首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Repeated exposure to psychostimulants such as cocaine and amphetamines results in behavioral sensitization, a paradigm thought to be relevant to drug craving and addiction in humans. We have previously shown that the induction, expression, and maintenance of psychomotor sensitization to cocaine, methamphetamine, and methylphenidate (indirect dopamine agonists) are blocked by co-administration of the neuronal nitric oxide synthase (nNOS) inhibitor 7-nitroindazole (7-NI). In the present study, we investigated the effects of 7-NI on the induction, expression, and maintenance of psychomotor sensitization to 3,4-methylenedioxymethamphetamine (MDMA; 'Ecstasy') and p-chloroamphetamine (PCA). The following observations are reported: (a) Repeated administration of MDMA (10 mg/kg) and PCA (5 mg/kg) to Swiss Webster mice for six consecutive days caused a 3-fold increase in the psychomotor stimulating effect of the drugs on day 6 compared to day 1. (b) Pretreatment with 7-NI (25 mg/kg) did not affect the induction and expression of sensitization to MDMA and PCA. (c) Pretreatment with 7-NI did, however, suppress the enduring sensitized response to challenge injections of MDMA and PCA which was observed in mice pretreated with vehicle instead of 7-NI. (d) Unlike other psychostimulants, MDMA and PCA treatment did not produce conditioned (context-dependent) hyperlocomotion. These findings, coupled with our previous studies, suggest the following: (a) The induction and expression of psychomotor sensitization to MDMA and PCA are independent of nNOS activity and involve primarily serotonergic transmission. (b) The maintenance of psychomotor sensitization is dependent on intact nNOS activity and involves primarily dopaminergic transmission.  相似文献   

2.
Experiments in wild-type (WT; C57BL/6J) mice, endothelial nitric oxide synthase null mutant [eNOS(-/-)] mice, and neuronal NOS null mutant [nNOS(-/-)] mice were performed to determine which NOS isoform regulates renal cortical and medullary blood flow under basal conditions and during the infusion of ANG II. Inhibition of NOS with N(omega)-nitro-l-arginine methyl ester (l-NAME; 50 mg/kg iv) in Inactin-anesthetized WT and nNOS(-/-) mice increased arterial blood pressure by 28-31 mmHg and significantly decreased blood flow in the renal cortex (18-24%) and the renal medulla (13-18%). In contrast, blood pressure and renal cortical and medullary blood flow were unaltered after l-NAME administration to eNOS(-/-) mice, indicating that NO derived from eNOS regulates baseline vascular resistance in mice. In subsequent experiments, intravenous ANG II (20 ng x kg(-1) x min(-1)) significantly decreased renal cortical blood flow (by 15-25%) in WT, eNOS(-/-), nNOS(-/-), and WT mice treated with l-NAME. The infusion of ANG II, however, led to a significant increase in medullary blood flow (12-15%) in WT and eNOS(-/-) mice. The increase in medullary blood flow following ANG II infusion was not observed in nNOS(-/-) mice, in WT or eNOS(-/-) mice pretreated with l-NAME, or in WT mice administered the nNOS inhibitor 5-(1-imino-3-butenyl)-l-ornithine (1 mg x kg(-1) x h(-1)). These data demonstrate that NO from eNOS regulates baseline blood flow in the mouse renal cortex and medulla, while NO produced by nNOS mediates an increase in medullary blood flow in response to ANG II.  相似文献   

3.
Abstract: Several studies suggest that nitric oxide (NO) contributes to cell death following activation of NMDA receptors in cultured cortical, hippocampal, and striatal neurons. In the present study we investigated whether 7-nitroindazole (7-NI), a specific neuronal nitric oxide synthase inhibitor, can block dopaminergic neurotoxicity seen in mice after systemic administration of MPTP. 7-NI dose-dependently protected against MPTP-induced dopamine depletions using two different dosing regimens of MPTP that produced varying degrees of dopamine depletion. At 50 mg/kg of 7-NI there was almost complete protection in both paradigms. Similar effects were seen with MPTP-induced depletions of both homovanillic acid and 3,4-dihydroxyphenylacetic acid. 7-NI had no significant effect on dopamine transport in vitro and on monoamine oxidase B activity both in vitro and in vivo. One mechanism by which NO is thought to mediate its toxicity is by interacting with superoxide radical to form peroxynitrite (ONOO), which then may nitrate tyrosine residues. Consistent with this hypothesis, MPTP neurotoxicity in mice resulted in a significant increase in the concentration of 3-nitrotyrosine, which was attenuated by treatment with 7-NI. Our results suggest that NO plays a role in MPTP neurotoxicity, as well as novel therapeutic strategies for Parkinson's disease.  相似文献   

4.
BACKGROUND: Mice with targeted disruption of the gene for the neuronal isoform of nitric oxide synthase (nNOS) display exaggerated aggression. Behavioral studies of mice with targeted gene deletions suffer from the criticism that the gene product is missing not only during the assessment period but also throughout development when critical processes, including activation of compensatory mechanisms, may be affected. To address this criticism, we have assessed aggressive behavior in mice treated with a specific pharmacological inhibitor of nNOS. MATERIALS AND METHODS: Aggressive behavior, as well as brain citrulline levels, were monitored in adult male mice after treatment with a specific nNOS inhibitor, 7-nitroindazole (7-NI) (50 mg/kg i.p.), which is known to reduce NOS activity in brain homogenates by > 90%. As controls, animals were treated with a related indazole, 3-indazolinone (3-I) (50 mg/kg i.p.) that does not affect nNOS or with on oil vehicle. RESULTS: Mice treated with 7-NI displayed substantially increased aggression as compared with oil- or 3-I-injected animals when tested in two different models of aggression. Drug treatment did not affect nonspecific locomotor activities or body temperature. Immunohistochemical staining for citrulline in the brain revealed a dramatic reduction in 7-NI-treated animals. CONCLUSIONS: 7-NI augmented aggression in WT mice to levels displayed by nNOS- mice, strongly implying that nNOS is a major mediator of aggression. NOS inhibitors may have therapeutic roles in inflammatory, cardiovascular, and neurologic diseases. The substantial aggressive behavior soon after administration of an nNOS inhibitor raises concerns about adverse behavioral sequelae of such pharmacological agents.  相似文献   

5.
Anapyrexia (a regulated decrease in body temperature) is a response to hypoxia that occurs in organisms ranging from protozoans to mammals, but very little is known about the mechanisms involved. Recently, it has been shown that the NO pathway plays a major role in hypoxia-induced anapyrexia. However, very little is known about which of the three different nitric oxide synthase isoforms (neuronal, endothelial, or inducible) is involved. The present study was designed to test the hypothesis that neuronal nitric oxide synthase (nNOS) plays a role in hypoxia-induced anapyrexia. Body core temperature (T(c)) of awake, unrestrained rats was measured continuously using biotelemetry. Rats were submitted to hypoxia, 7-nitroindazole (7-NI; a selective nNOS inhibitor) injection, or both treatments together. Control animals received vehicle injections of the same volume. We observed a significant (P < 0.05) reduction in T(c) of approximately 2.8 degrees C after hypoxia (7% inspired O(2)), whereas intraperitoneal injection of 7-NI at 25 mg/kg caused no significant change in T(c). 7-NI at 30 mg/kg elicited a reduction in T(c) and was abandoned in further experiments. When the two treatments were combined (25 mg/kg of 7-NI and 7% inspired O(2)), we observed a significant attenuation of hypoxia-induced anapyrexia. The data indicate that nNOS plays a role in hypoxia-induced anapyrexia.  相似文献   

6.
The neuronal nitric oxide synthase (nNOS) inhibitor, 7-nitroindazole (7-NI) is neuroprotective against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Monoamine oxidase (MAO)-B inhibitory action partially contributes to this effect. We tested the hypothesis that 7-NI could be a powerful hydroxyl radical (OH) scavenger, and interferes with oxidative stress caused by MPTP. We measured OH, reduced glutathione (GSH), as well as superoxide dismutase (SOD) and catalase activities in the nucleus caudatus putamen and substantia nigra of Balb/c mice following MPTP and/or 7-NI administration. The nNOS inhibitor caused dose-dependent inhibition in the production of OH in (i) Fenton-like reaction employing ferrous citrate in a cell-free system in test tubes, (ii) in isolated mitochondrial preparation in presence of MPP+, and (iii) in the striatum of mice systemically treated with MPTP. An MPTP-induced depletion of GSH in both the nuclei was blocked by 7-NI, which was dose-dependent (10-50mg/kg), but independent of MAO-B inhibition. The nNOS-mediated recovery of GSH paralleled attenuation of MPTP-induced depletion of striatal dopamine. MPTP-induced increase in the activities of striatal or nigral SOD and catalase were significantly attenuated by 7-NI treatment. These results suggest potent antioxidant action of 7-NI in its neuroprotective effects against MPTP-induced neurotoxicity.  相似文献   

7.
Abstract: The role of nitric oxide (NO) in the neurotoxic effects of methamphetamine (METH) was evaluated using 7-nitroindazole (7-NI), a potent inhibitor of neuronal nitric oxide synthase. Treatment of mice with 7-NI (50 mg/kg) almost completely counteracted the loss of dopamine, 3,4-dihydroxyphenylacetic acid, and tyrosine hydroxylase immunoreactivity observed 5 days after four injections of 10 or 7.5 mg/kg METH. With the higher dose of METH, this protection at 5 days occurred despite the fact that combined administration of METH and 7-NI significantly increased lethality and exacerbated METH-induced dopamine release (as indicated by a greater dopamine depletion at 90 min and 1 day). Combined treatment with 4 × 10 mg/kg METH and 7-NI also slightly increased the body temperature of mice as compared with METH alone. Thus, the neuroprotective effects of 7-NI are independent from lethality, are not likely to be related to a reduction of METH-induced dopamine release, and are not due to a decrease in body temperature. These results indicate that NO formation is an important step leading to METH neurotoxicity, and suggest that the cytotoxic properties of NO may be directly involved in dopaminergic terminal damage.  相似文献   

8.
9.
The intracellular second messenger nitric oxide (NO) is implicated in a variety of physiological functions, including release and uptake of dopamine (DA). In the described study, in vivo microdialysis and differential pulse voltammetric techniques were used to determine the involvement of NO in release of DA and its metabolites (dihydroxyphenylalanine, DOPAC; homovanillic acid, HVA) in neostriatum of freely moving rats. While the NO donor molsidomine (30.0 mg/kg; MOLS) and neuronal NO synthase- (nNOS-) inhbitor 7-nitroindazole (10.0 mg/kg; 7-NI) had no effect on the basal in vivo microdialysate level of DA, 7-NI specifically enhanced D,L-amphetamine-(1.0 mg/kg i.p.; AMPH) evoked release of DA. Basal or AMPH effects on DOPAC and HVA levels were not influenced by MOLS or 7-NI. Findings indicate that nitrergic systems have an important role in mediating effects of AMPH on dopaminergic systems.  相似文献   

10.
The use of methamphetamine (METH) leads to neurotoxic effects in mammals. These neurotoxic effects appear to be related to the production of free radicals. To assess the role of peroxynitrite in METH-induced dopaminergic, we investigated the production of 3-nitrotyrosine (3-NT) in the mouse striatum. The levels of 3-NT increased in the striatum of wild-type mice treated with multiple doses of METH (4 x 10 mg/kg, 2 h interval) as compared with the controls. However, no significant production of 3-NT was observed either in the striata of neuronal nitric oxide synthase knockout mice (nNOS -/-) or copper-zinc superoxide dismutase overexpressed transgenic mice (SOD-Tg) treated with similar doses of METH. The dopaminergic damage induced by METH treatment was also attenuated in nNOS-/- or SOD-Tg mice. These data further confirm that METH causes its neurotoxic effects via the production of peroxynitrite.  相似文献   

11.
Currently, joint use of ketamine and 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) represents a specific combination of polydrug abuse. Long-lasting and even aggravated central neuronal toxicity associated with mixing ketamine and MDMA use is of special concern. This study was undertaken to examine the modulating effects of ketamine treatment on later MDMA-induced dopamine and serotonin neurotoxicity. We found that repeated administration of ketamine (50 mg/kg x 7) at 1.5-h intervals did not render observable dopamine or serotonin depletion in catecholaminergic target regions examined. In contrast, three consecutive doses of MDMA (20 mg/kg each) at 2-h intervals produced long-lasting dopamine and serotonin depletions in striatum, nucleus accumbens and prefrontal cortex. More importantly, pretreatment with binge doses of ketamine (50 mg/kg x 7 at 1.5-h intervals) 12 h prior to the MDMA dosing regimen (20 mg/kg x 3 at 2-h intervals) aggravated the MDMA-induced dopaminergic toxicity. Nonetheless, such binge doses of ketamine treatment did not affect MDMA-induced serotonergic toxicity. These results, taken together, indicate that binge use of ketamine specifically enhances the MDMA-induced central dopaminergic neurotoxicity in adult mouse brain.  相似文献   

12.
Mice lacking Cu,Zn superoxide dismutase (SOD1) show accelerated, age-related loss of muscle mass. Lack of SOD1 may lead to increased superoxide, reduced nitric oxide (NO), and increased peroxynitrite, each of which could initiate muscle fiber loss. Single muscle fibers from flexor digitorum brevis of wild-type (WT) and Sod1(-/-) mice were loaded with NO-sensitive (4-amino-5-methylamino-2',7'-difluorofluorescein diacetate, DAF-FM) and superoxide-sensitive (dihydroethidium, DHE) probes. Gastrocnemius muscles were analyzed for SOD enzymes, nitric oxide synthases (NOS), and 3-nitrotyrosine (3-NT) content. A lack of SOD1 did not increase superoxide availability at rest because no increase in ethidium or 2-hydroxyethidium (2-HE) formation from DHE was seen in fibers from Sod1(-/-) mice compared with those from WT mice. Fibers from Sod1(-/-) mice had decreased NO availability (decreased DAF-FM fluorescence), increased 3-NT in muscle proteins indicating increased peroxynitrite formation and increased content of peroxiredoxin V (a peroxynitrite reductase), compared with WT mice. Muscle fibers from Sod1(-/-) mice showed substantially reduced generation of superoxide in response to contractions compared with fibers from WT mice. Inhibition of NOS did not affect DHE oxidation in fibers from WT or Sod1(-/-) mice at rest or during contractions, but transgenic mice overexpressing nNOS showed increased DAF-FM fluorescence and reduced DHE oxidation in resting muscle fibers. It is concluded that formation of peroxynitrite in muscle fibers is a major effect of lack of SOD1 in Sod1(-/-) mice and may contribute to fiber loss in this model, and that NO regulates superoxide availability and peroxynitrite formation in muscle.  相似文献   

13.
Interleukin-6 (IL-6) reduces myocardial haemodynamics. However, the intrinsic mechanisms of IL-6 effects are not known. We hypothesized that nitric oxide (NO) synthesised by neuronal synthase (nNOS) can be the molecular mediator of IL-6-mediated cardiac effects. Thus, we investigated in vivo after IL-6 acute administration: (1) the role of NO pathway; (2) the importance of NO derived from nNOS located in intracardiac vagal ganglion in the anterior surface of the left ventricle. Sprague-Dawley (SD) rats (225-250 g) were anaesthetized (sodium pentobarbital 30 mg/kg intraperitoneally administered) and ventilated. The effects of a single IL-6 bolus (100 microg/kg intravenously administered) were studied in four experimental groups: (a) IL-6 (n=6), (b) IL-6 plus 30 mg/kg of L-NAME (an eNOS and nNOS inhibitor; n=6), (c) IL-6 plus 25mg/kg of 7-NI (a specific nNOS inhibitor; n=6), (d) IL-6 plus vagal resection (n=6). We evaluated the following parameters: mean aortic pressure (MAP), left ventricular end systolic pressure (LVESP), left ventricular positive peak dP/dt (PP dP/dt). Data are expressed as mean+/-sem. IL-6 caused a transient but significant reduction of MAP (-21.8% of basal: p<0.05), LVESP (from 130+/-4.2 to 1056.5 mmHg: p<0.05) and PP dP/dt (from 5390+/-158 to 4400+/-223 mmHg/s, p<0.02). Concomitant treatment with L-NAME or 7-NI totally abolished IL-6 effects. Vagal resection significantly reduced the haemodynamic effects (MAP: -10% of basal: p=ns; LVEDS: from 125+/-7.3 to 117+/-6.8 mmHg, p<0.05; PP dP/dt from 5500+/-150 to 5000+/-143 mmHg/s, p<0.05). We conclude that acute administration of IL-6 caused transient but significant cardiac negative inotropism. IL-6 haemodynamic effects are partly due to NO synthesised by nNOS located in vagal left ventricular ganglia.  相似文献   

14.
Abstract: The ability of 7-nitroindazole (7-NI) to protect against MPTP-induced neurotoxicity has been attributed to its inhibition of neuronal nitric oxide synthase. In the present study, 7-NI was found to counteract almost completely striatal dopamine depletion caused by a single subcutaneus injection of 20 mg/kg MPTP in mice. This effect, however, was accompanied by a significant reduction in the striatal levels of MPP+, the toxic metabolite generated via monoamine oxidase B-catalyzed MPTP oxidation. In the presence of 7-NI, a dose of 40 mg/kg MPTP produced MPP+ concentrations similar to those measured after treatment with 20 mg/kg MPTP alone. A comparison of neurotoxicity in these two experimental conditions (i.e., mice treated with 20 mg/kg alone versus 40 mg/kg MPTP plus 7-NI) revealed only a slight (20%), but statistically significant, protection of dopamine depletion with 7-NI. These data indicate that the mechanism by which 7-NI counteracts MPTP neurotoxicity in mice is not due solely to inhibition of neuronal nitric oxide synthase, but involves a reduction in MPP+ formation.  相似文献   

15.
Preconditioning with brief periods of ischemia-reperfusion (I/R) induces a delayed protection of coronary endothelial cells against reperfusion injury. We assessed the possible role of nitric oxide (NO) produced during prolonged I/R as a mediator of this endothelial protection. Anesthetized rats were subjected to 20-min cardiac ischemia/60-min reperfusion, 24 h after sham surgery or cardiac preconditioning (1 x 2-min ischemia/5-min reperfusion and 2 x 5-min ischemia/5-min reperfusion). The nonselective NO synthase (NOS) inhibitor l-NAME, the selective inhibitors of neuronal (7-nitroindazole) or inducible (1400W) NOS, or the peroxynitrite scavenger seleno-l-methionine were administered 10 min before prolonged ischemia. Preconditioning prevented the reperfusion-induced impairment of coronary endothelium-dependent relaxations to acetylcholine (maximal relaxation: sham 77 +/- 3; I/R 44 +/- 6; PC 74 +/- 5%). This protective effect was abolished by l-NAME (41 +/- 7%), whereas 7-NI, 1400W or seleno-l-methionine had no effect. The abolition of preconditioning by l-NAME, but not by selective nNOS or iNOS inhibition, suggests that NO produced by eNOS is a mediator of delayed endothelial preconditioning.  相似文献   

16.
Administration of tacrine (5 mg/kg ip), an anticholinesterase agent, in rats pretreated (24 h beforehand) with lithium chloride (LiCl; 12 mEq/kg ip) provides a useful experimental model to study limbic seizures and delayed hippocampal damage. Here we report Western blotting evidence demonstrating that in rat LiCl and tacrine enhance the expression of neuronal nitric oxide synthase (nNOS), but not eNOS, enzyme protein in the hippocampus during the preconvulsive period and this triggers seizures and hippocampal damage. In fact, systemic administration of 7-nitro indazole (7-NI; 50 mg/kg given ip 30 min before tacrine), a selective inhibitor of nNOS, prevented the expression of motor and electrocortical (ECoG) seizures and abolished neuronal cell death in the hippocampus. A lower dose (5 mg/kg ip) of 7-NI was ineffective. In conclusion, the present data support a role for abnormal nNOS expression in the mechanism which triggers limbic seizures and delayed excitotoxic damage in the hippocampus of rat.  相似文献   

17.
Amphetamines (AMPs) can cause long-term depletions in striatal dopamine (DA) and serotonin (5-HT), and these decrements are often accepted asprima facie evidence of AMP-induced damage to the dopaminergic and serotonergic projections to striatum. Rarely are indices linked to neural damage used to evaluate the neurotoxicity, of the AMPs. Here, were determined the potential neurotoxic effects of two substituted AMPs,d-methylenedioxymethamphetamine (d-MDMA), andd-fenfluramine (d-FEN) in group-housed female C57BL6/J mice. Astrogliosis, assessed by quantification of glial fibrillary acidic protein (GFAP), was the main indicator of d-MDMA-induced neural damage. Assays of tyrosine hydroxylase (TH), DA, and 5-HT were used to determine effects on DA and 5-HT systems. Since AMPs are noted for both their stimulatory and hyperthermia-inducing properties, activity, as well as core temperature, was monitored in several experiments. To extend the generality of our findings, these same end points were examined in singly housed female C57BL6/J mice in and group-housed male C57BL6/J or female B6C3F1 mice after treatment with d-MDMA. Mice, received either d-MDMA (20 mg/kg) singly housed mice received dosages of 20, 30, or 40 mg/kg) or d-FEN (25 mg/kg) every 2 h for a total of four sc injections. d-MDMA caused hyperthermia, whereas d-FEN induced hypothermia. d-MDMA cause a large (300%) increase in striatal GFAP that resolved by 3 wk and a 50–75% decrease in TH and DA that was still apparent at 3 wk, d-FEN did not affect any parameters in striatum. d-MDMA is a striatal dopaminergic neurotoxicant in both male and female C57BL6/mice, as evidence by astrogliosis and depletions of DA in this area in both sexes. The greater lethality to males suggests they may be more sensitive, at least to the general toxicity of d-MDMA, than females. d-MDMA (20 mg/kg) induced the same degree of damage whether mice were housed singly or in groups. Higher dosages in singly housed mice induced greater lethality, but not greater neurotoxicity. d-MDMA was also effective in inducing striatal damage in mice of the B6C3F1 strain. Significant increases in activity were induced by d-MDMA, and these increases were not blocked by pretreatment with MK-801, despite the profound lowering of body temperature induced by this combination. A lowering of body temperature, whether by a 15°C ambient temperature (approx 2°C drop), pretreatment with MK-801 (1.0 mg/kg prior to the first and third d-MDMA injections; approx 5–6°C drop) or restraint (approx 5–6°C drop), was effective in blocking the neurotoxicity of d-MDMA in both C57BL6/J and B6C3F1. The stimulatory effects of d-MDMA appeared to have little impact on the neurotoxicity induced by d-MDMA or the protection conferred by MK-801. These data suggest that in the mouse, the neurotoxic effects of d-MDMA, and most likely other AMPs, are linked to an effect on body temperature.  相似文献   

18.
The interaction between nitric oxide (NO) and renin is controversial. cAMP is a stimulating messenger for renin, which is degraded by phosphodiesterase (PDE)-3. PDE-3 is inhibited by cGMP, whereas PDE-5 degrades cGMP. We hypothesized that if endogenous cGMP was increased by inhibiting PDE-5, it could inhibit PDE-3, increasing endogenous cAMP, and thereby stimulate renin. We used the selective PDE-5 inhibitor zaprinast at 20 mg/kg body wt ip, which we determined would not change blood pressure (BP) or renal blood flow (RBF). In thiobutabarbital (Inactin)-anesthetized rats, renin secretion rate (RSR) was determined before and 75 min after administration of zaprinast or vehicle. Zaprinast increased cGMP excretion from 12.75 +/- 1.57 to 18.67 +/- 1.87 pmol/min (P < 0.003), whereas vehicle had no effect. Zaprinast increased RSR sixfold (from 2.95 +/- 1.74 to 17.62 +/- 5.46 ng ANG I. h(-1) x min(-1), P < 0.024), while vehicle had no effect (from 4.08 +/- 2.02 to 3.87 +/- 1.53 ng ANG I x h(-1) x min(-1)). There were no changes in BP or RBF. We then tested whether the increase in cGMP could be partially due to the activity of the neuronal isoform of NO synthase (nNOS). Pretreatment with the nNOS inhibitor 7-nitroindazole (7-NI; 50 mg/kg body wt) did not change BP or RBF but attenuated the renin-stimulating effect of zaprinast by 40% compared with vehicle. In 7-NI-treated animals, zaprinast-stimulated cGMP excretion was attenuated by 48%, from 9.17 +/- 1.85 to 13.60 +/- 2.15 pmol/min, compared with an increase from 10.94 +/- 1.90 to 26.38 +/- 3.61 pmol/min with zaprinast without 7-NI (P < 0.04). This suggests that changes in endogenous cGMP production at levels not associated with renal hemodynamic changes are involved in a renin-stimulatory pathway. One source of this cGMP may be nNOS generation of NO in the kidney.  相似文献   

19.
We examined the relative contributions from nitric oxide (NO) and catecholaminergic pathways in promoting cerebral arteriolar dilation during hypoglycemia (plasma glucose congruent with 1.4 mM). To that end, we monitored the effects of beta-adrenoceptor (beta-AR) blockade with propranolol (Pro, 1.5 mg/kg iv), neuronal nitric oxide synthase (nNOS) inhibition with 7-nitroindazole (7-NI, 40 mg/kg ip) or ARR-17477 (300 microM, via topical application), or combined intravenous Pro + 7-NI or ARR-17477 on pial arteriolar diameter changes in anesthetized rats subjected to insulin-induced hypoglycemia. Additional experiments, employing topically applied TTX (1 microM), addressed the possibility that the pial arteriolar response to hypoglycemia required neuronal transmission. Separately, Pro and 7-NI elicited modest but statistically insignificant 10-20% reductions in the normal ~40% increase in arteriolar diameter accompanying hypoglycemia. However, combined Pro-7-NI was accompanied by a >80% reduction in the hypoglycemia-induced dilation. On the other hand, the combination of intravenous Pro and topical ARR-17477 did not affect the hypoglycemia response. In the presence of TTX, the pial arteriolar response to hypoglycemia was lost completely. These results suggest that 1) beta-ARs and nNOS-derived NO interact in contributing to hypoglycemia-induced pial arteriolar dilation; 2) the interaction does not occur in the vicinity of the arteriole; and 3) the vasodilating signal is transmitted via a neuronal pathway.  相似文献   

20.
We studied the role of the nitric oxide (NO) system in the realization of cardiogenic depressor reflexes evoked by stimulation of cardiac receptors by veratrine (reproduction of the Bezold–Jarish reflex). Acute experiments were performed on anesthetized dogs and rats: we tested the effects of inhibition of dissimilar isoforms of NO synthase (NOS) and paid special attention to possible species-related differences in realization of the reflex responses. We found that systemic inhibition of NOS by L-nitro-N-arginine (L-NNA, 30 mg/kg, i.v.) significantly decreased the depressor reflex reaction in dogs. Vasomotor dilatatory reactions of the peripheral vessels underwent considerable modifications and in some cases were converted into vasoconstrictory responses. Selective inhibition of neuronal NOS (nNOS) by 7-nitroindazole (7-NI, 25 mg/kg, i.p.) exerted no effect on the development of cardiogenic depressor reflexes in dogs. At the same time, systemic inhibition of NOS in the course of reproduction of cardiogenic depressor reflexes in rats resulted in intensification of depressor responses, while inhibition of nNOS decreased these reactions. Thus, we first demonstrated the role of NO in the realization of cardiogenic depressor reflexes under in vivo conditions and described species-related peculiarities of the involvement of the NO system in the development of these reflexes. We also demonstrated the dependence of formation of cardiogenic depressor reflexes on the predominant involvement of one NOS type or another.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号