首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The disposition of the enantiomers of hydroxychloroquine (HCQ) and its major metabolites in ocular tissues of rabbits has been studied. Both albino, New Zealand White (NZW), and pigmented animals were administered daily oral doses of rac-HCQ, (S)-HCQ or (R)-HCQ (20 mg/kg) over 1, 6, or 8 day periods or for 8 days followed by a 7-day washout period. At the end of the study periods, plasma and whole blood samples were collected and the rabbits were sacrificed. The eyes were collected, the aqueous humor removed with a syringe, and the eyes separated into the cornea, lens, vitreous body, iris, choroid-retina, sclera, and conjunctiva. The concentrations of (R)-HCQ, (S)-HCQ, and their respective metabolites were determined using a validated enantioselective liquid chromatographic assay. The data from these studies indicate that HCQ accumulated in both pigmented and nonpigmented ocular tissues. In the pigmented tissues, HCQ and its metabolites were bound to melanin and the binding was not enantiospecific. In the nonpigmented tissues and in the iris and retina-choroid of the NZW rabbits, the accumulation appeared to be the result of a reversible and enantioselective binding of HCQ and its metabolites to an unidentified biopolymer present in these ocular tissues. © 1994 Wiley-liss, Inc.  相似文献   

2.
The purpose of this study was to investigate spontaneous eye disease in New Zealand White (NZW) rabbits, which are commonly used for toxicity tests, and to provide reference materials for pharmaceutical companies and research centers. A total of 586 NZW rabbits were randomly chosen without sex preference and were examined using ocular equipment, including a direct ophthalmoscope, an indirect ophthalmoscope, a slit-lamp biomicroscope, a focal illuminator, and a fundus camera. This study showed that the incidence rate of temporary cataracts, regarded as a change within normal variation, was 0.5% in the NZW rabbits. Regarding abnormal ophthalmic disease, blepharitis was the most commonly observed ocular disease. Other findings included cataract, conjunctivitis, choroidal hypoplasia, keratitis, corneal scarring, eyelid laceration, posterior synechiae, uveitis, dacryocystitis, and persistent pupillary membrane. In total, the incidence rate of ophthalmic diseases was 9.6%. Based on sex and age distributions, females had more ocular diseases than males, and rabbits were less susceptible to eye diseases as they got older. In this study, photographs were taken to document findings, such as normal fundus, normal variations, ophthalmic disease, and histopathologic examination.  相似文献   

3.
Pasteurella multocida A:3 was isolated during an outbreak of pasteurellosis in Flemish Giant (FG) rabbits. Since New Zealand White (NZW) rabbits housed in the same room were not as severely affected as FG rabbits, experimental inoculation was undertaken to determine if FG rabbits were more susceptible than NZW rabbits to pasteurellosis induced by this isolate. Rabbits of each breed were inoculated with P. multocida A:3 and observed for 3 weeks. Four of 5 FG rabbits developed severe clinical disease on days 6, 9, 12 and 14 after inoculation; whereas, the one affected NZW rabbit became ill 14 days after inoculation. All rabbits with clinical disease developed fibrinosuppurative pleuritis, pyothorax and pneumonia which was more severe in FG than NZW rabbits. At necropsy, P. multocida A:3 was isolated from multiple sites of the diseased rabbits. No significant difference (P = 0.099) in the prevalence of lesions between the two breeds was found; however, the score of pneumonia and pleuritis was 3 times greater in FG rabbits than NZW rabbits.  相似文献   

4.
Transgenic mice carrying the diphtheria toxin A gene driven by mouse gamma 2-crystallin promoter sequences manifest microphthalmia due to ablation of fiber cells in the ocular lens. Here we map ablation events in the lens by crossing animals hemizygous for the ablation construct with transgenic mice homozygous for the in situ lacZ reporter gene driven by identical gamma 2-crystallin promoter sequences. By comparing the spatial distribution of lacZ-expressing cells and the profile of gamma-crystallin gene expression in the lenses of normal and microphthalmic offspring, the contributions of specific cell types to lens development were examined. The results suggest that phenotypically and developmentally distinct populations of lens fiber cells are able to contribute to the lens nucleus during organogenesis. We also show that dosage of the transgene and its site of integration influence the extent of ablation. In those mice homozygous for the transgene and completely lacking cells of the lens lineage, we show that the sclera, cornea, and ciliary epithelium are reduced in size but, otherwise, reasonably well formed. In contrast, the anterior chamber, iris, and vitreous body are not discernible while the sensory retina is highly convoluted and extensively fills the vitreous chamber.  相似文献   

5.
Embryo‐fetal development (EFD) studies, typically in pregnant rats and rabbits, are conducted prior to enrolling females of reproductive age in clinical trials. Common rabbit strains used are the New Zealand White (NZW) and Dutch Belted (DB). As fetal abnormalities can occur in all groups, including controls, Historical Control Data (HCD) is compiled using data from control groups of EFD studies, and is used along with each study's concurrent control group to help determine whether fetal abnormalities are caused by the test article or are part of background incidences. A probability analysis was conducted on 2014 HCD collected at Charles River Inc., Horsham PA on Covance NZW, Covance DB, and Charles River (CR) NZW rabbits. The analysis was designed to determine the probability of 2 or 3 out of a group of 22 does aborting their litter or of having a fetal abnormality by chance. Results demonstrate that pregnancy parameters and fetal observations differ not only between strains, but between sources of rabbits of the same strain. As a result the probability of these observations occurring by chance in two or three litters was drastically different. Although no one single strain is perfect, this analysis highlights the need to appreciate the inherent differences in pregnancy and fetal abnormalities between strains, and points out that an apparent isolated increased incidence of an observation in one strain will not necessarily be test‐article related in another strain. A robust HCD is critical for interpretation of EFD rabbit studies, regardless of the rabbit strain used  相似文献   

6.
Morphogenesis of the eye of Siberian sturgeon   总被引:1,自引:0,他引:1  
The most relevant changes in Acipenser baeri eye organization were detected between hatching and 5 days post hatch. At this age, the eye had an anterior chamber, lens, iris, choroid gland, scleral cartilage, cornea and a vitreous chamber lined by the retina (with two photoreceptors: rods and single cones).  相似文献   

7.
The role of the lens in early eye development was examined in transgenic mice carrying the cytotoxic diphtheria toxin A gene driven by hamster alpha A-crystallin promoter sequences. Mice hemizygous for this construct are microphthalmic and contain a vacuolated and highly disorganized lens, whereas adult homozygous mice are completely ablated of the lens and lack a pupil, aqueous and posterior chamber, vitreous humor, iris, and ciliary body and show extensive convolution of the sensory retina. Developmental analysis of animals homozygous for the transgene revealed that the optic cup and lens vesicle form normally and that ablation of the lens occurs as a gradual degenerative process beginning between Days 12 and 13 of gestation. Degeneration of the lens vesicle coincides with retarded growth and development of the neuroretina, sclera, and cornea. The anterior lip of the optic cup fails to differentiate into the normal epithelium of the iris and ciliary body and the vitreous body does not develop. Although the retinal layers apparently form normally, retinal folding becomes prominent following lens degeneration. These results suggest that development of a functional lens from Embryonic Day 12.5 onward is critical for formation of the ciliary epithelium, iris, and vitreous body, as well as for appropriate growth, development, and maintenance of morphology of the retina, cornea, sclera, and optic nerve. Our results also provide information on the time course of DT-A-mediated cell destruction in vivo and are discussed in context with previous lens ablation studies and the importance of developmental analysis for interpretation of the extent to which morphogenetic aberrations are concurrent with or secondary to genetic ablation of the target tissue.  相似文献   

8.
Rabbits were immunized by the water soluble cow cornea antigens. The particle immunochemical identity between cow cornea antigens and cow lens, vitreous humor, aqueous humor, iris, choroid and retina was found in reaction of immunodiffusion in gel. Immune cross reactions between cow cornea antigens and human antigens of different tissue were absent. 9 antigens were indicated by immunoelectrophoresis in cow cornea. Three of them with gamma-mobility locate in epithelium, 2-with gamma-mobility--in endothelium and 4 (two with beta-mobility, and one of alpha 1-mobility and another alpha 2-mobility) in stroma. The possible role of different antigenic composition of cornea is discussed.  相似文献   

9.
Zorion guttigerum is a flower-visiting longhorned beetle endemic to New Zealand. Sexual selection of this species in relation to the body size and color form of different sexes was investigated in the field. The population sex ratio, based on censuses of feeding and mating sites (flowers), is male-biased. Females are significantly larger than males. Both sexes have antennae of similar length but the antennal length relative to the elytral length is greater in males than in females, and the antennal length of males increases more with an increase in body size than that of females. Both sexes have dark blue (DB) and yellowish-brown (YB) individuals. Both pair-bonded and solitary males are similar in elytral and antennal length. In pair-bonded males, DB individuals are significantly more numerous than YB ones, but in solitary males, the number of both color forms is similar. Males tend to have territory protection behavior, fighting with and chasing away rival males from feeding and mating sites. Larger males usually win the fight but the size-dependent fighting advantage does not translate into mating success. Male color plays an important role in mating success, with DB males having a significantly better chance to mate than YB males. Furthermore, male body size and color also have interactions in mating success: males of DB color morph obtain a greater mating advantage according to body size. Pair-bonded females are significantly larger and have longer antennae than solitary females, suggesting that males prefer larger females for mating. In addition, females of DB color morph with longer antennae are also preferred by males for mating. The significance of these findings is discussed.  相似文献   

10.
Abstract. Lensectomized Xenopus laevis larvae are capable of regenerating a lens from the cells of the outer cornea. Unlike the outer cornea, the iris of larval Xenopus exhibits a high degree of phenotypic stability, even when it has been damaged to various degrees in order to stimulate its latent transdifferentiative competence. However, when isolated from its surrounding tissues and implanted in an appropriate site, the dorsal iris of larval Xenopus is capable of following a differentiative pathway different to that normally followed in situ. Our results show that, when such an implant is placed in the vitreous chamber of a lensectomized eye, the pigmented epithelial cells of the iris transdifferentiate into neural retina regardless of whether the iris stroma is present or not. Unlike the vitreous chamber, the environment of the anterior chamber of a lensectomized eye does not promote the transdifferentiative process of the iris. We suggest the existence of eye factors that promote retina-forming transformation of the iris and that are distributed in a gradient in lensectomized eyes.  相似文献   

11.
Lens regeneration from non-lens ocular tissues has been well documented in amphibians, from the dorsal iris in the newt and from the outer cornea in Xenopus. To understand the early molecular events which govern lens regeneration, we examined the expression of two early marker genes of normal lens development, Pax-6 and Prox 1. In both Cynops (newt) iris and Xenopus cornea, Pax-6 is expressed soon after lentectomy in a region broader than that giving rise to the regenerating lens, indicative of an important role for Pax-6 in determination of the regeneration potential. Then Prox 1 expression begins within the Pax-6-expressing tissue, and these Prox 1-expressing cells give rise to the regenerating lens. This sequence of events also takes place in the lens placode of the embryo, indicating that the presence of the same genetic program operates in both embryonic lens development and lens regeneration, at least partly. In the Cynops iris, Pax-6 expression occurs initially in the entire marginal region of the iris after lentectomy but then becomes restricted to the dorsal region. Further studies are expected to elucidate the mechanism of this long-standing problem of the dorsal-restriction of lens regeneration from the newt iris.  相似文献   

12.
Nepafenac is a nonsteroidal anti-inflammatory drug (NSAID), currently only available as 0.1% ophthalmic suspension (Nevanac®). This study utilized hydroxypropyl-β-cyclodextrin (HPBCD) to increase the water solubility and trans-corneal permeation of nepafenac. The nepafenac-HPBCD complexation in the liquid and solid states were confirmed by phase solubility, differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and nuclear magnetic resonance spectroscopy (NMR) analyses. Nepafenac 0.1% ophthalmic solution was formulated using HPBCD (same pH and osmolality as that of Nevanac®) and pig eye trans-corneal permeation was studied versus Nevanac®. Furthermore, nepafenac content in cornea, sclera, iris, lens, aqueous humor, choroid, ciliary body, retina, and vitreous humor was studied in a continuous isolated pig eye perfusion model in comparison to the suspension and Nevanac®. Permeation studies using porcine corneas revealed that the solution formulation had a permeation rate 18 times higher than Nevanac®. Furthermore, the solution had 11 times higher corneal retention than Nevanac®. Drug distribution studies using porcine eyes revealed that the solution formulation enables detectable levels in various ocular tissues while the drug was undetectable by Nevanac®. The ocular solution formulation had a significantly higher drug concentration in the cornea compared to the suspension or Nevanac®.  相似文献   

13.
The lens in the vertebrate eye has been shown to be critical for proper differentiation of the surrounding ocular tissues including the cornea, iris and ciliary body. In mice, previous investigators have assayed the consequences of molecular ablation of the lens. However, in these studies, lens ablation was initiated (and completed) after the cornea, retina, iris and ciliary body had initiated their differentiation programs thereby precluding analysis of the early role of the lens in fate determination of these tissues. In the present study, we have ablated the lens precursor cells of the surface ectoderm by generation of transgenic mice that express an attenuated version of diphtheria toxin (Tox176) linked to a modified Pax6 promoter that is active in the lens ectodermal precursors. In these mice, lens precursor cells fail to express Sox2, Prox1 and αA-crystallin and die before the formation of a lens placode. The Tox176 mice also showed profound alterations in the corneal differentiation program. The corneal epithelium displayed histological features of the skin, and expressed markers of skin differentiation such as Keratin 1 and 10 instead of Keratin 12, a marker of corneal epithelial differentiation. In the Tox176 mice, in the absence of the lens, extensive folding of the retina was seen. However, differentiation of the major cell types in the retina including the ganglion, amacrine, bipolar and horizontal cells was not affected. Unexpectedly, ectopic placement of the retinal pigmented epithelium was seen between the folds of the retina. Initial specification of the presumptive ciliary body and iris at the anterior margins of the retina was not altered in the Tox176 mice but their subsequent differentiation was blocked. Lacrimal and Harderian glands, which are derived from the Pax6-expressing surface ectodermal precursors, also failed to differentiate. These results suggest that, in mice, specification of the retina, ciliary body and iris occurs at the very outset of eye development and independent of the lens. In addition, our results also suggest that the lens cells of the surface ectoderm may be critical for the proper differentiation of the corneal epithelium.  相似文献   

14.
Hydroxyproline (Hyp) concentrations (total, free, peptide-bound and protein-bound) in camel eye tissues were determined. Total Hyp concentration was highest in iris, followed by ciliary body, sclera, cornea, lens and retina; the difference between total Hyp concentration of iris and sclera (P < 0.05) and cornea, lens and retina (P < 0.001) was statistically significant. Cornea had the highest concentration of free Hyp, followed by ciliary body, retina, iris, sclera and lens (P < 0.001). Peptide-bound Hyp concentration was highest in iris, followed by lens, cornea, ciliary body, retina and sclera (P < 0.001). Iris also had the highest concentration of protein-bound Hyp, followed by ciliary body, sclera, cornea, retina and lens; the difference in the protein-bound Hyp concentration between iris and sclera (P < 0.05) and cornea, retina and lens (P < 0.001) was statistically significant. Iris was also found to have the highest concentration of collagen, followed by ciliary body, sclera, cornea, lens and retina; the difference between the collagen concentration of iris and sclera (P < 0.05) and cornea, lens and retina (P < 0.001) was statistically significant. These variations may result from differences in the collagen structure and/or composition in these tissues.  相似文献   

15.
Transdifferentiation of ocular tissues in larval Xenopus laevis   总被引:4,自引:0,他引:4  
Transdifferentiation phenomena offer a useful opportunity to study experimentally the mechanisms on which cell phenotypic stability depends. The capacities of vertebrate eye tissues to reprogram cell differentiation are well known in avian and mammalian embryos, and in larval and adult newt. From research into the capacity of anuran eye tissues to reprogram differentiation into a new pathway, considerable data have accumulated concerning the transdifferentiative capacities of eye tissues in larval Xenopus laevis. This work reviews the data concerning the transdifferentiative phenomena of eye tissues in that species and, based on these, aims to establish the extent of our knowledge about the mechanism controlling these processes. In larval Xenopus laevis the outer cornea can regenerate a lens by a lens-transdifferentiation process triggered and substained by a factor(s), probably of a protein nature, produced by the neural retina. In a normal eye phenotypic stability of the outer cornea is guaranteed by the presence of the inner cornea and lens, which prevent the spread of retinal factor(s). The stimulus for lens transdifferentiation of the outer cornea can be supplied by other tissues as well, but this capacity is not widely distributed. The iris and retinal pigmented epithelium can transdifferentiate into neural retina if isolated from the surrounding tissues and implanted in the vitreous chamber. As for lens transdifferentiation of the outer cornea, retinal transdifferentiation of the iris can be stimulated by certain nonocular tissues as well.  相似文献   

16.
Cranial neural crest cells migrate into the periocular region and later contribute to various ocular tissues including the cornea, ciliary body and iris. After reaching the eye, they initially pause before migrating over the lens to form the cornea. Interestingly, removal of the lens leads to premature invasion and abnormal differentiation of the cornea. In exploring the molecular mechanisms underlying this effect, we find that semaphorin3A (Sema3A) is expressed in the lens placode and epithelium continuously throughout eye development. Interestingly, neuropilin-1 (Npn-1) is expressed by periocular neural crest but down-regulated, in a manner independent of the lens, by the subpopulation that migrates into the eye and gives rise to the cornea endothelium and stroma. In contrast, Npn-1 expressing neural crest cells remain in the periocular region and contribute to the anterior uvea and ocular blood vessels. Introduction of a peptide that inhibits Sema3A/Npn-1 signaling results in premature entry of neural crest cells over the lens that phenocopies lens ablation. Furthermore, Sema3A inhibits periocular neural crest migration in vitro. Taken together, our data reveal a novel and essential role of Sema3A/Npn-1 signaling in coordinating periocular neural crest migration that is vital for proper ocular development.  相似文献   

17.
The anterior segment of the vertebrate eye is constructed by proper spatial development of cells derived from the surface ectoderm, which become corneal epithelium and lens, neuroectoderm (posterior iris and ciliary body) and cranial neural crest (corneal stroma, corneal endothelium and anterior iris). Although coordinated interactions between these different cell types are presumed to be essential for proper spatial positioning and differentiation, the requisite intercellular signals remain undefined. We have generated transgenic mice that express either transforming growth factor (alpha) (TGF(alpha)) or epidermal growth factor (EGF) in the ocular lens using the mouse (alpha)A-crystallin promoter. Expression of either growth factor alters the normal developmental fate of the innermost corneal mesenchymal cells so that these cells often fail to differentiate into corneal endothelial cells. Both sets of transgenic mice subsequently manifest multiple anterior segment defects, including attachment of the iris and lens to the cornea, a reduction in the thickness of the corneal epithelium, corneal opacity, and modest disorganization in the corneal stroma. Our data suggest that formation of a corneal endothelium during early ocular morphogenesis is required to prevent attachment of the lens and iris to the corneal stroma, therefore permitting the normal formation of the anterior segment.  相似文献   

18.
The aim of this study was to verify whether the separation and elimination of the apoptotic fraction in rabbit semen using a MACS technique may improve sperm fertility potential and consequently rabbit kindling rate. Semen samples from 25 New Zealand White (NZW) rabbit males were collected using an artificial vagina and evaluated using the CASA system for concentration and motility. For artificial insemination the best 11 bucks were chosen based on motility parameters. Their ejaculates were mixed to make a heterospermic pool and routinely diluted in a commercial insemination diluent (MiniTüb, Tiefenbach, Germany) at a ratio of 1:6. Diluted heterospermic spermatozoa were filtered through a Sartorius filter to wash out seminal plasma, re-diluted in binding buffer (Annexin V Microbead Kit, Miltenyi Biotec, Germany) at a ratio of 1:3.66 and divided into two groups: an experimental group intended for MACS separation and control group without MACS separation. Then hormonally treated females of NZW rabbits were inseminated with fresh doses of filtered heterospermic semen (n = 27; 0.5 ml I.D. per female) and MACS separated semen (n=28; 0.5 ml I.D. per female). Separation and subsequent elimination of apoptotic spermatozoa (positive selection) from the insemination dose (after negative MACS selection) was verified under in vivo conditions on the basis of increased kindling rate in the experimental group in comparison with kindling rate in the control group (81.3% vs. 73.8%). In conclusion, elimination of apoptotic spermatozoa by the use of the MACS technique results in a slight improvement in kindling rate of rabbit does.  相似文献   

19.
20.
In a large tamarin and marmoset experimental colony, 526 animals were examined by biomicroscopy and ophthalmoscopy for the presence of ocular disease. In 109 animals, there were 147 abnormalities involving the eyelids, cornea, iris, lens, retina or optic nerve. Most abnormalities were unimportant in terms of ocular function, but a few did cause loss of vision and included diffuse, progressive retinal atrophy and a severely traumatized globe. The survey indicated that while usually minor, ocular disease in the tamarin and marmoset was widespread.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号