首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detecting and quantifying low-abundance (deoxy)ribonucleotides and (deoxy)ribonucleosides in plants remains difficult; this is a major roadblock for the investigation of plant nucleotide (NT) metabolism. Here, we present a method that overcomes this limitation, allowing the detection of all deoxy- and ribonucleotides as well as the corresponding nucleosides from the same plant sample. The method is characterized by high sensitivity and robustness enabling the reproducible detection and absolute quantification of these metabolites even if they are of low abundance. Employing the new method, we analyzed Arabidopsis thaliana null mutants of CYTIDINE DEAMINASE, GUANOSINE DEAMINASE, and NUCLEOSIDE HYDROLASE 1, demonstrating that the deoxyribonucleotide (dNT) metabolism is intricately interwoven with the catabolism of ribonucleosides (rNs). In addition, we discovered a function of rN catabolic enzymes in the degradation of deoxyribonucleosides in vivo. We also determined the concentrations of dNTs in several mono- and dicotyledonous plants, a bryophyte, and three algae, revealing a correlation of GC to AT dNT ratios with genomic GC contents. This suggests a link between the genome and the metabolome previously discussed but not experimentally addressed. Together, these findings demonstrate the potential of this new method to provide insight into plant NT metabolism.

A new method for the quantification of (deoxy)ribonucleotides and nucleosides enables an in-depth analysis of the nucleotide metabolism in plants.  相似文献   

2.
Dietary protein restriction is one of the effective ways to reduce post-weaning diarrhoea and intestinal fermentation in piglets, but it may also reduce growth performance. The compensatory growth induced by subsequent protein realimentation may solve the issue. However, little research has been done on the impact of protein realimentation on the gut. In this study, the effects of protein restriction and realimentation on ileal morphology, ileal microbial composition and metabolites in weaned piglets were investigated. Thirty-six 28-day-old weaned piglets with an average body weight of 6.47 ± 0.04 kg were randomly divided into a control group and a treatment group. The CP level in the diet of the control group was 18.83% for the entire experimental period. The piglets in the treatment group were fed 13.05% CP between days 0 and 14 and restored to a diet of 18.83% CP for days 14 to 28. On day 14 and 28, six pigs from each group were sacrificed and sampled. It was found that the abundance of Lactobacillus and Salmonella in the ileal digesta was significantly lower in the treatment group than the control group on day 14, whereas the abundance of Clostridium sensu stricto 1, Streptococcus, Halomonas and Pseudomonas significantly increased in the ileal digesta of the treatment group on day 14 compared with the control group. In addition, reduced concentrations of lactic acid, total short-chain fatty acids (total SCFAs), total branched chain fatty acids, ammonia and impaired ileal morphology and mucosal barrier were observed in the treatment group on day 14. However, diarrhoea levels decreased in the treatment group throughout the experiment. During the succedent protein realimentation stage, the treatment group demonstrated compensatory growth. Compared with the control group, the treatment group showed increased abundance of Lactobacillus and reduced abundance of Salmonella, Halomonas and Pseudomonas in the ileum on day 28. The concentrations of lactic acid and total SCFAs increased significantly, whereas the concentration of ammonia remained at a lower level in the treatment group on day 28 compared with the control group. Overall, protein realimentation could improve ileal morphology and barrier functions and promote ileal digestive and absorptive functions. In conclusion, ileal microbial composition and metabolites could change according to dietary protein restriction and realimentation and eventually influence ileal morphology and barrier functions.  相似文献   

3.
Stomach mucosa biopsies and gastric juices samples of 12 healthy persons were analysed by culturing in selective- and non-selective-rich media. Microbial DNA from four mucosal samples was also amplified by nested PCR using universal bacterial primers, and the 16S rDNA amplicons pyrosequenced. The total number of cultivable microorganisms recovered from the samples ranged from 102 to 104?cfu/g or ml. The isolates were identified at the species level by PCR amplification and sequencing of the 16S rDNA. Isolates belonged mainly to four genera; Propionibacterium, Lactobacillus, Streptococcus and Staphylococcus. A total of 15,622 high-quality 16S rDNA sequence reads were obtained by pyrosequencing from the four mucosal samples. Sequence analysis grouped the reads into 59 families and 69 genera, revealing wide bacterial diversity. Considerable differences in the composition of the gastric microbiota were observed among the subjects, although in all samples the most abundant operational taxonomic units belonged to Streptococcus, Propionibacterium and Lactobacillus. Comparison of the stomach microbiota with that present in other parts of the human gastrointestinal tract revealed distinctive microbial communities. This is the first study in which a combination of culture and culture-independent techniques has been used to explore the bacterial diversity of the human stomach.  相似文献   

4.
This study aimed at assessing the dynamics of lactic acid bacteria and other Firmicutes associated with durum wheat organs and processed products. 16S rRNA gene-based high-throughput sequencing showed that Lactobacillus, Streptococcus, Enterococcus, and Lactococcus were the main epiphytic and endophytic genera among lactic acid bacteria. Bacillus, Exiguobacterium, Paenibacillus, and Staphylococcus completed the picture of the core genus microbiome. The relative abundance of each lactic acid bacterium genus was affected by cultivars, phenological stages, other Firmicutes genera, environmental temperature, and water activity (aw) of plant organs. Lactobacilli, showing the highest sensitivity to aw, markedly decreased during milk development (Odisseo) and physiological maturity (Saragolla). At these stages, Lactobacillus was mainly replaced by Streptococcus, Lactococcus, and Enterococcus. However, a key sourdough species, Lactobacillus plantarum, was associated with plant organs during the life cycle of Odisseo and Saragolla wheat. The composition of the sourdough microbiota and the overall quality of leavened baked goods are also determined throughout the phenological stages of wheat cultivation, with variations depending on environmental and agronomic factors.  相似文献   

5.
The Drosophila melanogaster embryo has been widely utilized as a model for genetics and developmental biology due to its small size, short generation time, and large brood size. Information on embryonic metabolism during developmental progression is important for further understanding the mechanisms of Drosophila embryogenesis. Therefore, the aim of this study is to assess the changes in embryos’ metabolome that occur at different stages of the Drosophila embryonic development. Time course samples of Drosophila embryos were subjected to GC/MS-based metabolome analysis for profiling of low molecular weight hydrophilic metabolites, including sugars, amino acids, and organic acids. The results showed that the metabolic profiles of Drosophila embryo varied during the course of development and there was a strong correlation between the metabolome and different embryonic stages. Using the metabolome information, we were able to establish a prediction model for developmental stages of embryos starting from their high-resolution quantitative metabolite composition. Among the important metabolites revealed from our model, we suggest that different amino acids appear to play distinct roles in different developmental stages and an appropriate balance in trehalose-glucose ratio is crucial to supply the carbohydrate source for the development of Drosophila embryo.  相似文献   

6.
As one of major epigenetic changes responsible for tumor suppressor gene inactivation in the development of cancer, promoter hypermethylation was proposed as a marker to define novel tumor suppressor genes. In the current study we identified ZIC1 (Zic family member 1, odd-paired Drosophila homolog) as a novel tumor suppressor gene silenced through promoter hypermethylation in gastric cancer, the second leading cause of cancer death worldwide. In all of gastric cancer cells lines examined, ZIC1 expression was downregulated and such downregulation was accompanied with the hypermethylation of ZIC1 promoter. Demethylation treatment with 5-aza-2′-deoxycytidine (Aza) reversed ZIC1 downregulation, highlighting the importance of promoter methylation to ZIC1 downregulation in gastric cancer cells. Notably, ZIC1 expression was significantly downregulated in primary gastric carcinoma tissues in comparison with non-tumor adjacent gastric tissues (p < 0.01). Accordingly, promoter methylation of ZIC1 was frequently detected in primary gastric carcinoma tissues (94.6%, 35/37) but not normal gastric tissues, indicating that promoter hypermethylation mediated ZIC1 downregulation may play an important role in gastric carcinogenesis. Indeed, ectopic expression of ZIC1 led to the growth inhibition of gastric cancer cells through the induction of S-phase cell cycle arrest (p < 0.01). Our results revealed ZIC1 as a novel candidate tumor suppressor gene downregulated through promoter hypermethylation in gastric cancer.  相似文献   

7.
An increasing body of evidence indicates that miR-149 can both suppress and promote tumor growth depending on the tumor type. However, the role of miR-149 in the progression of gastric cancer (GC) remains unknown. Here we report that miR-149 is a tumor suppressor in human gastric cancer. miR-149 expression is decreased in GC cell lines and clinical specimens in comparison to normal gastric epithelial cell and tissues, respectively. The expression levels of miR-149 also correlate with the differentiation degree of GC cells and tissues. Moreover, ectopic expression of miR-149 in gastric cancer cells inhibits proliferation and cell cycle progression by down-regulating ZBTB2, a potent repressor of the ARF-HDM2-p53-p21 pathway, with a potential binding site for miR-149 in its mRNA''s 3′UTR. It is also found that ZBTB2 expression increases in GC cells and tissues compared to normal gastric epithelial cell and tissues, respectively. Silencing of ZBTB2 leads to suppression of cell growth and cell cycle arrest in G0/G1 phase, indicating that ZBTB2 may act as an oncogene in GC. Furthermore, transfection of miR-149 mimics into gastric cancer cells induces down-regulation of ZBTB2 and HDM2, and up-regulation of ARF, p53, and p21 compared to the controls. In summary, our data suggest that miR-149 functions as a tumor suppressor in human gastric cancer by, at least partially through, targeting ZBTB2.  相似文献   

8.
The human stomach is naturally colonized by Helicobacter pylori, which, when present, dominates the gastric bacterial community. In this study, we aimed to characterize the structure of the bacterial community in the stomach of patients of differing H. pylori status. We used a high-density 16S rRNA gene microarray (PhyloChip, Affymetrix, Inc.) to hybridize 16S rRNA gene amplicons from gastric biopsy DNA of 10 rural Amerindian patients from Amazonas, Venezuela, and of two immigrants to the United States (from South Asia and Africa, respectively). H. pylori status was determined by PCR amplification of H. pylori glmM from gastric biopsy samples. Of the 12 patients, 8 (6 of the 10 Amerindians and the 2 non-Amerindians) were H. pylori glmM positive. Regardless of H. pylori status, the PhyloChip detected Helicobacteriaceae DNA in all patients, although with lower relative abundance in patients who were glmM negative. The G2-chip taxonomy analysis of PhyloChip data indicated the presence of 44 bacterial phyla (of which 16 are unclassified by the Taxonomic Outline of the Bacteria and Archaea taxonomy) in a highly uneven community dominated by only four phyla: Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. Positive H. pylori status was associated with increased relative abundance of non-Helicobacter bacteria from the Proteobacteria, Spirochetes and Acidobacteria, and with decreased abundance of Actinobacteria, Bacteroidetes and Firmicutes. The PhyloChip detected richness of low abundance phyla, and showed marked differences in the structure of the gastric bacterial community according to H. pylori status.  相似文献   

9.
Several studies have shown that an increased risk of metabolic and immune disorders associated with cesarean section mode of delivery may exist. However, such studies have not been conducted in the Chinese population. Stool sample sequencing of the gene encoding the 16S rRNA of 82 prospectively enrolled 3- and 30–42-day-old vaginal and cesarean section delivered newborns was performed to study the composition and predicted function of the intestinal microbiota. In the samples from the 3-day-old neonates, the levels of Escherichia-Shigella in the two groups were similar. The genera Bifidobacterium, Lactobacillus, and Bacteroides were more prominent in the vaginal delivery than in the cesarean section group, which showed a predominance of Staphylococcus, Streptococcus, and Corynebacterium. The differences between the two groups were statistically significant (p < 0.05). In the samples from 30- to 42-day-old infants, Bifidobacterium, Lactobacillus, Escherichia-Shigella, and Bacteroides were the main genera present in the vaginal delivery group, while in the cesarean section delivery group; the predominant genera were Escherichia-Shigella, Bifidobacterium, Bacteroides, and Staphylococcus. Predicted functions of the vaginal delivery group revealed higher metabolic and biodegradation rates of carbohydrates, vitamins, and xenobiotics than those in the cesarean section group, which contributed to the stability of the microbiota in the former. The abundance of probiotic bacteria such as Bifidobacterium and Lactobacillus, and the negative correlation between obesity and Bacteroides presence were higher in vaginally delivered infants than in cesarean-delivered infants at both studied time points.  相似文献   

10.
Chagas disease is a trypanosomiasis whose causative agent is the protozoan parasite Trypanosoma cruzi, which is transmitted to humans by hematophagous insects known as triatomines and affects a large proportion of South America. The digestive tract of the insect vectors in which T. cruzi develops constitutes a dynamic environment that affects the development of the parasite. Thus, we set out to investigate the chemical composition of the triatomine intestinal tract through a metabolomics approach. We performed Direct Infusion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry on fecal samples of three triatomine species (Rhodnius prolixus, Triatoma infestans, Panstrongylus megistus) fed with rabbit blood. We then identified groups of metabolites whose frequencies were either uniform in all species or enriched in each of them. By querying the Human Metabolome Database, we obtained putative identities of the metabolites of interest. We found that a core group of metabolites with uniform frequencies in all species represented approximately 80% of the molecules detected, whereas the other 20% varied among triatomine species. The uniform core was composed of metabolites of various categories, including fatty acids, steroids, glycerolipids, nucleotides, sugars, and others. Nevertheless, the metabolic fingerprint of triatomine feces differs depending on the species considered. The variable core was mainly composed of prenol lipids, amino acids, glycerolipids, steroids, phenols, fatty acids and derivatives, benzoic acid and derivatives, flavonoids, glycerophospholipids, benzopyrans, and quinolines. Triatomine feces constitute a rich and varied chemical medium whose constituents are likely to affect T. cruzi development and infectivity. The complexity of the fecal metabolome of triatomines suggests that it may affect triatomine vector competence for specific T. cruzi strains. Knowledge of the chemical environment of T. cruzi in its invertebrate host is likely to generate new ways to understand the factors influencing parasite proliferation as well as methods to control Chagas disease.  相似文献   

11.
The Fecal Microbiome in Cats with Diarrhea   总被引:1,自引:0,他引:1  
Recent studies have revealed that microbes play an important role in the pathogenesis of gastrointestinal (GI) diseases in various animal species, but only limited data is available about the microbiome in cats with GI disease. The aim of this study was to evaluate the fecal microbiome in cats with diarrhea. Fecal samples were obtained from healthy cats (n = 21) and cats with acute (n = 19) or chronic diarrhea (n = 29) and analyzed by sequencing of 16S rRNA genes, and PICRUSt was used to predict the functional gene content of the microbiome. Linear discriminant analysis (LDA) effect size (LEfSe) revealed significant differences in bacterial groups between healthy cats and cats with diarrhea. The order Burkholderiales, the families Enterobacteriaceae, and the genera Streptococcus and Collinsella were significantly increased in diarrheic cats. In contrast the order Campylobacterales, the family Bacteroidaceae, and the genera Megamonas, Helicobacter, and Roseburia were significantly increased in healthy cats. Phylum Bacteroidetes was significantly decreased in cats with chronic diarrhea (>21 days duration), while the class Erysipelotrichi and the genus Lactobacillus were significantly decreased in cats with acute diarrhea. The observed changes in bacterial groups were accompanied by significant differences in functional gene contents: metabolism of fatty acids, biosynthesis of glycosphingolipids, metabolism of biotin, metabolism of tryptophan, and ascorbate and aldarate metabolism, were all significantly (p<0.001) altered in cats with diarrhea. In conclusion, significant differences in the fecal microbiomes between healthy cats and cats with diarrhea were identified. This dysbiosis was accompanied by changes in bacterial functional gene categories. Future studies are warranted to evaluate if these microbial changes correlate with changes in fecal concentrations of microbial metabolites in cats with diarrhea for the identification of potential diagnostic or therapeutic targets.  相似文献   

12.
Potato (Solanum tuberosum L.) cv. Santé was grown over 2 years under both conventional and organic fertiliser and crop protection regimes. The tuber metabolome was analysed using mass-spectrometry (MS) based approaches, principally liquid chromatography (LC)–MS and gas chromatography (GC)–MS. Data were analysed using Principal Components Analysis (PCA) and Analysis of Variance (ANOVA) to assess any differences between production practices. GC–MS analysis of non-polar metabolites did not detect any statistically significant differences, but GC–MS analysis of polar compounds identified 83 metabolites showing significant differences in the metabolome between the fertiliser treatments. Of the 62 metabolites that were less abundant in tuber samples from organic compared with conventionally fertilised crops, consistent year on year differences were dominated by free amino acids. The effect on free amino acids is associated with the lower nitrogen (N) content of the organically grown potatoes in this instance (50 % lower than for conventional production). LC–MS provided indications that levels of certain glycoalkaloids may be lower under the organic fertiliser regime in one growing season. Differences associated with the crop protection measures used were much less consistent, and relatively small, compared with the fertiliser effects found.  相似文献   

13.
Mature microRNAs (miRNAs) are a class of small non-coding RNAs involved in posttranslational gene silencing. Previous studies found that downregulation of miRNAs is a common feature observed in solid tumors, including hepatocellular carcinoma (HCC). We employed a genome-wide approach to test the hypothesis that DNA methylation alterations in miRNA host genes may cause deregulated miRNA expression in HCC. We analyzed tumor and adjacent non-tumor tissues from 62 Taiwanese HCC cases using Infinium HumanMethylation27 DNA Analysis BeadChips that include 254 CpG sites covering 110 miRNAs from 64 host genes. Expression levels of three identified miRNAs (miR-10a, miR-10b and miR-196b) were measured in a subset of 37 HCC tumor and non-tumor tissues. After Bonferroni adjustment, a total of 54 CpG sites from 27 host genes significantly differed in DNA methylation levels between tumor and adjacent non-tumor tissues with 53 sites significantly hypermethylated in tumor tissues. Among the 54 significant CpG sites, 15 sites had more than 2-fold tumor/non-tumor changes, 17 sites had differences > 10%, and 10 sites had both features [including 8 significantly hypermethylated CpG sites in the host genes of miR-10a, miR-10b and miR-196b (HOXB4, HOXD4 and HOXA9, respectively)]. Significant downregulation of miR-10a was observed in tumor compared with non-tumor tissues (0.50 vs. 1.73, p = 0.031). The concordance for HOXB4 methylation alteration and dysregulation of miR-10a was 73.5%. No significant change was observed for miR-10b expression. Unexpectedly, miR-196b was significantly upregulated in tumor compared with non-tumor tissues (p = 0.0001). These data suggest that aberrant DNA methylation may lead to dysregulation of miR-10a in HCC tumor tissues.  相似文献   

14.

Background

Infections with gastric Helicobacter spp. are associated with gastritis, peptic ulceration, and malignancies. Helicobacter pylori is the most prevalent Helicobacter species colonizing the human stomach. Other gastric non‐H. pylori helicobacters (NHPHs) have been described in 0.2%‐6% of human patients with gastric disorders. Nevertheless, due to difficulties in the diagnosis of NHPH infections and lack of routine screening, this is most likely an underestimation of their true prevalence. To the best of our knowledge, no studies have been performed in the presence of Helicobacter spp. in children suffering from gastric disorders in Southern Turkey.

Materials and methods

In total, 110 children with gastric complaints were examined at the Cukurova University Balcali hospital, Turkey. Gastroscopy was performed to evaluate the presence of gastric mucosal lesions. Biopsies of the pyloric gland zone were taken for histopathological analysis, rapid urease testing, and presence of Helicobacter spp. DNA by PCR.

Results

Based on the PCR results, the prevalence of Helicobacter spp. was 32.7% (36/110). H. pylori was found in 30.9% (34/110), H. suis in 1.8% (2/110), and H. heilmannii/H. ailurogastricus in 0.9% (1/110) of the human patients. A mixed infection with H. pylori and H. suis was present in one patient. The presence of mucosal abnormalities, such as nodular inflammation, ulceration, and hyperemia, as well as gastritis, was significantly higher in Helicobacter spp. positive patients.

Conclusion

Helicobacter pylori, H. suis, and H. heilmannii/H. ailurogastricus were present in children with gastric complaints. Infection with these pathogens may be involved in the development of gastritis and ulceration.  相似文献   

15.
16.
The development of the lactic acid bacterial community in a commercial malt whisky fermentation occurred in three broad phases. Initially, bacteria were inhibited by strong yeast growth. Fluorescence microscopy and environmental scanning electron microscopy revealed, in this early stage, both cocci and rods that were at least partly derived from the wort and yeast but also stemmed from the distillery plant. Denaturing gradient gel electrophoresis (DGGE) of partial 16S rRNA genes and sequence analysis revealed cocci related to Streptococcus thermophilus or Saccharococcus thermophilus, Lactobacillus brevis, and Lactobacillus fermentum. The middle phase began 35 to 40 h after yeast inoculation and was characterized by exponential growth of lactobacilli and residual yeast metabolism. Lactobacillus casei or Lactobacillus paracasei, L. fermentum, and Lactobacillus ferintoshensis were detected in samples of fermenting wort examined by DGGE during this stage. Bacterial growth was accompanied by the accumulation of acetic and lactic acids and the metabolism of residual maltooligosaccharides. By 70 h, two new PCR bands were detected on DGGE gels, and the associated bacteria were largely responsible for the final phase of the fermentation. The bacteria were phylogenetically related to Lactobacillus acidophilus and Lactobacillus delbrueckii, and strains similar to the former had previously been recovered from malt whisky fermentations in Japan. These were probably obligately homofermentative bacteria, required malt wort for growth, and could not be cultured on normal laboratory media, such as MRS. Their metabolism during the last 20 to 30 h of fermentation was associated with yeast death and autolysis and further accumulation of lactate but no additional acetate.  相似文献   

17.
目的:检测JMJD6蛋白在胃癌组织及相应癌旁正常组织中的表达情况,并分析JMJD6蛋白表达与胃癌患者临床病理参数及预后的关系。方法:应用免疫组织化学方法检测JMJD6蛋白在胃癌组织及相应癌旁正常组织中的表达情况,进一步用Kaplan-Meier生存分析、COX比例风险回归模型等统计学方法研究JMJD6表达与胃癌患者临床病理参数及预后的关系。结果:JMJD6在胃癌组织中的表达阳性率显著高于癌旁正常组织(P=0.001);JMJD6在胃癌组织的高表达与肿瘤临床分期(P=0.008)、病理分级(P=0.001)、局部浸润深度(P=0.028)、有无淋巴结转移(P=0.001)等显著相关;Kaplan-Meier生存分析结果表明JMJD6高表达的胃癌患者术后总体生存率显著低于JMJD6低表达的患者(P=0.023)。结论:JMJD6在胃癌的发生发展中可能发挥了癌基因样作用,可能作为胃癌治疗的潜在靶点。  相似文献   

18.
19.
Kashin-Beck disease (KBD) is a severe osteochondral disorder that may be driven by the interaction between genetic and environmental factors. We aimed to improve our understanding of the gut microbiota structure in KBD patients of different grades and the relationship between the gut microbiota and serum metabolites. Fecal and serum samples collected from KBD patients and normal controls (NCs) were used to characterize the gut microbiota using 16S rDNA gene and metabolomic sequencing via liquid chromatography-mass spectrometry (LC/MS). To identify whether gut microbial changes at the species level are associated with the genes or functions of the gut bacteria in the KBD patients, metagenomic sequencing of fecal samples from grade I KBD, grade II KBD and NC subjects was performed. The KBD group was characterized by elevated levels of Fusobacteria and Bacteroidetes. A total of 56 genera were identified to be significantly differentially abundant between the two groups. The genera Alloprevotella, Robinsoniella, Megamonas, and Escherichia_Shigella were more abundant in the KBD group. Consistent with the 16S rDNA analysis at the genus level, most of the differentially abundant species in KBD subjects belonged to the genus Prevotella according to metagenomic sequencing. Serum metabolomic analysis identified some differentially abundant metabolites among the grade I and II KBD and NC groups that were involved in lipid metabolism metabolic networks, such as that for unsaturated fatty acids and glycerophospholipids. Furthermore, we found that these differences in metabolite levels were associated with altered abundances of specific species. Our study provides a comprehensive landscape of the gut microbiota and metabolites in KBD patients and provides substantial evidence of a novel interplay between the gut microbiome and metabolome in KBD pathogenesis.Subject terms: Metagenomics, Metabolomics  相似文献   

20.
《Genomics》2021,113(6):3512-3522
ObjectiveOur study aims to identify the impact of histone deacetylase 3 (HDAC3) and microRNA-376c-3p (miR-376c-3p) on gastric cancer (GC) by targeting wingless-type MMTV integration site family member 2b (WNT2b).MethodsLevels of miR-376c-3p, HDAC3 and WNT2b were assessed. GC cells were treated with altered HDAC3 or miR-376c-3p to evaluate their biological functions, and rescue experiment was performed to assess the effect of WNT2b on GC cells. The tumor growth in vivo was observed.ResultsHDAC3 and WNT2b were up-regulated while miR-376c-3p was reduced in GC tissues and cell lines. The inhibited HDAC3 or elevated miR-376c-3p could restrain malignant behaviors of GC cells in vitro, and also suppress the xenograft growth. WNT2b silencing reduced the effect of miR-376c-3p inhibition while WNT2b overexpression mitigated that of miR-376c-3p promotion on GC cell growth.ConclusionInhibiting HDAC3 promotes miR-376c-3p to suppress malignant phenotypes of GC cells via reducing WNT2b, thereby restricting GC development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号