首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Duchenne and Becker muscular dystrophy severity depends upon the nature and location of the DMD gene lesion and generally correlates with the dystrophin open reading frame. However, there are striking exceptions where an in-frame genomic deletion leads to severe pathology or protein-truncating mutations (nonsense or frame-shifting indels) manifest as mild disease. Exceptions to the dystrophin reading frame rule are usually resolved after molecular diagnosis on muscle RNA. We report a moderate/severe Becker muscular dystrophy patient with an in-frame genomic deletion of DMD exon 5. This mutation has been reported by others as resulting in Duchenne or Intermediate muscular dystrophy, and the loss of this in-frame exon in one patient led to multiple splicing events, including omission of exon 6, that disrupts the open reading frame and is consistent with a severe phenotype. The patient described has a deletion of dystrophin exon 5 that does not compromise recognition of exon 6, and although the deletion does not disrupt the reading frame, his clinical presentation is more severe than would be expected for classical Becker muscular dystrophy. We suggest that the dystrophin isoform lacking the actin-binding sequence encoded by exon 5 is compromised, reflected by the phenotype resulting from induction of this dystrophin isoform in mouse muscle in vivo. Hence, exon skipping to address DMD-causing mutations within DMD exon 5 may not yield an isoform that confers marked clinical benefit. Additional studies will be required to determine whether multi-exon skipping strategies could yield more functional dystrophin isoforms, since some BMD patients with larger in-frame deletions in this region have been reported with mild phenotypes.  相似文献   

2.
3.
4.
Duchenne muscular dystrophy (DMD) patients with mutations that disrupt the translational reading frame produce little or no dystrophin. Two exceptions are the deletion of exons 3-7 and the occurrence of rare dystrophin-positive fibers (revertant fibers) in muscle of DMD patients. Antibodies directed against the amino-terminus and the 5' end of exon 8 did not detect dystrophin in muscle from patients who have a deletion of exons 3-7. However, in all cases, dystrophin was detected with an antibody directed against the 3' end of exon 8. The most likely method of dystrophin production in these cases is initiation at a new start codon in exon 8. We also studied two patients who have revertant fibers: one had an inherited duplication of exons 5-7, which, on immunostaining, showed two types of revertant fibers; and the second patient had a 2-bp nonsense mutation in exon 51, which creates a cryptic splice site. An in-frame mRNA that uses this splice site in exon 51 was detected. Immunostaining demonstrated the presence of the 3' end of exon 51, which is in agreement with the use of this mRNA in revertant fibers. The most likely method of dystrophin production in these fibers is a second mutation that restores the reading frame.  相似文献   

5.
Production of semi-functional dystrophin mRNA from the dystrophin gene encoding a premature stop codon has been shown to modify the severe phenotype of Duchenne muscular dystrophy (DMD). In this study, we report the tissue-specific production of semi-functional dystrophin mRNA via activation of a nonsense mutation-created intraexonic splice acceptor site. In a DMD patient a novel nonsense mutation was identified in exon 42. In his lymphocytes semi-functional dystrophin mRNA with a 63-nucleotide deletion in exon 42 (dys-63) was found to be produced. In vitro splicing assay using hybrid minigenes disclosed that the mutation-created intraexonic splice acceptor site was activated. In his skeletal muscle cells, however, only the authentically spliced dystrophin mRNA was found. This finding identifies the modulation of the splicing of muscle dystrophin mRNA in cases of DMD as a potential target for therapeutic strategies to generate a milder phenotype for this disease.  相似文献   

6.
About 60% of both Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) is due to deletions of the dystrophin gene. For cases with a deletion mutation, the "reading frame" hypothesis predicts that BMD patients produce a semifunctional, internally deleted dystrophin protein, whereas DMD patients produce a severely truncated protein that would be unstable. To test the validity of this theory, we analyzed 258 independent deletions at the DMD/BMD locus. The correlation between phenotype and type of deletion mutation is in agreement with the "reading frame" theory in 92% of cases and is of diagnostic and prognostic significance. The distribution and frequency of deletions spanning the entire locus suggests that many "in-frame" deletions of the dystrophin gene are not detected because the individuals bearing them are either asymptomatic or exhibit non-DMD/non-BMD clinical features.  相似文献   

7.
Duchenne muscular dystrophy (DMD) is a hereditary disease caused by mutations that disrupt the dystrophin mRNA reading frame. In some cases, forced exclusion (skipping) of a single exon can restore the reading frame, giving rise to a shorter, but still functional, protein. In this study, we constructed lentiviral vectors expressing antisense oligonucleotides in order to induce an efficient exon skipping and to correct the initial frameshift caused by the DMD deletion of CD133+ stem cells. The intramuscular and intra-arterial delivery of genetically corrected CD133 expressing myogenic progenitors isolated from the blood and muscle of DMD patients results in a significant recovery of muscle morphology, function, and dystrophin expression in scid/mdx mice. These data demonstrate that autologous engrafting of blood or muscle-derived CD133+ cells, previously genetically modified to reexpress a functional dystrophin, represents a promising approach for DMD.  相似文献   

8.
The most frequent causes for the X-linked muscular dystrophy of the allelic Duchenne (DMD) or Becker (BMD) type are partial deletions of the dystrophin gene. These mutations are accompanied either by disrupted or by preserved translational reading frames in mRNAs derived from the deleted genes. As a rule, the reading frame is destroyed in the more severe DMD, whereas it is preserved in the less severe BMD (M. Koenig et al., 1989, Am. J. Hum. Genet. 45, 498-506). We have analyzed in detail a deletion that was detected in a fetus at risk of DMD. The analysis of this mutation included the delineation of the altered subregion in the dystrophin mRNA. mRNA was isolated from myotubes derived from embryonic DMD myoblasts propagated in vitro. This study was based on enzymatic amplification by the polymerase chain reaction (PCR) of dystrophin mRNA and direct sequencing of the amplified cDNA. Exons 47 to 50 were found to be missing in the mRNA. The splicing of exon 46 to exon 51 resulted in a reading frameshift, indicating that this mutation is likely to be responsible for a DMD type of dystrophy. The clinical diagnosis of DMD for a 10-year-old patient in this family was compatible with the "reading frame" assumption.  相似文献   

9.
Partial gene deletion is the major type of mutation leading to Duchenne muscular dystrophy (DMD) and its mild allelic form, Becker muscular dystrophy (BMD). Amplification of the genomic DNAs of 152 unrelated dystrophin patients using multiple primers detected 78 (51.3%) probands with deletion mutations. We predicted the translational reading frame for all the deletions in Egyptian dystrophin males. The frameshift rule was confirmed positively ranging for 50 to 67% of the cases depending on the type of disease. We discuss ways of accounting for some exceptions from the frameshift hypothesis in the central and proximal regions. These explanations may help in developing procedures for reducing the severity of dystrophin phenotypes to restore the correct frame by disrupting the translational fidelity. Great efforts have been put into the development of effective 'gene correction' procedures via such intrinsic mechanisms. In addition, we mapped regional difference in deletion mutation frequencies within the DMD gene locus between the different Egyptian governorates. There were no double deletions in the Egyptian dystrophin males.  相似文献   

10.
11.
Dystrophin deficiency, which leads to severe and progressive muscle degeneration in patients with Duchenne muscular dystrophy (DMD), is caused by frameshifting mutations in the dystrophin gene. A relatively new therapeutic strategy is based on antisense oligonucleotides (AONs) that induce the specific skipping of a single exon, such that the reading frame is restored. This allows the synthesis of a largely functional dystrophin, associated with a milder Becker muscular dystrophy phenotype. We have previously successfully targeted 20 different DMD exons that would, theoretically, be beneficial for >75% of all patients. To further enlarge this proportion, we here studied the feasibility of double and multiexon skipping. Using a combination of AONs, double skipping of exon 43 and 44 was induced, and dystrophin synthesis was restored in myotubes from one patient affected by a nonsense mutation in exon 43. For another patient, with an exon 46-50 deletion, the therapeutic double skipping of exon 45 and 51 was achieved. Remarkably, in control myotubes, the latter combination of AONs caused the skipping of the entire stretch of exons from 45 through 51. This in-frame multiexon skipping would be therapeutic for a series of patients carrying different DMD-causing mutations. In fact, we here demonstrate its feasibility in myotubes from a patient with an exon 48-50 deletion. The application of multiexon skipping may provide a more uniform methodology for a larger group of patients with DMD.  相似文献   

12.
13.
Golden retriever muscular dystrophy (GRMD) is a spontaneous, X-linked, progressively fatal disease of dogs and is also a homologue of Duchenne muscular dystrophy (DMD). Two-thirds of DMD patients carry detectable deletions in their dystrophin gene. The defect underlying the remaining one-third of DMD patients is undetermined. Analysis of the canine dystrophin gene in normal and GRMD dogs has failed to demonstrate any detectable loss of exons. Here, we have demonstrated a RNA processing error in GRMD that results from a single base change in the 3' consensus splice site of intron 6. The seventh exon is then skipped, which predicts a termination of the dystrophin reading frame within its N-terminal domain in exon 8. This is the first example of dystrophin deficiency caused by a splice-site mutation.  相似文献   

14.
Duchenne and Becker muscular dystrophies (DMD and BMD) are two allelic recessive X-linked disorders. Molecular deletions of various regions of the dystrophin gene are the main mutations detected in DMD and BMD patients. Molecular study of DMD and BMD DNA are instrumental to understand the pathological molecular mechanisms and the function of the protein. We describe here dystrophin and its interaction with a glycoprotein complex and we then focus on two particular patients with partial deletions of the dystrophin gene: 1) a typical Becker patient, who shows an intragenic deletion disrupting the reading frame. We describe in this case alternative splicings restoring the reading frame, which might explain the mild clinical phenotype of this patient, 2) a deletion of the distal part of the DMD gene coding for the carboxyterminal domain of the dystrophin in a young patient. The normal localization of dystrophin at the inner face of the plasma membrane in the muscle of this patient suggests that the last domain of this protein is not sufficient to anchor dystrophin at the membrane.  相似文献   

15.
More than 98% of Duchenne muscular dystrophy (DMD) mutations result in the premature termination of the dystrophin open reading frame at various points over its 11-kb length. Despite this wide variation in coding potential (0%-98.6% of the full-length protein), the truncating mutations are associated with a surprisingly uniform severity of phenotype. This uniformity is probably attributable to ablation of the message by nonsense-mediated decay (NMD). The rare truncating mutations that occur near the 3' end of the dystrophin gene (beyond exon 70) can however result in extremely variable phenotypes (both intra- and inter-familially). We suggest that all proteins encoded by such mutant genes are capable in principle of rescuing the DMD phenotype but that NMD abrogates the opportunity to effect this rescue. The observed variability may therefore reflect an underlying variation in the efficiency of NMD between individuals. We discuss this hypothesis with particular reference to a well-characterised Becker muscular dystrophy patient with a frameshift mutation, where expression of a truncated dystrophin rescues the muscular but not mental phenotype.  相似文献   

16.
DNA samples from nine previously reported patients with X-linked recessive glycerol kinase deficiency, associated in seven of them with adrenal hypoplasia and in five with developmental delay and myopathy, have been studied for deletions of the Duchenne/Becker muscular dystrophy gene by probing with the entire cDNA for the dystrophin protein. All five patients with myopathy, including two in whom no deletions had been detected before, were found to have variable-sized deletions extending through the 3' end of this gene. The 5' deletion breakpoints are intragenic in four cases and have been mapped precisely on the exon-containing HindIII fragment map. A correlation was found between severity and progression of the muscular dystrophy phenotype and the sizes of the gene deletions. In cases in which there was glycerol kinase deficiency/adrenal hypoplasia microdeletion syndrome without myopathy, no deletions were found with the dystrophin cDNA.  相似文献   

17.

Background

Antisense oligonucleotide-induced exon skipping is a promising approach for treatment of Duchenne muscular dystrophy (DMD). We have systemically administered an antisense phosphorodiamidate morpholino oligomer (PMO) targeting dystrophin exons 6 and 8 to a dog with canine X-linked muscular dystrophy in Japan (CXMDJ) lacking exon 7 and achieved recovery of dystrophin in skeletal muscle. To date, however, antisense chemical compounds used in DMD animal models have not been directly applied to a DMD patient having the same type of exon deletion. We recently identified a DMD patient with an exon 7 deletion and tried direct translation of the antisense PMO used in dog models to the DMD patient''s cells.

Methodology/Principal Findings

We converted fibroblasts of CXMDJ and the DMD patient to myotubes by FACS-aided MyoD transduction. Antisense PMOs targeting identical regions of dog and human dystrophin exons 6 and 8 were designed. These antisense PMOs were mixed and administered as a cocktail to either dog or human cells in vitro. In the CXMDJ and human DMD cells, we observed a similar efficacy of skipping of exons 6 and 8 and a similar extent of dystrophin protein recovery. The accompanying skipping of exon 9, which did not alter the reading frame, was different between cells of these two species.

Conclusion/Significance

Antisense PMOs, the effectiveness of which has been demonstrated in a dog model, achieved multi-exon skipping of dystrophin gene on the FACS-aided MyoD-transduced fibroblasts from an exon 7-deleted DMD patient, suggesting the feasibility of systemic multi-exon skipping in humans.  相似文献   

18.
In the material of 227 families with Becker muscular dystrophy (BMD), we found nine non-consanguineous families with 17 male individuals carrying a rare mutation—a single exon 48 deletion of the dystrophin gene—who were affected with a very mild or subclinical form of BMD. They were usually detected thanks to accidental findings of elevated serum creatine phosphokinase (sCPK). A thorough clinical analysis of the carriers, both children (12) and adults (5), revealed in some of them muscle hypotonia (10/17) and/or very mild muscle weakness (9/17), as well as decreased tendon reflexes (6/17). Adults, apart from very mild muscle weakness and calf hypertrophy in some, had no significant abnormalities on neurological assessments and had good exercise tolerance. Parents of the children carriers of the exon 48 deletion are usually unaware of their children being affected, and possibly at risk of developing life-threatening cardiomyopathy. The same concerns the adult male carriers. Therefore, the authors postulate undertaking preventive measures such as cascade screening of the relatives of the probands. Newborn screening programmes of Duchenne muscular dystrophy (DMD)/BMD based on sCPK marked increase may be considered.  相似文献   

19.
A Duchenne muscular dystrophy patient who displayed near-normal dystrophin staining at the sarcolemma with N-terminal, but not with C-terminal, anti-dystrophin monoclonal antibodies was found to have a frameshift deletion of exons 42 and 43. This deletion introduces an early termination codon, and a 225-kD protein was detected by western blotting with N-terminal antibodies only. The results suggest that an N-terminal truncated dystrophin fragment encoded by exon 1-41 is able to associate with the muscle cell membrane. The current idea that the C-terminal domains of dystrophin are important or essential for its integration with the sarcolemma may have to be reexamined in the light of these observations.  相似文献   

20.
Antisense-mediated modulation of splicing is one of the few fields where antisense oligonucleotides (AONs) have been able to live up to their expectations. In this approach, AONs are implemented to restore cryptic splicing, to change levels of alternatively spliced genes, or, in case of Duchenne muscular dystrophy (DMD), to skip an exon in order to restore a disrupted reading frame. The latter allows the generation of internally deleted, but largely functional, dystrophin proteins and would convert a severe DMD into a milder Becker muscular dystrophy phenotype. In fact, exon skipping is currently one of the most promising therapeutic tools for DMD, and a successful first-in-man trial has recently been completed. In this review the applicability of exon skipping for DMD and other diseases is described. For DMD AONs have been designed for numerous exons, which has given us insight into their mode of action, splicing in general, and splicing of the DMD gene in particular. In addition, retrospective analysis resulted in guidelines for AON design for DMD and most likely other genes as well. This knowledge allows us to optimize therapeutic exon skipping, but also opens up a range of other applications for the exon skipping approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号