cleaning in Jurong Port, Singapore. Of the 25 species of decapods identified, 13 were non-indigenous and represent new records to Singapore waters. Of these, the crabs Glabropilumnus seminudus and Carupa tenuipes are known to be invasive in other parts of the world. The stomatopod, Gonodactylaceus randalli, is the first mantis shrimp recorded in a biofouling community. The richness and diversity of this fouling community, consisting of many vagile species, highlights the difference between platforms and ships. With the expansion of maritime oil and gas exploration, the threat posed by an expanded fleet of semisubmersible oil platforms translocating non-indigenous fouling communities across biogeographical boundaries is very serious. Scientists, policy-makers, and stakeholders should turn their attention to this growing problem.  相似文献   

19.
Hull biofouling is a well-known problem for the shipping industry, leading to increased resistance and fuel consumption. Considering that the effects of hull form on resistance are known to be higher for a less slender hull, it is hypothesised in this paper that the effect of biofouling roughness on resistance is also dependent on the hull form. To test this hypothesis, previously reported full-scale numerical results on a containership are re-analysed. Form effects on roughness penalties, corresponding to KΔCT = 0.058 ± 0.025, are observed at a low speed (19 knots, Res = 2.29 × 109), which are however cancelled out by traditionally neglected roughness effects on wave-making resistance at a higher speed (24 knots, Res = 2.89 × 109). It is concluded that hull form effects on biofouling penalties can be significant at low speeds, though not generalisable for higher speeds, namely when wave-making resistance corresponds to ≥ 29% of total resistance.  相似文献   

20.
S. Pohl  M. Madzgalla  W. Manz 《Biofouling》2013,29(9-10):699-707
The biofouling affinity of different polymeric surfaces (polypropylene, polysulfone, polyethylene terephthalate, and polyether ether ketone) in comparison to stainless steel (SS) was studied for the model bacterium Escherichia coli K12 DSM 498 and native biofilms originating from Rhine water. The biofilm mass deposited on the polymer surfaces was minimized by several magnitudes compared to SS. The cell count and the accumulated biomass of E. coli on the polymer surfaces showed an opposing linear trend. The promising low biofilm formation on the polymers is attributed to the combination of inherent surface properties (roughness, surface energy and hydrophobicity) when compared to SS. The fouling characteristics of E. coli biofilms show good conformity with the more complex native biofilms investigated. The results can be utilized for the development of new polymer heat exchangers when using untreated river water as coolant or for other processes needing antifouling materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号