首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
To study the role of T cells in T-B cell interactions resulting in isotype production, autologous purified human splenic B and T cells were cocultured in the presence of IL-2 and Con A. Under these conditions high amounts of IgM, IgG, and IgA were secreted. B cell help was provided by autologous CD4+ T cells whereas autologous CD8+ T cells were ineffective. Moreover, CD8+ T cells suppressed Ig production when added to B cells cocultured with CD4+ T cells. Autologous CD4+ T cells could be replaced by allogeneic activated TCR gamma delta,CD4+ or TCR alpha beta,CD4+ T cell clones with nonrelevant specificities, indicating that the TCR is not involved in these T-B cell interactions. In contrast, resting CD4+ T cell clones, activated CD8+, or TCR gamma delta,CD4-,CD8- T cell clones failed to induce IL-2-dependent Ig synthesis. CD4+ T-B cell interaction required cell-cell contact. Separation of the CD4+ T and B cells by semiporous membranes or replacement of the CD4+ T cells by their culture supernatants did not result in Ig synthesis. However, intact activated TCR alpha beta or TCR gamma delta,CD4+ T cell clones could be replaced by plasma membrane preparations of these cells. Ig synthesis was blocked by mAb against class II MHC and CD4. These data indicate that in addition to CD4 and class II MHC Ag a membrane-associated determinant expressed on both TCR alpha beta or TCR gamma delta,CD4+ T cells after activation is required for productive T-B cell interactions resulting in Ig synthesis. Ig production was also blocked by mAb against IL-2 and the IL-2R molecules Tac and p75 but not by anti-IL-4 or anti-IL-5 mAb. The CD4+ T cell clones and IL-2 stimulated surface IgM-IgG+ and IgM-IgA+, but not IgM+IgG- or IgM+IgA- B cells to secrete IgG and IgA, respectively, indicating that they induced a selective expansion of IgG- and IgA-committed B cells rather than isotype switching in Ig noncommitted B cells. Induction of Ig production by CD4+ T cell clones and IL-2 was modulated by other cytokines. IL-5 and transforming growth factor-beta enhanced, or blocked, respectively, the production of all isotypes in a dose-dependent fashion. Interestingly, IL-4 specifically blocked IgA production in this culture system, indicating that IL-4 inhibits only antibody production by IgA-committed B cells.  相似文献   

2.
Helper activity of several murine CD4+ T cell subsets was examined. Effector Th, derived from naive cells after 4 days of in vitro stimulation with alloantigen, when generated in the presence of IL-4, secreted high levels of IL-4, IL-5, and IL-6, and low levels of IL-2 and IFN-gamma, and induced the secretion of all Ig isotypes particularly IgM, IgG1, IgA, and IgE from resting allogeneic B cells. Effectors generated with IL-6 secreted IL-2, IL-4, IL-5, IL-6, and IFN-gamma, and induced similar levels of total Ig, 25 to 35 micrograms/ml, but with IgM, IgG3, IgG1, and IgG2a isotypes predominating. Helper activity of these Th was significantly greater than that of effectors generated with IL-2 (10-15 micrograms/ml Ig) and of 24-h-activated naive and memory cells (2-4 micrograms/ml), both of which induced mainly IgM. Unlike other isotypes, IgE was induced only by effector Th generated with IL-4. Blocking studies showed that secretion of all isotypes in response to IL-6-primed effectors was dependent on IL-2, IL-5, and IL-6. IL-4 was required for optimal IgM, IgG1, and IgA secretion, but limited secretion of IgG2a, whereas IFN-gamma was required for optimal IgG2a secretion, and limited IgM, IgG1, and IgA. In contrast, secretion of all isotypes in response to IL-4-primed effectors was dependent on IL-5, although IL-4 and IFN-gamma were also essential for IgE and IgG2a, respectively. Addition of exogenous IL-5 to B cell cultures driven by IL-6-primed effectors did not obviate the requirement for IL-2, IL-4, and IL-6, suggesting that interaction of IL-4-primed effectors with B cells was qualitatively different from that of IL-6-primed effectors, driving B cells to a stage requiring only IL-5 for differentiation. Addition of exogenous factors to IL-2-primed effector Th, particularly IL-4 in the presence of anti-IFN-gamma, resulted in levels of Ig, including IgE, comparable to those induced with other effectors. These results show that functionally distinct Th cell subsets can be generated rapidly in vitro, under the influence of distinct cytokines, which vary dramatically in their levels of help for resting B cells. The cytokines involved in responses to distinct Th cells differ depending on the quality of interaction with the B cell, and the extent of help is strongly determined by the quantity and nature of cytokines secreted by the T cells.  相似文献   

3.
In these studies we determined the capacity of IL-6 to act as a differentiation cofactor for murine Peyer's patch B cells producing different Ig classes and subclasses. In preliminary studies we determined that sufficient endogenous IL-6 was produced in LPS-induced cell systems to obscure responses to exogenous IL-6. We therefore studied IL-6 effects on Peyer's patch B cells (T cell-depleted cell populations) in the absence of LPS, relying on responses of in vivo-activated cells. rIL-1 alpha or purified IL-6 only slightly enhanced synthesis of IgM over minimal baseline levels in Peyer's patch T cell-depleted cell cultures; however, when IL-6 was added to cultures also containing rIL-1, IgM synthesis was very substantially increased. In addition, rIL-5 alone gave rise to a modest increase in IgM synthesis and its effect was not enhanced by either rIL-1 or IL-6. IgG production (mainly IgG3) followed a similar pattern. In contrast, IgA production was only modestly increased above baseline by rIL-1, rIL-5, or IL-6 alone or by rIL-1 and IL-6 in combination, but was greatly increased by rIL-5 and IL-6 in combination. The effect of IL-6 on Ig synthesis in the above studies was not due to an effect on cell proliferation. In summary, these data indicate that B cells differ in respect to the cytokines supporting maximal terminal differentiation and thus the class of Ig produced may depend on the presence of a particular combination of cytokines and lymphokines.  相似文献   

4.
Humoral immune functions in IL-4 transgenic mice   总被引:6,自引:0,他引:6  
We have analyzed mice expressing IL-4 as a transgene, and found that expression of this lymphokine has profound effects on B cell function. B cells from transgenic mice exhibit phenotypic changes, including an increase in size and elevated expression of class II MHC. IL-4 increases the quantity of IgE produced by transgenic-derived B cells in response to LPS stimulation. In vivo, IL-4 markedly affects the serum Ig isotype repertoire. Serum levels of IgG1 and IgE are elevated, and levels of IgG2a, IgG2b, and IgG3 are depressed in IL-4 transgenic mice. Ag-specific antibody responses to immunization with hapten-carrier conjugates are also affected by IL-4. Transgenic mice show increased anti-hapten IgE and IgG1 and reduced anti-hapten IgG2a, IgG2b, and IgG3, compared with wild-type mice. Ag-specific IgE is substantially induced by T cell-dependent Ag, but not T cell-independent Ag, suggesting that cognate T-B interactions in addition to IL-4 are required for generating IgE responses in vivo. In vivo treatment with the anti-IL-4 mAb 11B11 reverses many of the isotype alterations in the transgenic mice, indicating that these changes arise as a direct consequence of IL-4 secretion.  相似文献   

5.
Although cognate, MHC-restricted interaction of Th cells with Ag-presenting B cells provides effective help to a resting B cell, substantial B cell responses have also been seen with preactivated T cell clones that cannot recognize Ag on the B cell but apparently interact in a noncognate fashion (the bystander response). Here, we have investigated the ability of distinct Th cell subsets and T cells activated by different stimuli to support such bystander B cell responses. We have also determined which cytokines are involved. We generated distinct CD4+ T cell subsets specific for both alloantigen (using normal mice) and cytochrome c (using TCR transgenic mice). To compare cognate and bystander help, we analyzed the response of allogeneic (cognate) vs syngeneic (bystander) resting B cells in the former case, and the response of syngeneic B cells in the presence vs absence of Ag, in the latter case. Both approaches gave similar results. T cells stimulated with Ag for 24 h (naive and memory cells) or generated from naive cells over 4 days in the presence of exogenous IL-2 ("Th1-like" effectors) induced B cells to secrete minimal amounts of bystander Ig (20 to 700 ng/ml), less than 6% of the Ig induced under cognate conditions. In contrast, effectors generated in IL-4 or IL-6 ("Th2-like" and "Th0-like") induced significantly more bystander Ig (4 to 9 micrograms/ml), which was 18 to 30% of the amount produced during a cognate response. Restimulation of Th cell populations with anti-CD3, instead of Ag/APC, enhanced their ability to induce bystander Ig to levels 40 to 100% of those produced through cognate interaction. The addition of anti-cytokine Ab to bystander responses indicated that the cytokines utilized were similar to those mediating response after cognate interaction. Addition of exogenous cytokines did not specifically enhance the extent of the bystander response as a function of the cognate response. These results suggest that most Th cells can efficiently activate only those B cells that present relevant Ag on class II MHC, but that highly activated/differentiated Th effectors also have the ability to induce significant bystander B cell responses through noncognate interactions. We also conclude that the mode of Th cell activation and the cytokines encountered during Th differentiation play a major role in the capacity of helper cells to initiate a bystander response.  相似文献   

6.
Naive B cells can alter the effector function of their Ig molecule by isotype switching, thereby allowing them to secrete not only IgM, but also the switched isotypes IgG, IgA, and IgE. Different isotypes are elicited in response to specific pathogens. Similarly, dysregulated production of switched isotypes underlies the development of various diseases, such as autoimmunity and immunodeficiency. Thus, it is important to characterize mediators controlling isotype switching, as well as their contribution to the overall B cell response. Isotype switching in human naive B cells can be induced by CD40L together with IL-4, IL-10, IL-13, and/or TGF-beta. Recently, IL-21 was identified as a switch factor for IgG1 and IgG3. However, the effect of IL-21 on switching to IgA, as well as the interplay between IL-21 and other switch factors, remains unknown. We found that IL-4 and IL-21 individually induced CD40L-stimulated human naive B cells to undergo switching to IgG, with IL-4 predominantly inducing IgG1(+) cells and IL-21 inducing IgG3. Culture of naive B cells with CD40L and IL-21, but not IL-4, also yielded IgA(+) cells. Combining IL-4 and IL-21 had divergent effects on isotype switching. Specifically, while IL-4 and IL-21 synergistically increased the generation of IgG1(+) cells from CD40L-stimulated B cells, IL-4 concomitantly abolished IL-21-induced switching to IgA. Our findings demonstrate the dynamic interplay between IL-4 and IL-21 in regulating the production of IgG subclasses and IgA, and suggest temporal roles for these cytokines in humoral immune responses to specific pathogens.  相似文献   

7.
Cross-linkage of membrane IgD on resting murine B cells, by anti-IgD mAb conjugated to dextran (alpha delta-dex), induces high levels of proliferation, and in the presence of IL-2 or IL-5, Ig secretion in vitro. The structural and functional similarities between alpha delta-dex and TNP-Ficoll for B cell responses led us to propose that alpha delta-dex could provide a model system for studying B cell activation induced by T cell-independent, type II Ag. In this report, we study the effects of Ig class switch and differentiation factors on Ig isotype production by murine B cells activated by alpha delta-dex, and directly compare these to responses obtained after activation by LPS. We show that an IL-4-containing CD4+ T cell supernatant (Th2 SN) stimulates large increases in IgG1 and IgE production by LPS-activated B cells, but fails to stimulate detectable levels of IgE by alpha delta-dex-activated cells, despite inducing high levels of secreted IgM and IgG1. This is correlated with undetectable steady state levels of both germ-line and rearranged (productive) IgE-specific RNA in B cells stimulated with alpha delta-dex + Th2 SN. Alpha delta-dex is selective in its failure to costimulate IgE production in that IFN-gamma-containing T cell supernatant (Th1 SN) and transforming growth factor-beta-supplemented Th2 SN selectively stimulate a large IgG2a and IgA secretory response, respectively. Anti-IgD conjugated to Sepharose beads, in distinct contrast to dextran, costimulates a strong IgE response. These findings underscore the importance of the specific B cell activator, in addition to IL-4, in the regulation of IgE production.  相似文献   

8.
T regulatory-1 cells induce IgG4 production by B cells: role of IL-10   总被引:2,自引:0,他引:2  
The study was aimed to find out whether T cells with a regulatory profile could regulate the secretion of IgG4. Using tetanus Ag we found that PBMC of healthy human donors responded to exogenous IL-10 by down-regulating IgG1 and increasing IgG4 secretion. IgE was not affected. To investigate the direct effect of IL-10-producing T cells on B cells, we generated T cell clones (TCC) with two different cytokine profiles: first, IL-10high, IL-2low, IL-4low TCC, and second, IL-10low, IL-2high, IL-4high. The T cell-dependent Ab secretion was measured by coculturing purified CD19+ B cells and the TCC. Interestingly, we found that IgG4 production in the coculture correlated with the TCC production of IL-10 (r2 = 0.352, p = 0.0001), but not with IL-2, IL-4, nor IFN-gamma. IgE showed only a trend with regard to IL-4. Further, there was decreased Ab secretion in the absence of T-B cell contact. IL-10 also induced IgG4 when added to a Th1 TCC-B cell coculture system. The present study thus shows that in T-B cell coculture, IL-10, if induced by the TCC or added to the system, down-regulates the immune response by inducing IgG4 secretion. This establishes a direct implication of IL-10 in humoral hyporesponsiveness, particularly in compartments where the T-B cell interplay determines the subsequent immune response. The correlation between IgG4 and IL-10 (r2 = 0.352) indicates that IL-10 is an important but not the only factor for IgG4 induction.  相似文献   

9.
The mechanism of help for resting B cell growth in MHC-restricted T-B collaboration was investigated using an in vitro polyclonal model for these T cell-B cell interactions. In the presence of rabbit anti-mouse Ig, small, size-selected B cells elicit help from syngeneic Ia-restricted Th2 cell lines specific for F(ab')2 rabbit globulin. Both Ag-presenting and bystander B cells receive signals from stimulated Th cells that lead to B cell proliferation. The results suggest that the direct activation of resting Ag-presenting and bystander B cells by Th2 cells is mediated by a similar effector mechanism. Although proliferative responses by Ag-presenting B cells are of greater magnitude, help for both Ag-presenting and bystander B cell populations is characterized by the lack of a requirement for membrane Ig cross-linking, by identical kinetics, and by the necessity for direct cell contact or close proximity with Th cells. B cell proliferation is not induced by exposure to the sequence of diffusable mediators released from a synchronized Ag-specific T-B interaction. The T cell-dependent proliferation by both B cell populations can be inhibited by excess mitomycin C-treated syngeneic "cold target" B cells, demonstrating a requirement for a short-range T cell-B cell interaction. mAb inhibition experiments fail to identify a role for class II, LFA-1, or CD4 membrane molecules in the delivery of help to bystander B cells. Antibody against H2d bystander class II molecules has no effect on bystander B cell proliferation at concentrations that completely block Ag presentation by H2d B cells to an H2d-restricted Th cell line. Antibodies against the cell adhesion molecule LFA-1 or the Th cell molecule CD4 do inhibit bystander B cell proliferation, but only to the extent that they block T cell activation and the induction of help. The inductive stimulus leading to resting B cell growth results from an early, short-range interaction with Th cells. B cell proliferation is supported by T cell soluble mediators as a consequence of this interaction, which is required for at least 8 hr after T cell recognition of Ag/Ia on the surface of Ag-presenting B cells.  相似文献   

10.
11.
The responsiveness of polysaccharide-specific B cells to PWM was examined in vitro. Spleen cells from six patients immunized with Haemophilus influenzae type b-diphtheria toxoid, pneumococcal and meningococcal vaccines were T cell-depleted and separated by Percoll density gradient centrifugation. In each B cell fraction, spontaneous antibody production was demonstrated to capsular polysaccharides as well as diphtheria toxoid. The peak of spontaneous antibody production was demonstrated to be five to seven days after immunization. When T cells and PWM were added, the total Ig secretion increased in all B cell fractions. PWM also enhanced IgG antibody directed to each of three polysaccharide Ag measured. This enhancement was most noticeable for nonresting B cells. The PWM effect was not confined to IgG, as IgM and IgA to Neisseria meningitidis type C were measured and also enhanced. The kinetics of the PWM response demonstrated the most IgG antibody to polysaccharide Ag from spleens immunized five to seven days before splenectomy. When the patients were immunized either 2 days or 4 mo before splenectomy, no spontaneous IgG antibody to polysaccharides was detected although PWM induced small amounts of antibody. Finally, anti-IL-6 antibody blocked PWM-induced total and polysaccharide-specific antibody production. We conclude that human polysaccharide-specific B cells are responsive to PWM and IL-6. We suggest that polysaccharide B cells are not truly "T cell-independent" and may respond to T cell lymphokines and thus are similar to protein-specific B cells.  相似文献   

12.
In the present study we investigated whether interleukin-4 (IL-4), IL-5, and IL-6 could enhance the efficiency of Epstein-Barr virus (EBV) transformation for the generation of specific human monoclonal antibody (HuMAb)-producing B-cell lines directed against erythrocyte Rhesus(D) antigen. In newly EBV-infected B cells, IL-4 and IL-6 caused a comparable enhancement of proliferation and of total IgG and IgA production. IL-6 showed a much stronger effect than IL-4 on IgM production, whereas IL-4 was unique in inducing IgE production. No stimulatory effects of IL-5 on either growth or Ig production were observed. Although addition of IL-6 resulted during the early phase after EBV infection in high numbers of Ag-specific antibody-producing wells, this did not result in an increased number of stable HuMAb-secreting cell lines. When the effects of cytokines were tested on established polyclonal EBV B cells, in a high cell density culture system, only IL-6 was able to enhance Ig secretion, while no effect could be demonstrated on proliferation. These studies substantiate that IL-6 is an important regulator of proliferation and Ig production, and that it acts at distinct stages after EBV infection, but does not increase the final overall recovery of Ag-specific EBV B-cell lines.  相似文献   

13.
The effects of different recombinant human cytokines and cytokine inhibitors were compared in a culture system in which cell contact with mutant EL-4 thymoma cells of murine origin efficiently stimulates human B cell proliferation and Ig secretion in conjunction with human T cell supernatant. IL-1 alpha, IL-1 beta, TNF-alpha, and IL-2 co-stimulated B cell proliferation and IgM, IgG, and IgA secretion, whereas IL-3, IL-4, IL-5, IL-6, IFN-gamma, or GM-CSF had weak or no activity in this regard. In contrast, TGF-beta 1 was strongly inhibitory. A very strict hierarchy of cytokine interactions was found in that IL-1 was necessary to induce TNF-alpha responsiveness, and TNF-alpha the IL-2 responsiveness, of the B cells. Most likely the small number of starting B cells in the present assay (300 FACS-separated B cells/200 microliters) minimized the effects of autocrine B cell factors. IL-4 together with IL-1 induced IgE secretion, and the IgE secretion was further increased by TNF-alpha. IFN-gamma had no modulatory effect on the IL-4 dependent IgE response in this system. Pretreatment of B cells with IL-1R antagonist (IL-1ra, which binds to IL-1R) or addition of soluble TNF receptor type 1 (sTNF-R55, which binds to TNF) completely inhibited the IL-1 or TNF-alpha effects, respectively. This occurred in a specific manner; the inhibition was reversed by a large excess of cytokine. IL-1ra also inhibited a B cell response induced by PMA-preactivated EL-4 cells alone. Because B cells responding to such preactivated EL-4 cells did not acquire TNF-alpha responsiveness, no IL-1 was apparently involved under this assay condition. It appears, therefore, 1) that IL-1ra can act on B cells and 2) that this antagonist may not only block IL-1R, but may provide a direct or indirect inhibitory signal interfering even with IL-1-independent B cell activation.  相似文献   

14.
The effects of IL-4 and IL-5 on the production of Ig of different isotypes was investigated. We compared B cells from spleen and from Peyer's patches either stimulated with LPS or without added polyclonal stimulation. We also compared high density (small) and low density (large) B cells. The effect of lymphokines depended on the size and source of the B cells as well as on whether LPS was added. As expected, small B cells from either lymphoid compartment responded to LPS alone and IL-4 suppressed IgM and IgG3 production and enhanced IgG1. In contrast, when large B cells were examined, the suppressive effects of IL-4 were much less apparent but the enhancement of IgG1 was still marked. IL-5 alone had only minimal effects in LPS-stimulated cultures but the combination of IL-4 plus IL-5 appeared to overcome much of the IL-4-mediated suppression of IgM, and IgA production was enhanced. In the absence of LPS, a quite different profile is seen. First, small B cells make little if any response. Second, there is dramatic synergy between IL-4 and IL-5 in the response of large B cells, which is independent of isotype. Third, IL-4 does not suppress any isotype in the absence of LPS. Fourth, IL-4 plus IL-5 stimulate large Peyer's patch B cells to produce 10 times more IgA but three times less IgM than large spleen B cells. Fifth, Th2 cells directly stimulate both large and small B cells.  相似文献   

15.
Human recombinant IL-4 induces activated B lymphocytes to produce IgG and IgM   总被引:14,自引:0,他引:14  
In this report, we describe a novel biologic activity of IL-4 namely, its ability to induce activated human B cells to produce IgM. Staphylococcus aureus Cowan I-activated blasts prepared from high density tonsil B cells were found to secrete IgG and IgM, but no IgE, when cultured in the presence of rIL-4. The differentiating activity of rIL-4 was totally blocked by a neutralizing anti-IL-4 antiserum, therefore demonstrating that the IgG/IgM-inducing activity of rIL-4 was an intrinsic property of IL-4. rIL-4 was only minimally inducing Ig production of blasts prepared from low density B cells, whereas it induced B cell blasts prepared from high density B cells to secrete a high amount of Ig. Delayed additions of the neutralizing anti-IL-4 antiserum demonstrated that a 48-h contact between IL-4 and B cell blasts was required for optimal Ig production. The IL-4-mediated IgG and IgM production was neither suppressed by IFN-gamma nor by anti-CD23 mAb 25, whereas these agents have been shown earlier to inhibit IgE production of enriched B cells cultured in the presence of IL-4. These data indicate that the IgG/IgM-inducing activity of IL-4 is not regulated like the IL-4-induced IgE production by enriched B cells.  相似文献   

16.
IL-4-dependent IgE switch in membrane IgA-positive human B cells   总被引:6,自引:0,他引:6  
IgE responses by human B cells, separated according to membrane Ig classes, were analyzed in a clonal assay using EL-4 thymoma cells as helper cells, T cell supernatant, and rIL-4. In cultures seeded by means of the autoclone apparatus of the FACS, IgE responses were generated frequently by either IgM (mu+/gamma-alpha-) or IgA (alpha +/mu-)-positive B cells (16 and 14% of the Ig producing wells, respectively), but rarely by IgG (gamma +/mu-)-positive B cells (1.3% of Ig producing wells). The total amounts of Ig secreted by IgM-, IgG-, or IgA-positive cells and the total proportions of responding autoclone wells (23-27%) were comparable. All IgE secretion was IL-4 dependent. When the Ig secretion patterns from alpha +/mu- vs alpha +/mu-epsilon- B cells were compared, most autoclone wells from both types of cells produced IgA only, and similar proportions of IgA producing wells (6.2 and 6.0%) also secreted IgE. In addition, IgE restricted responses occurred 6 times more frequently with alpha +/mu- than with alpha +/mu-epsilon- cells, which suggests that membrane IgA+E double-positive, IgE committed B cells occur in vivo. The isotype pattern generated by alpha +/mu-epsilon- B cells cannot be explained by a chance assortment of separate IgA and IgE precursors or by cytophilic antibody. Thus, IL-4 dependent switch to IgE occurred frequently in IgM- or IgA-positive, but rarely among total IgG-positive, B cells. This could be relevant to IgE production in mucosal tissues rich in IgA expressing B cells.  相似文献   

17.
IgE induction from human cells has generally been considered to be T cell dependent and to require at least two signals: IL-4 stimulation and T cell/B cell interaction. In the present study we report a human system of T cell-independent IgE production from highly purified B cells. When human cells were co-stimulated with a mAb directed against CD40 (mAb G28-5), there was induction of IgE secretion from purified blood and tonsil B cells as well as unfractionated lymphocytes. Anti-CD40 alone failed to induce IgE from blood mononuclear cells or purified B cells. The effect of the combination of anti-CD40 and IL-4 on IgE production was very IgE isotype specific as IgG, IgM, and IgA were not increased. Furthermore, anti-CD40 with IL-5 or PWM did not co-stimulate IgG, IgM, or IgA and in fact strongly inhibited PWM-stimulated IgG, IgM and IgA production from blood or tonsil cells. IgE synthesis induced by anti-CD40 plus IL-4 was IFN-gamma independent as is the in vivo production of IgE in humans; the doses of IFN-gamma that profoundly suppressed IgG synthesis induced by IL-4, or IL-4 plus IL-6, had no inhibitory effect on anti-CD40-induced IgE production. Anti-CD23 and anti-IL-6 also could not block anti-CD40 plus IL-4-induced IgE production, but anti-IL-4 totally blocked their effect. IgE production via CD40 was not due to IL-5, IL-6 or nerve growth factor as none of these synergized with IL-4 to induce IgE synthesis by purified B cells. Finally, we observed that CD40 stimulation alone could enhance IgE production from in vivo-driven IgE-producing cells from patients with very high IgE levels; cells that did not increase IgE production in response to IL-4. Taken together, our data suggest that the signals delivered for IgE production by IL-4 and CD40 stimulation may mimic the pathway for IgE production seen in vivo in human allergic disease.  相似文献   

18.
B cells spontaneously process their endogenous Ig and present V region peptides on their MHC class II molecules. We have here investigated whether B cells collaborate with V region-specific CD4+ T cells in vivo. By use of paired Ig L chain-transgenic and TCR-transgenic mice and cell transfer into normal hosts, we demonstrate that B cell presentation of a V(L) region peptide to CD4+ T cells results in germinal centers, plasma cells, and Ab secretion. Because the transgenic B cells have a fixed L chain but polyclonal H chains, their B cell receptor (BCR) repertoire is diverse and may bind a multitude of ligands. In a hapten-based system, BCR ligation concomitant with V region-driven T-B collaboration induced germinal center formation and an IgM --> IgG isotype switch. In the absence of BCR ligation, mainly IgM was produced. Consistent with this, prolonged V region-driven T-B collaboration resulted in high titers of IgG autoantibodies against ubiquitous self-Ags, while natural-type Abs against exotic bacteria remained IgM. Taken together, V region-driven T-B collaboration may explain induction of natural IgM Abs (absence of BCR ligation) and IgG autoantibodies (BCR ligation by autoantigen) and may be involved in the development of autoimmunity.  相似文献   

19.
Recombinant, truncated CD4 molecule (rT4) binds IgG   总被引:2,自引:0,他引:2  
CD4 is a cell surface glycoprotein that identifies the subset of human T lymphocytes that induces sIg+ B lymphocytes to differentiate and secrete Ig after intimate T-B cell contact. In the course of studying a recombinant, truncated form of CD4 (rT4) we noticed that goat antibodies of apparently irrelevant specificities bound to immobilized rT4. To directly study whether rT4 interacts with Ig molecules, purified human IgG was added to rT4-coated wells and a dose-dependent interaction between IgG and rT4 was observed by ELISA. Purified myeloma IgG proteins bound to immobilized rT4 with the same avidity as polyclonal IgG that suggests that rT4-IgG binding was not due to the presence of anti-rT4 antibodies in the IgG fraction. IgG from 6 sera bound to rT4 in concentration dependent manner similar to purified IgG. Immobilized rT4 specifically bound IgG, and not IgM, IgA, IgD, or beta 2-microglobulin. The specific interaction of rT4 and IgG was also observed when IgG or IgM were immobilized, demonstrating that IgG binding was not a unique property of immobilized rT4. As with low affinity receptors for IgG, rT4 bound heat aggregated IgG with increased avidity. Neither anti-CD4 mAb nor dextran sulfate inhibited rT4-IgG binding. rT4 bound Fc but not F(ab)2 fragments. Each of the purified IgG subclasses; IgG1, 2, 3, and 4 bound to rT4 with similar avidity. Taken together, these data suggest that rT4 specifically interacts with a public structure on IgG Fc.  相似文献   

20.
A murine model of IgA deficiency has been established by targeted deletion of the IgA switch and constant regions in embryonic stem cells. B cells from IgA-deficient mice were incapable of producing IgA in vitro in response to TGF-beta. IgA-deficient mice expressed higher levels of IgM and IgG in serum and gastrointestinal secretions and decreased levels of IgE in serum and pulmonary secretions. Expression of IgG subclasses was complex, with the most consistent finding being an increase in IgG2b and a decrease in IgG3 in serum and secretions. No detectable IgA Abs were observed following mucosal immunization against influenza; however, compared with those in wild-type mice, increased levels of IgM Abs were seen in both serum and secretions. Development of lymphoid tissues as well as T and B lymphocyte function appeared normal otherwise. Peyer's patches in IgA-deficient mice were well developed with prominent germinal centers despite the absence of IgA in these germinal centers or intestinal lamina propria. Lymphocytes from IgA-deficient mice responded to T and B cell mitogens comparable to those of wild-type mice, while T cells from IgA-deficient mice produced comparable levels of IFN-gamma and IL-4 mRNA and protein. In conclusion, mice with targeted deletion of the IgA switch and constant regions are completely deficient in IgA and exhibit altered expression of other Ig isotypes, notably IgM, IgG2b, IgG3, and IgE, but otherwise have normal lymphocyte development, proliferative responses, and cytokine production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号