首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells of Rhodospirillum rubrum were grown photoorganotrophically and chemoorganotrophically and then starved for organic carbon and combined nitrogen under four conditions: anaerobically in the light and dark and aerobically in the light and dark. Illumination prolonged viability and suppressed the net degradation of cell material of phototrophically grown cells, but had no effect on chemotrophically grown cells that did not contain bacteriochlorophyll. The half-life survival times of carbohydrate-rich phototrophically grown cells during starvation anaerobically or aerobically in the light were 17 and 14.5 days, respectively. The values for starvation aerobically and anaerobically in the dark were 3 and 0.5 days, respectively. Chemotrophically grown cells had half-life survival times of 3 and 4 days during starvation aerobically in the light and dark, respectively, and 0.8 day during starvation anaerobically in the light or dark. Of all cell constituents examined, carbohydrate was most extensively degraded during starvation, although the rate of degradation was slowest for phototrophically grown cells starved anaerobically in the light. Phototrophically grown cells containing poly-beta-hydroxybutyrate as carbon reserve were less able to survive starvation anaerobically in the light than were carbohydrate-rich cells starved under comparable conditions. Light intensity had a significant effect on viability of phototrophically grown cells starving anaerobically. At light intensities of 320 to 650 lx, the half-life survival times were 17 to 24 days. At 2,950 to 10,500 lx, the survival times decreased to 1.5 to 5.5 days. The kinetics of cell death correlated well with the rate of loss of cell mass of starving cells. However, the cause of death could not be attributed to degradation of any specific cell component.  相似文献   

2.
Following exposure of the youngest mature leaf of uniculm barleyto 14CO2, groups of plants were harvested over a 72 h periodto determine the fate of 14C in the photosynthesizing leaf andin growing leaves and roots. Initially, 14C was mainly presentin sucrose with a little in starch and charged compounds; transportout of the fed leaf was rapid and, by 7 and 24 h, 56 and 93%respectively of the 14C had been translocated about equallyto growing leaves and roots. Sucrose entering meristems wasquickly metabolized to protein and structural carbohydrate (40and 60% of the 14C in these organs at 7 and 24 h respectively),while the remainder was converted to short-term storage productsor intermediary metabolites. By the end of the first day c.35% of the 14C originally assimilated had been lost in respiration. The metabolism of the leaf appeared to be organized on a diurnalbasis, for it exported nearly all its carbon within 24 h ofassimilation. In contrast, some of the assimilate imported intogrowing leaves and, to a lesser extent, roots was not immediatelyused for growth but persisted as temporary metabolites and wassubsequently used for growth in the following days.  相似文献   

3.
Time course absorption and desorption of metalaxyl by seeds of pearl millet was analysed by following chemical kinetics equations. Uptake of metalaxyl through roots, leaves and seed, its translocation and distribution in different plant parts and persistence following seed application were studied in pearl millet using 14C-metalaxyl. Both uptake and efflux of metalaxyl by pearl millet seeds were complex and compartmentalized. Distribution inside the seed was not uniform. A major part of applied fungicide remained within the treated plant part, particularly after seed and foliar applications. Metalaxyl was ambimobile inside the plant and was found to get accumulated at apex and margins of leaf blade. No metalaxyl could be detected in grains, harvested from plants grown from metalaxyl treated seeds.  相似文献   

4.
 This report presents a procedure for high-frequency multiple shoot production from cultured shoot apical meristems of pearl millet [Pennisetum glaucum (L.) R. Br.]. Shoot apices from 1-week-old aseptically germinated seedlings were cultured in vitro on MS medium containing various concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and benzyladenine (BA) with biweekly subculture. A low concentration of 2,4-D coupled with four different concentrations of BA induced the production of adventitious shoots from the enlarged shoot apical meristems. Somatic embryogenesis was also observed at higher concentrations of BA. The use of higher levels of 2,4-D resulted in callusing of shoot apical meristems, while the shoot tips produced many leaves and in vitro flowering in 2,4-D-free media containing BA. All four pearl millet genotypes produced similar results. Fertile pearl millet plants were produced from in vitro-produced multiple shoots. Received: 1 April 1999 / Revision received: 8 July 1999 / Accepted: 17 August 1999  相似文献   

5.
Hypersensitive response, cell death and release of hydrogen peroxide as measures of host and non‐host defense mechanisms upon inoculation with the downy mildew pathogen Sclerospora graminicola were studied histochemically at the light microscopy level. The materials consisted of coleoptile tissues of the highly susceptible (cv. HB3), highly resistant (cv. IP18293) and induced resistant pearl millet host seedlings and non‐host sorghum (cv. SGMN10/8) and cotyledon of french bean (cv. S9). Resistance up to 80% protection against the downy mildew pathogen was induced in the highly susceptible HB3 cultivar of pearl millet by treating the seeds with 2% aqueous leaf extract of Datura metel for 3 h. Time course study with the pathogen inoculated highly resistant pearl millet cultivar revealed the appearance of hypersensitive response in 20% of seedlings as necrotic spots as early as 2 h after inoculation. In contrast, a similar reaction was observed in the highly susceptible pearl millet cultivar only 8 h after inoculation with the pathogen. In induced resistant seedlings, appearance of hypersensitive response was recorded 4 h after inoculation. Delayed hypersensitive response was observed in both the non‐host species at 10 h after inoculation. Hypersensitive response in the seedlings of the highly resistant pearl millet cultivar 24 h after inoculation showed 100% hypersensitive response, which was not observed in susceptible and non‐host species, although the induced resistant seedlings showed 90% hypersensitive response after that period of time. Cell death in the tissues of the test seedlings was also observed to change with time. Statistical analysis revealed that the tissues of highly resistant pearl millet seedlings required 2.9 h to attain 50% cell death. Tissues of induced resistant and highly susceptible pearl millet seedlings required 4.65 and 6.50 h respectively. In non‐hosts, 50% cell death was not recorded. Quantification of hydrogen peroxide in the tissue periplasmic spaces of the test seedlings revealed 2.94 h as the time required for 50% hydrogen peroxide accumulation in the tissues of highly resistant pearl millet seedlings. Tissues of induced resistant and highly susceptible pearl millet seedlings needed 3.76 and 5.5 h respectively. Fifty percent hydrogen peroxide localisation in non‐hosts could not be recorded. These results suggested the involvement of hydrogen peroxide, cell death and hypersensitive response in pearl millet host defense against S. graminicola.  相似文献   

6.
The ultrastructure, morphology, and histology of zygotic embryogenesis in pearl millet (Pennisetum glaucum) were examined using light and electron microscopic techniques. Embryogenesis was initially characterized by the presence of a vacuolated egg cell and zygote. The increased presence of Golgi bodies in the zygote suggested it was metabolically more active than the egg cell. The first zygotic division resulted in a densely cytoplasmic apical cell and a highly vacuolated basal cell. The club-shaped proembryo displayed a large amount of endoplasmic reticulum (ER) and ribosomes, very few lipids, and a continuous gradient of vacuoles from the highly vacuolated basal suspensor cells to the densely cytoplasmic apical cells. The embryo had well-defined parts by 8 days after pollination, including shoot and root meristems, coleoptile, scutellum, provascular system, and the first leaf primordium. Large increases in ER, lipids, starch, and vacuoles occurred in the scutellum during the maturation of the embryo, except in the provascular cells. Throughout zygotic embryogenesis, embryo cells were connected by plasmodesmata except where intercellular spaces occurred. Ultrastructural, morphological, and histological observations of zygotic embryogenesis in pearl millet are in agreement with previous reports for other grass species.  相似文献   

7.
Since they have a high concentrations of fermentable sugars, sweet pearl millet and sweet sorghum are two interesting crops for bioethanol production. However, if the juice is not extracted from the biomass immediately after harvest, the biomass has to be transported and stored for further juice extraction. This delay could affect the amount of juice extracted and its sugar concentration. This paper presents the results of 3 years of experiments where different storage modes (chopped and whole stalks) and various storage time (0 to 14 days) were applied on two different crop species (sweet pearl millet and sweet sorghum). Storing sweet pearl millet as whole stalks for 2 weeks resulted in a water-soluble carbohydrate (WSC) concentration decrease of 52 %, while no significant decrease of the WSC concentration was observed for sweet sorghum. Whole stalks storage is much more efficient than storing the biomass chopped to avoid a rapid sugar loss. However, more juice can be extracted from stored chopped biomass than from stored whole stalks biomass. If the juice cannot be extracted quickly after the harvest, the biomass can be stored as whole stalks to avoid rapid sugar deterioration, especially for sweet sorghum.  相似文献   

8.
Two-month-old tomato plants were submitted to day/night cycles and to prolonged darkness in order to investigate the physiological and biochemical response to sugar starvation in sink organs. Roots appeared particularly sensitive to the cessation of photosynthesis, as revealed by the reduction of the growth rate and the decline of the carbohydrate and protein content. Therefore, excised tomato roots were used as a model to deepen the characterization of sugar starvation symptoms. In excised roots, the endogenous sugars were rapidly exhausted and significant degradation of protein was observed. Glutamine and asparagine accounted for most of the nitrogen released by protein breakdown. Respiration declined and proliferation- and growth-associated genes were repressed soon after the beginning of the sugar depletion. Among the genes studied, only the gene encoding asparagine synthetase was strongly induced. All the starvation symptoms were reversible when the roots were resupplied with sugar. When the culture conditions deteriorated, the metabolic and molecular changes led to the triggering of apoptosis of the root cells.  相似文献   

9.
Our objective was to examine alterations in carbohydrate status of leaf meristems that are associated with nitrogen-induced changes in leaf elongation rates of tall fescue (Festuca arundinacea Schreb.). Dark respiration rates, concentrations of nonstructural carbohydrates, and soluble proteins were measured in leaf intercalary meristems and adjacent segments of elongating leaves. The two genotypes used differed by 43% in leaf elongation rate. Application of high nitrogen (336 kilograms per hectare) resulted in 140% higher leaf elongation rate when compared to plants receiving low nitrogen (22 kilograms per hectare). Leaf meristems of plants receiving high and low nitrogen had dark respiration rates of 5.4 and 2.9 microliters O2 consumed per milligram structural dry weight per hour, respectively. Concentrations of soluble proteins were lower while concentrations of fructan tended to be slightly higher in leaf meristems of low-nitrogen plants when compared to high-nitrogen plants. Concentrations of reducing sugars, nonreducing sugars, and takadiastase-soluble carbohydrate of leaf meristems were not affected by nitrogen treatment. Total nonstructural carbohydrates of leaf meristems averaged 44 and 39% of dry weight for low- and high-nitrogen plants, respectively. Within the leaf meristem, approximately 74 and 34% of the pool of total nonstructural carbohydrate could be consumed per day in high- and low-nitrogen plants, respectively, assuming no carbohydrate import to the meristem occurred. Plants were able to maintain high concentrations of nonstructural carbohydrates in leaf meristems despite a 3-fold range in leaf elongation rates, suggesting that carbohydrate synthesis and transport to leaf intercalary meristems may not limit leaf growth of these genotypes.  相似文献   

10.
Diurnal patterns of nonstructural carbohydrate (starch, sucrose, and hexose sugars) concentration were characterized in different parts (leaves, petioles, stems, and roots) of vegetative soybean (Glycine max [L.] Merr.) plants. Pronounced changes in all carbohydrate pools were observed in all plant parts during the normal photosynthetic period; however, starch accumulation within leaves accounted for more than 80% of the nonstructural carbohydrate accumulated by the plant during the light period. Efficiency of utilization of starch and sucrose during the normal dark period differed among organs, with leaves being most efficient in mobilizing starch reserves and roots being most efficient in utilizing sucrose reserves. The vast majority (about 85%) of the whole plant carbohydrate reserves present at the end of the photosynthetic period were utilized during the normal dark period. Sink leaf expansion ceased in plants transferred to extended darkness and the cessation in leaf expansion corresponded with carbohydrate depletion in the subtending source leaf and the remainder of the plant. Collectively, the results indicated that under the conditions employed, leaves are the whole plant's primary source of carbon at night as well as during the day.  相似文献   

11.
The physiological bases for genetic differences in leaf growth rates were examined in two genotypes of tall fescue (Festuca arundinacea Schreb.) selected for a 50% difference in leaf elongation rate. Genotypes had similar dark respiration rates and concentrations of carbohydrate fractions in the leaf meristem and in each daily growth segment above the meristem. Dark respiration rates and concentrations of nonreducing sugars, fructans, and takadiastase-soluble carbohydrates were highest in leaf intercalary meristems and declined acropetally with tissue age. Concentrations of reducing sugars were 1.0% of dry weight in leaf meristems, 3.7% of dry weight in tissue adjacent to the meristem, then decreased progressively with distance from the meristem. Glucose, fructose, and myo-inositol comprised over 90% of the monosaccharides present in leaf meristems. Soluble protein concentration was 9.7 milligrams per gram fresh weight in leaf meristems, 5.5 milligrams per gram in tissues immediately above the meristem and, thereafter, increased linearly with distance from the meristem.

Leaf meristems of the genotype exhibiting rapid leaf elongation contained 30% more soluble protein than those of the genotype selected for slow leaf elongation. The 4-fold difference in size of the leaf meristem appeared to be more important in influencing leaf elongation than were other characteristics examined.

  相似文献   

12.
Summary Ammonium acetate extractable potassium in the soil reached a minimum value of 6.8 mg K/100g soil after 14 crops of wheat and pearl millet in the field without applying any potassium fertilizer. At this level of ammonium acetate extractable K both wheat and pearl millet utilized about, 90 per cent of the total K from non-exchangeable sources. Wheat and pearl millet were grown in this soil in the greenhouse at different levels of K. At K0 level wheat utilized 86 per cent of the total K uptake from the non-exchangeable source and pearl millet, 95 per cent. At K1 level, wheat utilized only 19 per cent but at higher levels of K, there was build up in the K status of soils. In the case of pearl millet at K1, K2 and K3 levels 59, 13 and 22 per cent of total uptake were contributed by non-exchangeable forms. The total K uptake by pearl millet was more than double that by wheat. Plant analysis showed that 83 per cent of the total K in wheat was contained in the shoot portion and the rest in the roots. The corresponding figures for pearl millet were 94 and 6 per cent.  相似文献   

13.
Maize (Zea mays L.) and pearl millet (Pennisetum americanum (L.) Leeke) seedlings were exposed to [15N]nitrate for 1-h periods at eight times during a 24-h period (16–8 h light-dark for maize; 14–10 h for millet). Influx of [15N]nitrate as well as its reduction and translocation were determined during each period. The efflux of previously absorbed [14N]nitrate to the uptake solution was also estimated. No marked diurnal changes in [14N]nitrate efflux or [15N]nitrate influx were evident in maize. In contrast, [14N]nitrate efflux from millet increased and eventually exceeded [15N]nitrate influx during the late dark and early light periods, resulting in net nitrate efflux from the roots. The dissimilarity of their diurnal patterns indicates that influx and efflux are independently regulated. In both species, [15N]nitrate reduction and 15N translocation to shoots were curtailed more by darkness than was [15N]nitrate influx. In the light, maize reduced 15% and millet 24% of the incoming [15N]nitrate. In darkness, reduction dropped to 11 and 17%, respectively. Since the accumulation of reduced-15N in shoots declined abruptly in darkness, whereas that in roots was little affected, it is suggested that in darkness [15N]nitrate reduction occurred primarily in roots. The decrease in nitrate uptake and reduction in darkness was not related to efflux, which remained constant in maize and did not respond immediately to darkness in pearl millet.Paper No. 6722 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh  相似文献   

14.
Cassava (Manihot esculenta, Crantz) is an important staple crop for tropical climates worldwide, including drought-prone environments where it is valued for its reliable yield. The extent to which stress tolerance involves regulation of growth and carbon balance aided by remobilization of carbohydrate from various plant parts was investigated. Plants were grown in 1-meter high pots to permit observation of deep rooting while they were subjected to four soil water regimes over a 30-d period. Transpiration declined abruptly in conjunction with leaf ABA accumulation and severe leaf abscission. In water stressed plants, growth of all plant parts decreased substantially; however, a basal rate of leaf growth continued to provide some new leaves, and although growth of fibrous lateral roots was reduced, main root elongation to deeper regions was only modestly decreased by stress. In leaf blades and petioles, sugars were the predominant form of nonstructural carbohydrate and about one third was in starch; these reserves were depleted rapidly during stress. In contrast, stems and storage roots maintained relatively high starch concentrations and contents per organ until final harvest. Stems gradually lost starch and had sufficient reserves to serve as a prolonged source of remobilized carbohydrate during stress. The amount of starch stored in stems represented about 35 % of the reserve carbohydrate in the plant at the onset of water stress (T0), and 6 % of total plant dry mass. We suggest that this pool of carbohydrate reserves is important in sustaining meristems, growing organs, and respiring organs during a prolonged stress and providing reserves for regrowth upon resumed rainfall.  相似文献   

15.
Moesziomyces penicillariae (Brefield) Vànky is a basidiomycete fungus responsible for smut disease on pearl millet, an important staple food in the sub-Sahelian zone. We revisited the life cycle of this fungus. Unlike other Ustilaginales, mating of sporidia was never observed and monoclonal cultures of monokaryotic sporidia were infectious in the absence of mating with compatible partner. These data argued for an atypical monokaryotic diploid cell cycle of M. penicillariae, where teliospores only form solopathogenic sporidia. After inoculation of monoclonal solopathogenic strains on spikelets, the fungus infects the ovaries and induces the folding of the micropilar lips, as observed during early pollination steps. The infected embryo then becomes disorganized and the fungus invades peripheral ovary tissues before sporulating. We evaluated the systemic growth abilities of the fungus. After root inoculation, mycelium was observed around and inside the roots. As argued by transmission electron microscopy (TEM) observations and polymerase chain reaction (PCR) detection using specific primers for M. penicillariae, the fungus can grow from roots to the caulinar meristems. In spite of this systemic growth, no sori were formed on the varieties of pearl millet tested after root inoculation. All together, these data suggest that the reduced life cycle of M. penicillariaei.e. dispersal of ‘ready to infect’ solopathogenic sporidia, floral infection – is an adaptation to the aetiology of this disease to short-cycle pearl millet varieties from the sub-Sahel.  相似文献   

16.
Summary Inoculation of pearl millet (Pennisetum americanum (L.) Leeke) with Azospirillum significantly increased the numbers of this organism in the rhizosphere, rhizoplane, washed and crushed roots and surface sterilized and crushed roots. The maximum number of organisms plant–1 were localized in the rhizosphere. The numbers of Azospirillum on the roots of inoculated plants grown under sterilized conditions were much higher than in the field grown plants. In both cases populations outside the roots were higher than in the surface sterilized roots. The highest numbers per unit root weight were recorded between 60–75 days of growth. N2-ase activity throughout the growth cycle was very low and was not related to the populations of Azospirillum on the roots. Root exudates and extracts of pearl millet showed a stimulatory effect on the growth of Azospirillum suggesting their possible involvement in the colonization of this organism on the roots of inoculated plants.  相似文献   

17.
Hydroxyproline-rich glycoproteins (HRGPs) are important plant cell wall structural components, which are also involved in response to pathogen attack. In pearl millet, deposition and cross-linking of HRGPs in plant cell walls was shown to contribute to the formation of resistance barriers against the phytopathogenic oomycete Sclerospora graminicola. In the present study, the purification and characterization of HRGPs that accumulated in coleoptiles of pearl millet seedlings in response to S. graminicola inoculation has been carried out. Periodic acid Schiff's staining revealed that the purified protein was a glycoprotein. The protein to carbohydrate ratio was determined to be 95.5%:4.5% (w/w). Proline amounted for 20 mol% of the total amino acids as indicated by amino acid composition analysis. The isolated protein had a pI of 9.8 and was shown to be composed of subunits of 27, 17, and 14 kDa. Cross reactivity with the monoclonal antibody MAC 265 and the presence of the signature amino acid sequence, PVYK, strongly suggested to classify the purified glycoprotein as a member of the P/HRGPs class. In the presence of horseradish peroxidase and H2O2 the purified glycoprotein served as a substrate for oxidative cross-linking processes.  相似文献   

18.
A cycloheximide-sensitive increase in the activity of phenylalanine ammonia-lyase (EC 4.3.1.5) occurs in Xanthium leaf disks exposed to light. Radioactive ammonia-lyase has been isolated by means of sucrose density gradient centrifugation and starch gel electrophoresis from disks fed l-isoleucine-U-(14)C or l-arginine-U-(14)C. The incorporation of radioactive amino acids into phenylalanine ammonia-lyase together with the inhibitory effects of cycloheximide indicate that the observed increase in enzyme activity involves the induction of lyase synthesis.The light-dependent synthesis of the ammonia-lyase is completely inhibited by 50 mum 3-(4-chlorophenyl)-1,1-dimethylurea (CMU) indicating that photosynthesis is involved. Only a trace quantity of some photosynthetic product must be needed because half light saturation occurs at very low intensity (ca. 30 ft-c). Exogenous carbohydrate is also required for continuing enzyme synthesis over a 72 hr period. But carbohydrate does not replace the photosynthetic requirement in darkness.Enzyme formed in light disappears rapidly from disks placed in the dark. The decay of ammonia-lyase activity follows first order kinetics. The half-life of the lyase ranged from 6 to 15 hr in leaf material used. Cyoloheximide inhibits the decay of lyase activity. Thus the maintenance of turnover in Xanthium leaf disks requires de novo synthesis of protein. That turnover, i.e., degradation as well as synthesis of lyase protein occurs is suggested by the apparent loss of radioactive ammonia-lyase from leaf disks placed in darkness. Light-induced synthesis coupled with rapid turnover can produce a diurnal fluctuation of ammonia-lyase activity in Xanthium leaf disks. Alternating periods of enzyme synthesis and degradation were observed in disks exposed to 24 hr cycles of light and dark. The average level of enzyme activity maintained in the tissue was directly related to the length of the light period. Induction of lyase synthesis was also observed in excised leaves and to a lesser extent in leaves of whole plants.  相似文献   

19.
Pearl millet [ Pennisetum glaucum (L.) R. Br.] is a drought-tolerant cereal crop used for grain and forage. Novel traits from outside of the gene pool could be introduced provided a reliable gene-transfer method were available. We have obtained herbicide-resistant transgenic pearl millet plants by microprojectile bombardment of embryogenic tissues with the bar gene. Embryogenic tissues derived from immature embryos, inflorescences and apical meristems from diploid and tetraploid pearl millet genotypes were used as target tissues. Transformed cells were selected in the dark on Murashige and Skoog medium supplemented with 2 mg/l 2,4-D and 15 mg/l phosphinothricin (PPT). After 3-10 weeks in the dark, herbicide-resistant somatic embryos were induced to germinate on MS medium containing 0.1 mg/l thidiazuron and 0.1 mg/l 6-benzylaminopurine. Plants were transferred to the greenhouse after they were rooted in the presence of PPT and had passed a chlorophenol red assay (the medium turned from red to yellow). Transgenic plants were recovered from bombardments using intact pAHC25 plasmid DNA, a gel-purified bar fragment, or a mixture of pAHC25 plasmid or bar fragment and a plasmid containing the enhanced green fluorescent protein ( gfp) gene (p524EGFP.1). Analyses by the polymerase chain reaction, Southern blot hybridization, GFP expression, resistance to herbicide application, and segregation of the bar and gfp genes confirmed the presence and stable integration of the foreign DNA. Transformed plants were recovered from all three explants, although transformation conditions were optimized using only the tetraploid inflorescence. Time from culture initiation to rooted transgenic plant using the tetraploid inflorescence ranged from 3-4 months. Seven independent DNA/gold precipitations were used to bombard 52 plates, 29 of which produced an average of 5.5 herbicide-resistant plants per plate. The number of herbicide-resistant plants recovered per successful bombardment ranged from one to 28 and the frequency of co-transformation with gfp ranged from 5% to 85%.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号