首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Vanilloid receptor subtype 1, VR1, is an ion channel that serves as a polymodal detector of pain-producing chemicals such as capsaicin and protons in primary afferent neurons. Here we showed that both capsaicin and acidification produced elevations in the intracellular Ca(2+) concentration ([Ca(2+)](i)) in cultured human epidermal keratinocytes. The capsaicin- and acidification-evoked increases in [Ca(2+)](i) were inhibited by capsazepine, an antagonist to VR1. VR1-like immunoreactivity was observed in the cells. These findings suggest that functional VR1-like protein is present and functions as a sensor against noxious chemical stimuli, such as capsaicin or acidification, in epidermal keratinocytes.  相似文献   

2.
Transforming growth factor-beta 1 (TGF beta 1) is a potent inhibitor of epithelial cell proliferation and its effects on growth and differentiation have been extensively characterized in cultured keratinocytes. We used two TGF beta 1-specific polyclonal antibodies (anti-LC and anti-CC) to determine the presence of TGF beta 1 peptide in keratinocytes in sections of normal human skin in situ and in both plaque and nonplaque skin from individuals with psoriasis. In contrast to the differentiation phenotype expressed by keratinocytes in normal epidermis, keratinocytes in the psoriatic plaque exhibit a hyperproliferative/regenerative differentiation phenotype. Anti-TGF beta 1 staining was observed primarily in the epidermis. Anti-LC TGF beta 1 antibody stained nonproliferating, differentiated suprabasal keratinocytes intracellularly in normal skin but did not stain psoriatic plaques from five of seven patients. In contrast, anti-CC TGF beta 1 antibody stained suprabasal keratinocytes extracellularly in psoriatic plaques, but did not stain normal skin. Both anti-LC and anti-CC stained suprabasal keratinocytes intracellularly in nonplaque psoriatic skin. Thus, the conformation or structure of TGF beta 1 and its localization vary in keratinocytes with distinct differentiation phenotypes suggesting that TGF beta 1 is a potential modulator of keratinocyte differentiation in vivo. Selective association of TGF beta 1 with nonproliferating keratinocytes in the suprabasal layers of the epidermis and its exclusion from the proliferating keratinocytes in the basal layer suggest that it may be a physiological regulator of keratinocyte proliferation. In addition, the intracellular localization of TGF beta 1 peptide in both normal and psoriatic keratinocytes suggests that it is constitutively synthesized by epidermal keratinocytes in vivo.  相似文献   

3.
4.
We examined effects of fibroblasts of different origin on long-term maintenance of xenotransplanted human epidermal keratinocytes. A suspension of cultured epidermal cells, originating from adult human trunk skin, was injected into double mutant immunodeficient (BALB/c nu/scid) mice subcutaneously, with or without cultured fibroblastic cells of different origin. At one week after transplantation, the epidermal cells generated epidermoid cysts consisting of human epidermis-like tissue. When the epidermal cells were injected alone or together with fibroblastic cells derived from human bone marrow, muscle fascia, or murine dermis, organized epidermoid cysts regressed within 6 weeks. In contrast, when the epidermal cells were injected together with human dermal fibroblasts, generated epidermoid cysts were maintained in vivo for more than 24 weeks. Histological examination showed that the reorganized epidermis, after injection of both epidermal keratinocytes and dermal fibroblasts, retained normal structures of the original epidermis during 6 to 24 weeks after transplantation. The results indicate that human dermal fibroblasts facilitate the long-term maintenance of the reorganized epidermis after xenotransplantation of cultured human epidermal keratinocytes by supporting self renewal of the human epidermal tissue in vivo.  相似文献   

5.
6.
To analyze the inhibitor of DNA-binding type 1 (ID1) in the human epidermis and in cultured keratinocytes we generated and characterized ID1-specific monoclonal antibodies. Immunohistological studies on human skin biopsies revealed that ID1 is not detectable in normal human epidermis but in lesional epidermis of bullous pemphigoid. In the latter case we found ID1 in the cytoplasm of basal and proximal suprabasal keratinocytes. Cultured normal human epidermal keratinocytes displayed ID1 in the cytoplasm; upon differentiation into a multilayered keratinocyte sheet, ID1 was no longer detectable. It was reexpressed after dispase-mediated detachment of the keratinocyte cultures from the growth substratum. In this case ID1 was localized to the cytoplasm and the nucleus. Our data indicate that after epidermal injury-in our case loss of cell-matrix contact-ID1 is upregulated in affected keratinocytes. In view of the ID1 function in other cell types, we speculate that ID1 facilitates the transition from the resting to the migrating and proliferating keratinocyte required for efficient repair of epidermal lesions by reepithelialization. Taken together we suggest that ID1 is an important player in epidermal (patho-)physiology.  相似文献   

7.
Involucrin immunoreactivity was localized ultrastructurally with protein A--gold in epidermis and cultured keratinocytes embedded in Lowicryl K4M. In the skin, immunoreactivity was found predominantly in cells of the granular layer and inner stratum corneum. The label was associated primarily with amorphous cytoplasmic material and especially keratohyaline granules. Some labeling was observed at the cell periphery, but little with keratin filaments. Tissue samples examined without aldehyde fixation showed relatively greater labeling in the outer stratum corneum than fixed tissue. In cultured cells, the labeling was also associated primarily with cytoplasmic granular material and to a lesser extent with the cell periphery. Upon treatment with the ionophore X537A, keratin filaments were found in aggregated arrays and the plasma membranes became convoluted. That involucrin immunoreactivity persisted in the cytoplasm in cultured cells and in vivo after cross-linking occurs could account for considerable isopeptide bonding detected in epidermal keratin fractions and indicates that not all the involucrin participates in envelope formation.  相似文献   

8.
9.
10.
11.
The three Kindlins are a novel family of focal adhesion proteins. The Kindlin-1 (URP1) gene is mutated in Kindler syndrome, the first skin blistering disease affecting actin attachment in basal keratinocytes. Kindlin-2 (Mig-2), the best studied member of this family, binds ILK and Migfilin, which links Kindlin-2 to the actin cytoskeleton. Kindlin-3 is expressed in hematopoietic cells. Here we describe the genomic organization, gene expression and subcellular localization of murine Kindlins-1 to -3. In situ hybridizations showed that Kindlin-1 is preferentially expressed in epithelia, and Kindlin-2 in striated and smooth muscle cells. Kindlins-1 and -2 are both expressed in the epidermis. While both localize to integrin-mediated adhesion sites in cultured keratinocytes Kindlin-2, but not Kindlin-1, colocalizes with E-cadherin to cell-cell contacts in differentiated keratinocytes. Using a Kindlin-3-specific antiserum and an EGFP-tagged Kindlin-3 construct, we could show that Kindlin-3 is present in the F-actin surrounding ring structure of podosomes, which are specialized adhesion structures of hematopoietic cells.  相似文献   

12.
The hypothalamic-pituitary-adrenal (HPA) axis is the major stress response system. Several components of the HPA axis, such as corticotropin-releasing hormone (CRH) and POMC peptides and their receptors are also present in the skin. In earlier studies, we showed that CRH inhibits cellular proliferation of immortalized human keratinocytes. We now examine further the functional activity of the HPA axis in the skin, by characterizing the actions of CRH on normal foreskin keratinocytes. The CRH receptor was detected as CRH-R1 antigen at 47 kDa in the cultured keratinocytes by Western blotting, and immunohistochemistry demonstrated its presence in the epidermal and follicular keratinocytes. CRH is also biologically active in cultured keratinocytes, where it inhibits proliferation and enhances the interferon-gamma-stimulated expression of the hCAM and ICAM-1 adhesion molecules and of the HLA-DR antigen. These effects were concentration-dependent, with maximal activity at CRH 10(-7) M. Thus, in the keratinocyte, the most important cellular component of the epidermis, CRH appears to induce a shift in energy metabolism away from proliferation activity, and toward the enhancement of immunoactivity. Therefore, similar to its central actions, cutaneous CRH may also he involved in the stress response, but at a highly localized level.  相似文献   

13.
Defensins have been identified as key elements of innate immunity against microbial infections. In the present study, human beta-defensin-2 (hBD-2) mRNA and peptide expression were evaluated by RT-PCR and Western blotting in normal human keratinocytes, in function of their stage of differentiation. In proliferating, non-differentiating keratinocytes generated in serum-free, low-calcium medium, a very low hBD-2 mRNA expression was found. A significantly higher expression was detected in high-calcium cultivated keratinocytes grown either as monolayers or as multilayers under submerged conditions. In an air-liquid interface culture of keratinocytes, allowing epidermis to be reconstructed, hBD-2 mRNA expression level was significantly higher than in the other conditions and displayed inter-individual variability as observed in native epidermis. The peptide was detected only in reconstructed epidermis. These results indicate that hBD-2 gene expression in normal human keratinocytes is dependent upon their stage of differentiation. The level of expression of hBD-1 mRNA was lower and that of hBD-3 was higher than that of hBD-2 in reconstructed epidermis. Exposure of reconstructed epidermis to bacterial lipopolysaccharide (LPS) resulted in an average 4-fold increase in hBD-2 mRNA 18 h after challenge, but not of hBD-1 and hBD-3 gene expression. These results show the selective regulation of hBD-2-encoding gene in an organotypic epidermal model, in response to LPS. They also provide evidence that in vitro reconstructed epidermis represents a useful model for studying regulation of expression of beta-defensins after skin challenge with pathogenic microorganisms in conditions as close as possible to the in vivo situation.  相似文献   

14.
In this study, we investigated the expression and putative role of Sox9 in epidermal keratinocyte. Immunohistochemical staining showed that Sox9 is predominantly expressed in the basal layer of normal human skin epidermis, and highly expressed in several skin diseases including psoriasis, basal cell carcinoma, keratoacanthoma and squamous cell carcinoma. In calcium-induced keratinocyte differentiation model, the expression of Sox9 was decreased in a time dependent manner. When Sox9 was overexpressed using a recombinant adenovirus, cell growth was enhanced, while the expression of differentiation-related genes such as loricrin and involucrin was markedly decreased. Similarly, when rat skin was intradermally injected with the adenovirus expressing Sox9, the epidermis was thickened with increase of PCNA positive cells, while the epidermal differentiation was decreased. Finally, UVB irradiation induced Sox9 expression in cultured human epidermal keratinocytes, and keratinocytes are protected from UVB-induced apoptosis by Sox9 overexpression. Together, these results suggest that Sox9 is an important regulator of epidermal keratinocytes with putative pro-proliferation and/or pro-survival functions, and may be related to several cutaneous diseases that are characterized by abnormal differentiation and hyperproliferation.  相似文献   

15.
α-Melanocyte-stimulating hormone (α-MSH) is a proopiomelanocortin (POMC)-derived peptide, which is produced in the pituitary and at other sites including the skin. It has numerous effects and in the skin has a pigmentary action through the activation of the melanocortin-1 (MC-1) receptor, which is expressed by melanocytes. Recent evidence suggests that the related POMC peptides such as adrenocorticotrophin (ACTH), which is the precursor of α-MSH, is also an agonist at the MC-1 receptor. By using immunocytochemistry, we confirmed the presence of α-MSH in human skin where staining was evident in keratinocytes and especially strong in melanocytes and possibly Langerhans cells. ACTH was also present and tended to show the strongest reaction in differentiated keratinocytes. Immunostaining was also observed for the prohormone convertases, PC1 and PC2, which are involved in the formation of ACTH and its cleavage to α-MSH, respectively. The amounts of immunoreactive ACTH exceeded those of α-MSH. Using HPLC we identified for the first time the presence of ACTH1-39, ACTH1-17, ACTH1-10, acetylated ACTH1-10, α-MSH, and desacetyl α-MSH in epidermis and in cultured keratinocytes. The ability of these peptides to activate the human MC-1 receptor was examined in HEK 293 cells that had been transfected with the receptor. All peptides increased adenylate cyclase in these cells with the following order of potency: ACTH1-17 > α-MSH > ACTH1-39 > desacetyl α-MSH > acetylated ACTH1-10 > ACTH1-10. ACTH1-17 also increased the dendricity and melanin content of cultured human melanocytes indicating that the peptide was able to activate MC-1 receptors when present in their normal location. However, as found with α-MSH, not all cultures were responsive and, as we have previously suggested, we suspect that this was the result of changes at the MC-1 receptor. Nevertheless, it would appear that ACTH peptides can serve as natural ligands of the MC-1 receptor on human melanocytes and their presence in the skin suggests that, together with α-MSH, they may have a role in the regulation of human melanocytes.  相似文献   

16.
Structural and functional aspects of modifications in the composite skin graft consisting of cultured keratinocytes and cryopreserved dermis were determined. Cryopreserved human cadaveric dermis separated from skin by short and mild trypsinization was compared with dermis obtained by prolonged incubation in medium and with fresh dermis obtained by the same methods. All types of dermis were shown to retain normal ultrastructure and topographic organization, as detected by scanning and transmission electron microscope and immunofluorescence analysis. However, in fresh skin, the layers were more firmly attached, mechanical separation was more difficult, and residual epidermis often remained attached to the dermis. Keratinocytes attached better, began replication earlier, and generally reached higher cell numbers when cultured on trypsinized dermis than on medium-treated dermis. The performance of several modifications in the reconstitution and grafting procedures of the composite skin graft after transplantation to athymic mice was examined. Cultured epidermis combined onto trypsinized or medium-treated whole and meshed dermis, dermis pregrafted and allowed to take before transplanting epidermis on top, and keratinocytes grown into multiple epithelia on top of trypsinized meshed or whole dermis prior to grafting. The best grafting results were obtained with an "instant" reconstituted skin model: multiple epithelia grown in vitro combined immediately before grafting onto meshed trypsinized dermis. The transplantation results of this modification were significantly better than those of all the other modifications, including initial growth of keratinocytes into multiple epithelia on top of trypsinized dermis prior to grafting.  相似文献   

17.
18.
Human keratinocytes isolated from a skin biopsy and cultured in vitro reconstitute a stratified squamous epithelium suitable for grafting on burned patients. Melanocytes coisolated from the same skin biopsy also proliferate under these culture conditions and maintain differentiated functions (i.e., synthesize melanin granules, regularly intersperse in the basal layer of the cultured epidermis, and transfer melanosomes in the cytoplasm of contiguous keratinocytes) (De Luca, M., A. T. Franzi, F. D'Anna, A. Zicca, E. Albanese, S. Bondanza, and R. Cancedda. 1988. Eur. J. Cell Biol. 46:176-180). Isolated melanocytes in culture grow in the presence of specific growth factors with a mean population doubling time of 4-10 d. In this paper we show that (a) human keratinocytes and oral epithelial cells possess strong and specific melanocyte growth stimulating activity (doubling time, 24 h); (b) melanocyte growth is not autonomous but requires close keratinocyte contact and is regulated to maintain a physiological melanocytes/keratinocytes ratiol and (c) pure skin keratinocytes, but not oral epithelial cells, have all the information required for the proper physiological location and differentiation of melanocytes in the epidermis.  相似文献   

19.

Objectives

Sprouty (SPRY) 1 is one of the SPRY proteins that inhibits signalling from various growth factors pathways and has also been known as a tumour suppressor in various malignancies. However, no study elucidates the role of SPRY1 in the skin. Our study was conducted to determine the function of SPRY1 in human keratinocytes and the epidermis.

Materials and methods

In vitro primary cultured epidermal keratinocytes were used to investigate the proliferation, differentiation and apoptosis of these cells. We also established overexpression of SPRY1 in vitro and K14‐SPRY1 transgenic mice.

Results

SPRY1 was mainly located in the cytoplasm of the epidermal keratinocytes from the granular epidermal layer of the skin and cultured cells. Overexpressed SPRY1 in keratinocytes resulted in up‐regulation of P21, P27 and down‐regulation of cyclin B1; decrease in MMP3 and integrin α6. SPRY1‐overexpressed primary keratinocytes exhibited a lower proliferation and migration capability and higher rates of apoptosis. Epidermis of SPRY1‐TG mice represented delayed wound healing. Proteomics analysis and GO enrichment showed DEPs of SPRY1 TG mice epidermis is significantly enriched in immune‐ and inflammatory‐associated biological process.

Conclusions

In summary, SPRY1 expression was inversely correlated with cell proliferation, migration and promote cell apoptosis of keratinocytes. SPRY1 maybe a negative feedback regulator in normal human epidermal keratinocytes and cutaneous inflammatory responses. Our study raised the possibility that enhancing expression of SPRY1 may have the potential to promote anti‐inflammatory effects.
  相似文献   

20.
An antiserum raised against a delta-protein kinase C (delta-PKC)-specific peptide recognized the purified calcium-unresponsive 76-kDa protein kinase of porcine spleen in the native and the denatured form. This antiserum was used to demonstrate the delta-PKC-like enzyme in spleen of different species, in various cell types and in murine tissues by immunoblotting of the respective extracts. Due to species differences, delta-PKC-like kinases with slightly different molecular weights were observed. The enzyme was found to be present in primary murine keratinocytes, primary bovine endothelial cells, and many cell lines originating from human, rat, and murine tissues. It was present also in all murine tissues tested, predominantly in epidermis, uterus, placenta, lung, brain, spleen, and kidney. In contrast to the conventional alpha, beta, gamma-PKC, it was located almost exclusively in the particulate fraction. The delta-like PKC could be demonstrated in the epidermis and brain of newborn mice, and in both tissues its concentration increased dramatically between day 7 and 14 after birth. The delta-PKC-like kinase of mouse epidermis (p82-kinase) was down-regulated after topical application of 12-O-tetradecanoylphorbol-13-acetate (TPA) to mouse skin. The amount of the enzyme decreased to less than 20% of the controls within 16 h and recovered almost completely within 72 h after TPA. The existence of the delta-PKC-like kinase in mouse skin, papillomas, and carcinomas could also be demonstrated by immunocytochemical staining of the respective sections. The enzyme was observed predominantly in epithelial layers. A remarkable immunostaining of nuclei in skin sections disappeared after TPA treatment of the animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号