首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Soldiers are fielded with a variety of equipment including battery powered electronic devices. An energy harvesting assault pack (EHAP) was developed to provide a power source to recharge batteries and reduce the quantity and load of extra batteries carried into the field. Little is known about the biomechanical implications of carrying a suspended-load energy harvesting system compared to the military standard assault pack (AP). Therefore, the goal of this study was to determine the impact of pack type and load magnitude on spatiotemporal and kinematic parameters while walking at 1.34 m/s on an instrumented treadmill at decline, level, and incline grades. There was greater forward trunk lean while carrying the EHAP and the heavy load (decline: p < 0.001; level: p = 0.009; incline: p = 0.003). As load increased from light to heavy, double support stance time was longer (decline: p = 0.012; level: p < 0.001; incline: p < 0.001), strides were shorter (incline: p = 0.013), and knee flexion angle at heel strike was greater (decline: p = 0.033; level: p = 0.035; incline: p = 0.005). When carrying the EHAP, strides (decline: p = 0.007) and double support stance time (incline: p = 0.006) was longer, the knee was more flexed at heel strike (level: p = 0.014; incline: p < 0.001) and there was a smaller change in knee flexion during weight acceptance (decline: p = 0.0013; level: p = 0.007; incline: p = 0.0014). Carrying the EHAP elicits changes to gait biomechanics compared to carrying the standard AP. Understanding how load-suspension systems influence loaded gait biomechanics are warranted before transitioning these systems into military or recreational environments.  相似文献   

2.
This study compares the performance of algorithms for body-worn sensors used with a spatiotemporal gait analysis platform to the GAITRite electronic walkway. The mean error in detection time (true error) for heel strike and toe-off was 33.9 ± 10.4 ms and 3.8 ± 28.7 ms, respectively. The ICC for temporal parameters step, stride, swing and stance time was found to be greater than 0.84, indicating good agreement. Similarly, for spatial gait parameters--stride length and velocity--the ICC was found to be greater than 0.88. Results show good to excellent concurrent validity in spatiotemporal gait parameters, at three different walking speeds (best agreement observed at normal walking speed). The reported algorithms for body-worn sensors are comparable to the GAITRite electronic walkway for measurement of spatiotemporal gait parameters in healthy subjects.  相似文献   

3.
This study investigated the plantar pressure distribution during gait on wooden surface with different slipperiness in the presence of contaminants. Fifteen Chinese males performed 10 walking trials on a 5-m wooden walkway wearing cloth shoe in four contaminated conditions (dry, sand, water, oil). A pressure insole system was employed to record the plantar pressure data at 50Hz. Peak pressure and time-normalized pressure-time integral were evaluated in nine regions. In comparing walking on slippery to non-slippery surfaces, results showed a 30% increase of peak pressure beneath the hallux (from 195.6 to 254.1kPa), with a dramatic 79% increase in the pressure time integral beneath the hallux (from 63.8 to 114.3kPa) and a 34% increase beneath the lateral toes (from 35.1 to 47.2kPa). In addition, the peak pressure beneath the medial and lateral heel showed significant 20-24% reductions, respectively (from 233.6-253.5 to 204.0-219.0kPa). These findings suggested that greater toe grip and gentler heel strike are the strategies to adapt to slippery surface. Such strategies plantarflexed the ankle and the metatarsals to achieve a flat foot contact with the ground, especially at heel strike, in order to shift the ground reaction force to a more vertical direction. As the vertical ground reaction force component increased, the available ground friction increased and the floor became less slippery. Therefore, human could walk without slip on slippery surfaces with greater toe grip and gentler heel strike as adaptation strategies.  相似文献   

4.
Individuals with hereditary spastic paraparesis (HSP) are often impaired in their ability to control posture as a result of the neurological and musculoskeletal implications of their condition. This research aimed to assess postural stability during gait in a group of adults with HSP. Ten individuals with HSP and 10 healthy controls underwent computerized gait analysis while walking barefoot along a 10-m track. Two biomechanics methods were used to assess stability: the center of pressure and center of mass separation (COP-COM) method, and the extrapolated center of mass (XCOM) method. Spatiotemporal and kinematic variables were also investigated. The XCOM method identified deficits in mediolateral stability for the HSP group at both heel strike and mid-stance. The group with HSP also had slower walking velocity, lower cadence, more time spent in double stance, larger step widths, and greater lateral trunk flexion than the control group. These results suggest that individuals with HSP adjust characteristics of their gait to minimize the instability arising from their impairments but have residual deficits in mediolateral stability. This may result in an increased risk of falls, particularly in the sideways direction.  相似文献   

5.
Changes in knee function associated with treadmill ambulation   总被引:2,自引:2,他引:0  
A comparison of level walking, on a walkway and on a treadmill, was performed using ten normal subjects. Motion about the knee was measured using a triaxial electrogoniometer, and foot-floor contact patterns were recorded by means of four foot switches attached to the sole of each shoe. On the walkway, the data were collected with the subject moving at a comfortable walking speed. The treadmill was then set at the average velocity obtained on the walkway. Knee joint rotation in the coronal and transverse planes did not change significantly between the walkway and the treadmill. In the sagittal plane, significant differences were found for total motion (p less than 0.01), swing phase motion (p less than 0.01), knee position at heel strike (p less than 0.05), and maximum swing phase extension (p less than 0.01). A comparison of the foot-floor contact patterns between walkway and treadmill ambulation revealed reduced heel contact time, with an increase in toe contact while on the treadmill. It was concluded that sagittal plane knee kinematics during level treadmill walking differ significantly from level overground walking.  相似文献   

6.
The goal of this study was to identify which muscle activation patterns and gait features best predict the metabolic cost of inclined walking. We measured muscle activation patterns, joint kinematics and kinetics, and metabolic cost in sixteen subjects during treadmill walking at inclines of 0%, 5%, and 10%. Multivariate regression models were developed to predict the net metabolic cost from selected groups of the measured variables. A linear regression model including incline and the squared integrated electromyographic signals of the soleus and vastus lateralis explained 96% of the variance in metabolic cost, suggesting that the activation patterns of these large muscles have a high predictive value for metabolic cost. A regression model including only the peak knee flexion angle during stance phase, peak knee extension moment, peak ankle plantarflexion moment, and peak hip flexion moment explained 89% of the variance in metabolic cost; this finding indicates that kinematics and kinetics alone can predict metabolic cost during incline walking. The ability of these models to predict metabolic cost from muscle activation patterns and gait features points the way toward future work aimed at predicting metabolic cost when gait is altered by changes in neuromuscular control or the use of an assistive technology.  相似文献   

7.
Quadriceps muscle rehabilitation following knee injury or disease is often hampered by pain, proprioception deficits or instability associated with inhibition of quadriceps activation during walking. The cross-modal plasticity of the somatosensory system with common sensory pathways including pain, pressure and vibration offers a novel opportunity to enhance quadriceps function during walking. This study explores the effectiveness of an active knee brace that used intermittent cutaneous vibration during walking to enhance the peak knee flexion moment (KFM) during early stance phase as a surrogate for net quadriceps moment (balance between knee extensor and flexor muscle moments). The stimulus was turned on prior to heel strike and turned off at mid-stance of the gait cycle. Twenty-one subjects with knee pathologies known to inhibit quadriceps function were tested walking under three conditions: control (no brace), a passive brace, and an active brace. Findings show that compared to the control, subjects wearing an active brace during gait exhibited a significant (p < 0.001) increase in peak KFM and no significant difference when wearing a passive brace (p = 0.17). Furthermore, subjects with low KFM and knee flexion angle (KFA) in control exhibited the greatest increase in KFA at loading response in the active brace condition (R = 0.47, p < 0.05). Intermittent cutaneous stimulation during gait, therefore, provides an efficient method for increasing the KFM in patients with knee pathologies. This study’s results suggest that intermittent vibration stimulus can activate the cross-modalities of the somatosensory system in a manner that gates pain stimulus and possibly restores quadriceps function in patients with knee pain.  相似文献   

8.
There is increasing interest in wearable sensor technology as a tool for rehabilitation applications in community or home environments. Recent studies have focused on evaluating inertial based sensing (accelerometers, gyroscopes, etc.) that provide only indirect measures of joint motion. Measurement of joint kinematics using flexible goniometry is more direct, and still popular in laboratory environments, but has received little attention as a potential tool for wearable systems. The aim of this study was to compare two goniometric devices: a traditional strain-gauge flexible goniometer, and a fiberoptic flexible goniometer, for measuring dynamic knee flexion/extension angles during activity of daily living: chair rise, and gait; and exercise: deep knee bends, against joint angles computed from a "gold standard" Vicon motion tracking system. Six young adults were recruited to perform the above activities in the lab while wearing a goniometer on each knee, and reflective markers for motion tracking. Kinematic data were collected simultaneously from the goniometers (one on each leg) and the motion tracking system (both legs). The results indicate that both goniometers were within 2-5 degrees of the Vicon angles for gait and chair rise. For some deep knee bend trials, disagreement with Vicon angles exceeded ten degrees for both devices. We conclude that both goniometers can record ADL knee movement faithfully and accurately, but should be carefully considered when high (>120?deg) knee flexion angles are required.  相似文献   

9.
Energetics of actively powered locomotion using the simplest walking model   总被引:1,自引:0,他引:1  
We modified an irreducibly simple model of passive dynamic walking to walk on level ground, and used it to study the energetics of walking and the preferred relationship between speed and step length in humans. Powered walking was explored using an impulse applied at toe-off immediately before heel strike, and a torque applied on the stance leg. Although both methods can supply energy through mechanical work on the center of mass, the toe-off impulse is four times less costly because it decreases the collision loss at heel strike. We also studied the use of a hip torque on the swing leg that tunes its frequency but adds no propulsive energy to gait. This spring-like actuation can further reduce the collision loss at heel strike, improving walking energetics. An idealized model yields a set of simple power laws relating the toe-off impulses and effective spring constant to the speed and step length of the corresponding gait. Simulations incorporating nonlinear equations of motion and more realistic inertial parameters show that these power laws apply to more complex models as well.  相似文献   

10.
The regional adaptation of knee cartilage morphology to the kinematics of walking has been suggested as an important factor in the evaluation of the consequences of alteration in normal gait leading to osteoarthritis. The purpose of this study was to investigate the association of spatial cartilage thickness distributions of the femur and tibia in the knee to the knee kinematics during walking. Gait data and knee MR images were obtained from 17 healthy volunteers (age 33.2 ± 9.8 years). Cartilage thickness maps were created for the femoral and tibial cartilage. Locations of thickest cartilage in the medial and lateral compartments in the femur and tibia were identified using a numerical method. The flexion-extension (FE) angle associated with the cartilage contact regions on the femur, and the anterior-posterior (AP) translation and internal-external (IE) rotation associated with the cartilage contact regions on the tibia at the heel strike of walking were tested for correlation with the locations of thickest cartilage. The locations of the thickest cartilage had relatively large variation (SD, 8.9°) and was significantly associated with the FE angle at heel strike only in the medial femoral condyle (R(2)=0.41, p<0.01). The natural knee kinematics and contact surface shapes seem to affect the functional adaptation of knee articular cartilage morphology. The sensitivity of cartilage morphology to kinematics at the knee during walking suggests that regional cartilage thickness variations are influenced by both loading and the number of loading cycles. Thus walking is an important consideration in the analysis of the morphological variations of articular cartilage, since it is the dominant cyclic activity of daily living. The sensitivity of cartilage morphology to gait kinematics is also important in understanding the etiology and pathomechanics of osteoarthritis.  相似文献   

11.
The purpose of this study is to develop a system capable of performing calculation of temporal gait parameters using two low-cost wireless accelerometers and artificial intelligence-based techniques as part of a larger research project for conducting human gait analysis. Ten healthy subjects of different ages participated in this study and performed controlled walking tests. Two wireless accelerometers were placed on their ankles. Raw acceleration signals were processed in order to obtain gait patterns from characteristic peaks related to steps. A Bayesian model was implemented to classify the characteristic peaks into steps or nonsteps. The acceleration signals were segmented based on gait events, such as heel strike and toe-off, of actual steps. Temporal gait parameters, such as cadence, ambulation time, step time, gait cycle time, stance and swing phase time, simple and double support time, were estimated from segmented acceleration signals. Gait data-sets were divided into two groups of ages to test Bayesian models in order to classify the characteristic peaks. The mean error obtained from calculating the temporal gait parameters was 4.6%. Bayesian models are useful techniques that can be applied to classification of gait data of subjects at different ages with promising results  相似文献   

12.
Reduced foot clearance when walking may increase the risk of trips and falls in people with Parkinson’s disease (PD). Changes in foot clearance in people with PD are likely to be associated with temporal-spatial characteristics of gait such as walking slowly which evokes alterations in the temporal-spatial control of stepping patterns. Enhancing our understanding of the temporal-spatial determinants of foot clearance may inform the design of falls prevention therapies.Thirty-six people with PD and 38 age-matched controls completed four intermittent walks under two conditions: self-selected and fast gait velocity. Temporal-spatial characteristics of gait and foot (heel and toe) clearance outcomes were obtained using an instrumented walkway and 3D motion capture, respectively. A general linear model was used to quantify the effect of PD and gait velocity on gait and foot clearance. Regression evaluated the temporal and spatial gait predictors of minimum toe clearance (MTC).PD walked slower regardless of condition (p = .016) and tended to increase their step length to achieve a faster gait velocity. Step length and the walk ratio consistently explained the greatest proportion of variance in MTC (>28% and >33%, respectively) regardless of group or walking condition (p < .001).Our results suggest step length is the primary determinant of MTC regardless of pathology. Interventions that focus on increasing step length may help to reduce the risk of trips and falls during gait, however, clinical trials are required for robust evaluation.  相似文献   

13.
A primary source of measurement error in gait analysis is soft-tissue artefact. Hip and knee angle measurements, regularly used in clinical decision-making, are particularly prone to pervasive soft tissue on the femur. However, despite several studies of thigh marker artefact it remains unclear how lateral thigh marker height affects results using variants of the Conventional Gait Model. We compared Vicon Plug-in Gait hip and knee angle estimates during gait using a proximal and distal thigh marker placement for ten healthy subjects. Knee axes were estimated by optimizing thigh rotation offsets to minimize knee varus-valgus range during gait. Relative to the distal marker, the proximal marker produced 37% less varus-valgus range and 50% less hip rotation range (p < 0.001), suggesting that it produced less soft-tissue artefact in knee axis estimates. The thigh markers also produced different secondary effects on the knee centre estimate. Using whole gait cycle optimization, the distal marker showed greater minimum and maximum knee flexion (by 6° and 2° respectively) resulting in a 4° reduction in range. Mid-stance optimization reduced distal marker knee flexion by 5° throughout, but proximal marker results were negligibly affected. Based on an analysis of the Plug-in Gait knee axis definition, we show that the proximal marker reduced sensitivity to soft-tissue artefact by decreasing collinearity between the points defining the femoral frontal plane and reducing anteroposterior movement between the knee and thigh markers. This study suggests that a proximal thigh marker may be preferable when performing gait analysis using the Plug-in Gait model.  相似文献   

14.
Studies were made of the forces generated at heel stroke in human gait using both force plates having a high resonant frequencies (capable of picking up high frequency components in the contact force) as well as a force transducer inserted into the heel of the shoe of the subjects. The output traces were analyzed for the existence of high frequency impulsive loads during a normal walking cycle. The effect of the complicance of the foot and floor was studied with the force transducers. The results showed that during normal human gait the lower limb is subjected to a high frequency impulsive load at heel strike. The severity of this impulse varied with the individual, the velocity and angle with which the limb aproached the ground and the compliance of the two materials coming in contact at heel strike. The magnitude of this peak force varied from 0.5 to 1.25 times body weight and its frequency components from 10 to 75 Hz.  相似文献   

15.
Humans use equal push-off and heel strike work during the double support phase to minimize the mechanical work done on the center of mass (CoM) during the gait. Recently, a step-to-step transition was reported to occur over a period of time greater than that of the double support phase, which brings into question whether the energetic optimality is sensitive to the definition of the step-to-step transition. To answer this question, the ground reaction forces (GRFs) of seven normal human subjects walking at four different speeds (1.1-2.4 m/s) were measured, and the push-off and heel strike work for three differently defined step-to-step transitions were computed based on the force, work, and velocity. To examine the optimality of the work and the impulse data, a hybrid theoretical-empirical analysis is presented using a dynamic walking model that allows finite time for step-to-step transitions and incorporates the effects of gravity within this period. The changes in the work and impulse were examined parametrically across a range of speeds. The results showed that the push-off work on the CoM was well balanced by the heel strike work for all three definitions of the step-to-step transition. The impulse data were well matched by the optimal impulse predictions (R(2)>0.7) that minimized the mechanical work done on the CoM during the gait. The results suggest that the balance of push-off and heel strike energy is a consistent property arising from the overall gait dynamics, which implies an inherited oscillatory behavior of the CoM, possibly by spring-like leg mechanics.  相似文献   

16.
Locomotion over ballast surfaces provides a unique situation for investigating the biomechanics of gait. Although much research has focused on level and sloped walking on a smooth, firm surface in order to understand the common kinematic and kinetic variables associated with human locomotion, the literature currently provides few if any discussions regarding the dynamics of locomotion on surfaces that are either rocky or uneven. The purpose of this study was to investigate a method for using force plates to measure the ground reaction forces (GRFs) during gait on ballast. Ballast is a construction aggregate of unsymmetrical rock used in industry for the purpose of forming track bed on which railway ties are laid or in yards where railroad cars are stored. It is used to facilitate the drainage of water and to create even running surfaces. To construct the experimental ballast surfaces, 31.75 mm (1 1/4 in.) marble ballast at depths of approximately 63.5 mm (2.5 in.) or 101.6 mm (4 in.) were spread over a carpeted vinyl tile walkway specially designed for gait studies. GRF magnitudes and time histories from a force plate were collected under normal smooth surface and under both ballast surface conditions for five subjects. GRF magnitudes and time histories during smooth surface walking were similar to GRF magnitudes and time histories from the two ballast surface conditions. The data presented here demonstrate the feasibility of using a force plate system to expand the scope of biomechanical analyses of locomotion on ballast surfaces.  相似文献   

17.
Angular momentum is highly regulated over the gait cycle and is important for maintaining dynamic stability and control of movement. However, little is known regarding how angular momentum is regulated on irregular surfaces, such as slopes, when the risk of falling is higher. This study examined the three-dimensional whole-body angular momentum patterns of 30 healthy subjects walking over a range of incline and decline angles. The range of angular momentum was either similar or reduced on decline surfaces and increased on incline surfaces relative to level ground, with the greatest differences occurring in the frontal and sagittal planes. These results suggest that angular momentum is more tightly controlled during decline walking when the risk of falling is greater. In the frontal plane, the range of angular momentum was strongly correlated with the peak hip and knee abduction moments in early stance. In the transverse plane, the strongest correlation occurred with the knee external rotation peak in late stance. In the sagittal plane, all external moment peaks were correlated with the range of angular momentum. The peak ankle plantarflexion, knee flexion and hip extension moments were also strongly correlated with the sagittal-plane angular momentum. These results highlight how able-bodied subjects control angular momentum differently on sloped surfaces relative to level walking and provide a baseline for comparison with pathological populations that are more susceptible to falling.  相似文献   

18.
This study was conducted to investigate the balance strategy of healthy young adults through a gait cycle using the margin of stability (MoS). Thirty healthy young adults participated in this study. Each performed walking five times at a preferred speed and at a fast speed. The MoS was calculated over a gait cycle by defining the base of support (BoS) changes during a gait cycle. The MoS was divided into medial/lateral and anterior/posterior components (ML MoS and AP MoS). The central values and the values at 12 gait events of the MoS were compared. Positive/negative integration of ML MoS (ML MoSPOS and ML MoSNEG, respectively) and the average ML/AP MoS over a cycle (ML/AP MoSmean) were significantly lower at a fast gait than at a preferred gait. ML/AP MoS were lower at a fast speed than at the preferred speed, except for the ML MoS immediately before left heel strike (pre left HS) and right and left heel strike (HS). ML/AP MoS were significantly lower immediately before heel strike (pre-HS) than in other gait events, regardless of walking speed. It was suggested that pre-HS is the most unstable moment in both ML/AP directions and a crucial moment in control of gait stability. The results presented above might be applicable as basic data regarding dynamic stability of healthy young adults through a gait cycle for comparisons with elderly people and patients with orthopedic disorders or neurological disorders.  相似文献   

19.
In 17 patients with unilateral hip disease who underwent total hip arthroplasty (THA), the gait was analyzed preoperatively and 1, 3, 6, and 12 months after unilateral THA using a Vicon system to assess the recovery of walking speed and symmetrical movement of the hip, knee, ankle, and pelvis. The walking speed of these patients reached that of normal Japanese persons by 12 months after surgery. Walking speed was correlated with the range of hip motion on the operated side at 1 month postoperatively, and was correlated with the hip joint extension moment of force on both sides from 3 to 6 months after surgery. Before THA, asymmetry was observed in the range of the hip motion, maximum hip flexion, maximum hip extension, maximum knee flexion, as well as in pelvic obliquity, pelvic tilt, and pelvic rotation. There were no differences of the stride length or step length between both sides throughout the observation period. The preoperative range of hip flexion on the operated side during a gait cycle (21.3+/-7.9 degrees ) was significantly smaller than on the non-operated side (46.7+/-7.1 degrees ), and the difference between sides was still significant at 12 months after surgery (35.1+/-6.2 degrees on the operated side and 43.6+/-5.7 degrees on the non-operated side). The majority (74%) of the difference in hip motion range during this period was due to the difference in maximum extension of the hip. The increase in the range of pelvic tilt and the range of motion of the opposite hip showed an inverse correlation with the range of motion of the operated hip, suggesting a compensatory preoperative role. However, this correlation became insignificant after 6 months postoperatively. Asymmetry of the range of hip motion persisted at 12 months after THA in patients with unilateral coxoarthropathy during free level walking, while the operation normalized the spatial asymmetry of other joints and the walking speed prior to the recovery of hip motion.  相似文献   

20.
Gait speed is an essential parameter of gait analysis. Our study proposed a simple and accurate method to extract a mean gait speed during walking on a treadmill using only kinematic data from markers placed on the heels of the participants’ feet. This method provided an attractive, simple method that remains resistant to errors in treadmill calibration. In addition, this method required only two markers, since heel markers are essential to gait analysis, and the proposed method is robust enough to differentiate among various gait speeds (mean error <1%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号