首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Ray PS  Das S 《Nucleic acids research》2004,32(5):1678-1687
Translation of the hepatitis C virus (HCV) RNA is mediated by the interaction of ribosomes and cellular proteins with an internal ribosome entry site (IRES) located within the 5′-untranslated region (5′-UTR). We have investigated whether small RNA molecules corresponding to the different stem–loop (SL) domains of the HCV IRES, when introduced in trans, can bind to the cellular proteins and antagonize their binding to the viral IRES, thereby inhibiting HCV IRES-mediated translation. We have found that a RNA molecule corresponding to SL III could efficiently inhibit HCV IRES-mediated translation in a dose-dependent manner without affecting cap-dependent translation. The SL III RNA was found to bind to most of the cellular proteins which interacted with the HCV 5′-UTR. A smaller RNA corresponding to SL e+f of domain III also strongly and selectively inhibited HCV IRES-mediated translation. This RNA molecule interacted with the ribosomal S5 protein and prevented the recruitment of the 40S ribosomal subunit. This study reveals valuable insights into the role of the SL structures of the HCV IRES in mediating ribosome entry. Finally, these results provide a basis for developing anti-HCV therapy using small RNA molecules mimicking the SL structures of the 5′-UTR to specifically block viral RNA translation.  相似文献   

2.
Structural integrity of the hepatitus C virus (HCV) 5′ UTR region that includes the internal ribosome entry site (IRES) element is known to be essential for efficient protein synthesis. The functional explanation for this observation has been provided by the recent evidence that binding of several cellular factors to the HCV IRES is dependent on the conservation of its secondary structure. In order to better define the relationship between IRES activity, protein binding and RNA folding of the HCV IRES, we have focused our attention on its major stem–loop region (domain III) and the binding of several cellular factors: two subunits of eukaryotic initiation factor eIF3 and ribosomal protein S9. Our results show that binding of eIF3 p170 and p116/p110 subunits is dependent on the ability of the domain III apical stem–loop region to fold in the correct secondary structure whilst secondary structure of hairpin IIId is important for the binding of S9 ribosomal protein. In addition, we show that binding of S9 ribosomal protein also depends on the disposition of domain III on the HCV 5′ UTR, indicating the presence of necessary interdomain interactions required for the binding of this protein (thus providing the first direct evidence that tertiary folding of the HCV RNA does affect protein binding).  相似文献   

3.
The key step in bacterial translation is formation of the pre-initiation complex. This requires initial contacts between mRNA, fMet-tRNA and the 30S subunit of the ribosome, steps that limit the initiation of translation. Here we report a method for improving translational initiation, which allows expression of several previously non-expressible genes. This method has potential applications in heterologous protein synthesis and high-throughput expression systems. We introduced a synthetic RNA stem–loop (stem length, 7 bp; ΔG0 = –9.9 kcal/mol) in front of various gene sequences. In each case, the stem–loop was inserted 15 nt downstream from the start codon. Insertion of the stem–loop allowed in vitro expression of five previously non-expressible genes and enhanced the expression of all other genes investigated. Analysis of the RNA structure proved that the stem–loop was formed in vitro, and demonstrated that stabilization of the ribosome binding site is due to stem–loop introduction. By theoretical RNA structure analysis we showed that the inserted RNA stem–loop suppresses long-range interactions between the translation initiation domain and gene-specific mRNA sequences. Thus the inserted RNA stem–loop supports the formation of a separate translational initiation domain, which is more accessible to ribosome binding.  相似文献   

4.
The cricket paralysis virus intergenic region internal ribosomal entry site (CrPV IGR IRES) can assemble translation initiation complexes by binding to 40S subunits without Met-tRNA(Met)(i) and initiation factors (eIFs) and then by joining directly with 60S subunits, yielding elongation-competent 80S ribosomes. Here, we report that eIF1, eIF1A and eIF3 do not significantly influence IRES/40S subunit binding but strongly inhibit subunit joining and the first elongation cycle. The IRES can avoid their inhibitory effect by its ability to bind directly to 80S ribosomes. The IRES's ability to bind to 40S subunits simultaneously with eIF1 allowed us to use directed hydroxyl radical cleavage to map its position relative to the known position of eIF1. A connecting loop in the IRES's pseudoknot (PK) III domain, part of PK II and the entire domain containing PK I are solvent-exposed and occupy the E site and regions of the P site that are usually occupied by Met-tRNA(Met)(i).  相似文献   

5.
Initiation of translation of the hepatitis C virus (HCV) polyprotein is driven by an internal ribosome entry site (IRES) RNA that bypasses much of the eukaryotic translation initiation machinery. Here, single-particle electron cryomicroscopy has been used to study the mechanism of HCV IRES-mediated initiation. A HeLa in vitro translation system was used to assemble human IRES-80S ribosome complexes under near physiological conditions; these were stalled before elongation. Domain 2 of the HCV IRES is bound to the tRNA exit site, touching the L1 stalk of the 60S subunit, suggesting a mechanism for the removal of the HCV IRES in the progression to elongation. Domain 3 of the HCV IRES positions the initiation codon in the ribosomal mRNA binding cleft by binding helix 28 at the head of the 40S subunit. The comparison with the previously published binary 40S-HCV IRES complex reveals structural rearrangements in the two pseudoknot structures of the HCV IRES in translation initiation.  相似文献   

6.
Hepatitis C virus (HCV) uses a structured internal ribosome entry site (IRES) RNA to recruit the translation machinery to the viral RNA and begin protein synthesis without the ribosomal scanning process required for canonical translation initiation. Different IRES structural domains are used in this process, which begins with direct binding of the 40S ribosomal subunit to the IRES RNA and involves specific manipulation of the translational machinery. We have found that upon initial 40S subunit binding, the stem–loop domain of the IRES that contains the start codon unwinds and adopts a stable configuration within the subunit''s decoding groove. This configuration depends on the sequence and structure of a different stem–loop domain (domain IIb) located far from the start codon in sequence, but spatially proximal in the IRES•40S complex. Mutation of domain IIb results in misconfiguration of the HCV RNA in the decoding groove that includes changes in the placement of the AUG start codon, and a substantial decrease in the ability of the IRES to initiate translation. Our results show that two distal regions of the IRES are structurally communicating at the initial step of 40S subunit binding and suggest that this is an important step in driving protein synthesis.  相似文献   

7.
The internal ribosome entry site (IRES) of hepatitis C virus (HCV) RNA contains >300 bases of highly conserved 5′-terminal sequence, most of it in the uncapped 5′-untranslated region (5′-UTR) upstream from the single AUG initiator triplet at which translation of the HCV polyprotein begins. Although progress has been made in defining singularities like the RNA pseudoknot near this AUG, the sequence and structural features of the HCV IRES which stimulate accurate and efficient initiation of protein synthesis are only partially defined. Here we report that a region further upstream from the AUG, stem–loop II of the HCV IRES, also contains an element of local tertiary structure which we have detected using RNase H cleavage and have mapped using the singular ability of two bases therein to undergo covalent intra-chain crosslinking stimulated by UV light. This pre-existing element maps to two non-contiguous stretches of the HCV IRES sequence, residues 53–68 and 103–117. Several earlier studies have shown that the correct sequence between bases 45 and 70 of the HCV IRES stem–loop II domain is required for initiation of protein synthesis. Because features of local tertiary structure like the one we report here are often associated with protein binding, we propose that the HCV stem–loop II element is directly involved in IRES action.  相似文献   

8.
Eukaryotic ribosomes directly bind to the intergenic region-internal ribosome entry site (IGR-IRES) of Plautia stali intestine virus (PSIV) and initiate translation without either initiation factors or initiator Met-tRNA. We have investigated the mode of binding of the first aminoacyl-tRNA in translation initiation mediated by the IGR-IRES. Binding ability of aminoacyl-tRNA to the first codon within the IGR-IRES/80 S ribosome complex was very low in the presence of eukaryotic elongation factor 1A (eEF1A) alone but markedly enhanced by the translocase eEF2. Moreover, eEF2-dependent GTPase activity of the IRES/80 S ribosome complex was 3-fold higher than that of the free 80 S ribosome. This activation was suppressed by addition of the antibiotics pactamycin and hygromycin B, which are inhibitors of translocation. The results suggest that translocation by the action of eEF2 is essential for stable tRNA binding to the first codon of the PSIV-IRES in the ribosome. Chemical probing analysis showed that IRES binding causes a conformational change in helix 18 of 18 S rRNA at the A site such that IRES destabilizes the conserved pseudoknot within the helix. This conformational change caused by the PSIV-IRES may be responsible for the activation of eEF2 action and stimulation of the first tRNA binding to the P site without initiation factors.  相似文献   

9.
The cricket paralysis virus (CrPV), a member of the CrPV-like virus family, contains a single positive-stranded RNA genome that encodes two non-overlapping open reading frames separated by a short intergenic region (IGR). The CrPV IGR contains an internal ribosomal entry site (IRES) that directs the expression of structural proteins. Unlike previously described IRESs, the IGR IRES initiates translation by recruiting 80S ribosomes in the absence of initiator Met-tRNA(i) or any canonical initiation factors, from a GCU alanine codon located in the A-site of the ribosome. Here, we have shown that a variety of mutations, designed to disrupt individually three pseudoknot (PK) structures and alter highly conserved nucleotides among the CrPV-like viruses, inhibit IGR IRES-mediated translation. By separating the steps of translational initiation into ribosomal recruitment, ribosomal positioning and ribosomal translocation, we found that the mutated IRES elements could be grouped into two classes. One class, represented by mutations in PKII and PKIII, bound 40S subunits with significantly reduced affinity, suggesting that PKIII and PKII are involved in the initial recruitment of the ribosome. A second class of mutations, exemplified by alterations in PKI, did not affect 40S binding but altered the positioning of the ribosome on the IRES, indicating that PKI is involved in the correct positioning of IRES-associated ribosomes. These results suggest that the IGR IRES has distinct pseudoknot-like structures that make multiple contacts with the ribosome resulting in initiation factor-independent recruitment and correct positioning of the ribosome on the mRNA.  相似文献   

10.
AUG-unrelated translation initiation was found in an insect picorna-like virus, Plautia stali intestine virus (PSIV). The positive-strand RNA genome of the virus contains two nonoverlapping open reading frames (ORFs). The capsid protein gene is located in the 3′-proximal ORF and lacks an AUG initiation codon. We examined the translation mechanism and the initiation codon of the capsid protein gene by using various dicistronic and monocistronic RNAs in vitro. The capsid protein gene was translated cap independently in the presence of the upstream cistron, indicating that the gene is translated by internal ribosome entry. Deletion analysis showed that the internal ribosome entry site (IRES) consisted of approximately 250 bases and that its 3′ boundary extended slightly into the capsid-coding region. The initiation codon for the IRES-mediated translation was identified as the CUU codon, which is located just upstream of the 5′ terminus of the capsid-coding region by site-directed mutagenesis. In vitro translation assays of monocistronic RNAs lacking the 5′ part of the IRES showed that this CUU codon was not recognized by scanning ribosomes. This suggests that the PSIV IRES can effectively direct translation initiation without stable codon-anticodon pairing between the initiation codon and the initiator methionyl-tRNA.  相似文献   

11.
Ribosomal protein p40 is a structural component of the eukaryotic 40S ribosomal subunit, is partly homologous to prokaryotic ribosomal protein S2, and has a long eukaryote-specific C-terminal region. The internal ribosome entry site (IRES) of the hepatitis C virus (HCV) RNA was tested for the binding to 40S ribosomal subunits deficient in p40, saturated with recombinant p40, or pretreated with monoclonal antibody (MAB) 4F6 against p40. The apparent association constant of HCV IRES binding to 40S subunits was shown to directly depend on the p40 content in the subunits. MAB 4F6 prevented HCV IRES binding to 40S subunits and blocked translation of IRES-containing RNA in a cell-free translation system. The results implicate p40 in the binding of the HCV IRES to the ribosome and, therefore, in translation initiation on HCV RNA.  相似文献   

12.
The internal ribosome entry site (IRES) of the hepatitis C virus (HCV) RNA is known to interact with the 40S ribosomal subunit alone, in the absence of any additional initiation factors or Met-tRNAi. Previous work from this laboratory on the 80S and 48S ribosomal initiation complexes involving the HCV IRES showed that stem-loop III, the pseudoknot domain, and some coding sequence were protected from pancreatic RNase digestion. Stem-loop II is never protected by these complexes. Furthermore, there is no prior evidence reported showing extensive direct binding of stem-loop II to ribosomes or subunits. Using direct analysis of RNase-protected HCV IRES domains bound to 40S ribosomal subunits, we have determined that stem-loops II and III and the pseudoknot of the HCV IRES are involved in this initial binding step. The start AUG codon is only minimally protected. The HCV-40S subunit binary complex thus involves recognition and binding of stem-loop II, revealing its role in the first step of a multistep initiation process that may also involve rearrangement of the bound IRES RNA as it progresses.  相似文献   

13.
The internal ribosome entry site within the intergenic region (IGR IRES) of the Dicistroviridae family mimics a tRNA to directly assemble 80 S ribosomes and initiate translation at a non-AUG codon from the ribosomal A-site. A comparison of IGR IRESs within this viral family reveals structural similarity but little sequence similarity. However, a few specific conserved elements exist, which likely have important roles in IRES function. In this study, we have generated a battery of mutations to characterize the role of a conserved loop (L1.1) region of the IGR IRES. Mutating specific nucleotides within the L1.1 region inhibited IGR IRES-mediated translation in rabbit reticulocyte lysates. By assaying different steps in IRES function, we found that the mutant L1.1 IRESs had reduced affinity for 80 S ribosomes but not 40 S subunits, indicating that the L1.1 region mediated either binding to preformed 80 S or 60 S joining. Furthermore, mutations in L1.1 altered the position of the ribosome on the mutant IRES, indicating that the tRNA-like anticodon/codon mimic within the ribosomal P-site is disrupted. Structural studies have revealed that the L1.1 region interacts with the L1 stalk of the 60 S subunit, which is similar to the interactions between the T-loop of the E-site tRNA and ribosomal protein rpL1. Our results demonstrate that the conserved L1.1 region directs multiple steps in IGR IRES-mediated translation including ribosome binding and positioning, which are functions that the E-site tRNA may normally mediate during translation.  相似文献   

14.
Complex RNA structures regulate many biological processes, but are often too large for structure determination by NMR methods. The 5' untranslated region (5' UTR) of the hepatitis C viral (HCV) RNA genome contains an internal ribosome entry site (IRES) that binds to 40S ribosomal subunits with high affinity and specificity to control translation. Domain II of the HCV IRES forms a 25-kDa folded subdomain that may alter ribosome conformation. We report here the structure of domain II as determined using an NMR approach that combines short- and long-range structural data. Domain II adopts a distorted L-shape structure, and its overall shape in the free form is markedly similar to its 40S subunit-bound form; this suggests how domain II may modulate 40S subunit conformation. The results show how NMR can be used for structural analysis of large biological RNAs.  相似文献   

15.
IRES-mediated pathways to polysomes: nuclear versus cytoplasmic routes   总被引:3,自引:0,他引:3  
Eukaryotic mRNA initiates translation by cap-dependent scanning, ribosome shunting and cap-independent internal ribosome entry. Internal ribosome entry was first discovered for cytoplasmic RNA viruses but has also been identified for DNA viruses and cellular mRNAs. An internal ribosome entry site (IRES) directs internal binding of ribosomes and nucleates the formation of a translation initiation complex. Current research is aimed at identifying interactions between IRES elements and RNA-binding proteins known as ITAFs (IRES trans-acting factors). Here we compare IRES elements from cytoplasmic RNA viruses with those of cellular mRNAs and DNA viruses with nuclear mRNA synthesis, and suggest that ITAF composition and IRES function directly reflect the site of synthesis of mRNA and the history of its pathway to polysomes.  相似文献   

16.
Derivation of a structural model for the c-myc IRES.   总被引:8,自引:0,他引:8  
We have derived a secondary structure model for the c-myc internal ribosome entry segment (IRES) by using information from chemical probing of the c-myc IRES RNA to constrain structure prediction programs. Our data suggest that the IRES is modular in nature, and can be divided into two structural domains linked by a long unstructured region. Both domains are required for full IRES function. Domain 1 is a complex element that contains a GNNRA apical loop and an overlapping double pseudoknot motif that is topologically unique amongst published RNA structures. Domain 2, the smaller of the two, contains an apical AUUU loop. We have located the ribosome landing site and have shown that ribosomes enter in a 16 nt region downstream of the pseudoknots in a situation similar to that observed in several viral IRESs. To test the structure, several key regions of the IRES were mutated and, interestingly, it appears that some of the structural elements that we have identified function to repress c-myc IRES function. This has profound implications for de-regulation of c-myc expression by mutations occurring in the IRES.  相似文献   

17.
Translation of poliovirus and hepatitis C virus (HCV) RNAs is initiated by recruitment of 40S ribosomes to an internal ribosome entry site (IRES) in the mRNA 5' untranslated region. Translation initiation of these RNAs is stimulated by noncanonical initiation factors called IRES trans-activating factors (ITAFs). The La autoantigen is such an ITAF, but functional evidence for the role of La in poliovirus and HCV translation in vivo is lacking. Here, by two methods using small interfering RNA and a dominant-negative mutant of La, we demonstrate that depletion of La causes a dramatic reduction in poliovirus IRES function in vivo. We also show that 40S ribosomal subunit binding to HCV and poliovirus IRESs in vitro is inhibited by a dominant-negative form of La. These results provide strong evidence for a function of the La autoantigen in IRES-dependent translation and define the step of translation which is stimulated by La.  相似文献   

18.
The intergenic region-internal ribosome entry site (IGR-IRES) of dicistroviruses binds to 40S ribosomal subunits in the absence of eukaryotic initiation factors (eIFs). Although the conserved loop sequences in dicistroviral IGR-IRES elements are protected from chemical modifications in the presence of the 40S subunit, molecular components in the 40S subunit, which interacts with the loop sequences in the IRES, have not been identified. Here, a chemical crosslinking study using 4-thiouridine-labeled IGR-IRES revealed interactions of the IGR-IRES with several 40S proteins but not with the 18S rRNA. The strongest crosslinking signal was identified for ribosomal protein S25 (rpS25). rpS25 is known to be a neighbor of rpS5, which has been shown to interact with a related IGR-IRES by cryo-electron microscopy. Crosslinking analysis with site-directed mutants showed that nucleotides UU6089–6090, which are located in the loop region in conserved domain 2b in the IRES, appear to interact with rpS25. rpS25 is specific to eukaryotes, which explains why there is no recognition of the IGR-IRES by prokaryotic ribosomes. Although the idea that the IGR-IRES element may be a relict of a primitive translation system has been postulated, our experimental data suggest that the IRES has adapted to eukaryotic ribosomal proteins.  相似文献   

19.
Cricket paralysis-like viruses have a dicistronic positive-strand RNA genome. These viruses produce capsid proteins through internal ribosome entry site (IRES)-mediated translation. The IRES element of one of these viruses, Plautia stall intestine virus (PSIV), forms a pseudoknot immediately upstream from the capsid coding sequence, and initiates translation from other than methionine. Previously, we estimated that the IRES element of PSIV consists of seven stem-loops using the program MFOLD; however, experimental evidence of the predicted structures was not shown, except for stem-loop VI, which was responsible for formation of the pseudoknot. To determine the whole structure of the PSIV-IRES element, we introduced compensatory mutations into the upstream MFOLD-predicted helical segments. Mutation analysis showed that stem-loop V exists as predicted, but stem-loop IV is shorter than predicted. The structure of stem-loop III is different from predicted, and stem-loops I and II are not necessary for IRES activity. In addition, we identified two new pseudoknots in the IRES element of PSIV. The complementary sequence segments that are responsible for formation of the two pseudoknots are also observed in cricket paralysis virus (CrPV) and CrPV-like viruses such as Drosophila C virus (DCV), Rhopalosiphum padi virus (RhPV), himetobi P virus (HiPV), Triatoma virus (TrV), and black queen-cell virus (BQCV), although each sequence is distinct in each virus. Considering the three pseudoknots, we constructed a tertiary structure model of the PSIV-IRES element. This structural model is applicable to other CrPV-like viruses, indicating that other CrPV-like viruses can also initiate translation from other than methionine.  相似文献   

20.
The hepatitis C virus (HCV) has a positive single-stranded RNA genome, and translation starts within the internal ribosome entry site (IRES) in a cap-independent manner. The IRES is well conserved among HCV subtypes and has a unique structure consisting of four domains. We used an in vitro selection procedure to isolate RNA aptamers capable of binding to the IRES domains III–IV. The aptamers that were obtained shared the consensus sequence ACCCA, which is complementary to the apical loop of domain IIId that is known to be a critical region of IRES-dependent translation. This convergence suggests that domain IIId is preferentially selected in an RNA–RNA interaction. Mutation analysis showed that the aptamer binding was sequence and structure dependent. One of the aptamers inhibited translation both in vitro and in vivo. Our results indicate that domain IIId is a suitable target site for HCV blockage and that rationally designed RNA aptamers have great potential as anti-HCV drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号