首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
SV40 is a small, non enveloped DNA virus with an icosahedral capsid of 45 nm. The outer shell is composed of pentamers of the major capsid protein, VP1, linked via their flexible carboxy-terminal arms. Its morphogenesis occurs by assembly of capsomers around the viral minichromosome. However the steps leading to the formation of mature virus are poorly understood. Intermediates of the assembly reaction could not be isolated from cells infected with wt SV40. Here we have used recombinant VP1 produced in insect cells for in vitro assembly studies around supercoiled heterologous plasmid DNA carrying a reporter gene. This strategy yields infective nanoparticles, affording a simple quantitative transduction assay. We show that VP1 assembles under physiological conditions into uniform nanoparticles of the same shape, size and CsCl density as the wild type virus. The stoichiometry is one DNA molecule per capsid. VP1 deleted in the C-arm, which is unable to assemble but can bind DNA, was inactive indicating genuine assembly rather than non-specific DNA-binding. The reaction requires host enzymatic activities, consistent with the participation of chaperones, as recently shown. Our results demonstrate dramatic cooperativity of VP1, with a Hill coefficient of approximately 6. These findings suggest that assembly may be a concerted reaction. We propose that concerted assembly is facilitated by simultaneous binding of multiple capsomers to a single DNA molecule, as we have recently reported, thus increasing their local concentration. Emerging principles of SV40 assembly may help understanding assembly of other complex systems. In addition, the SV40-based nanoparticles described here are potential gene therapy vectors that combine efficient gene delivery with safety and flexibility.  相似文献   

2.
Virus-like particles (VLPs), a promising next-generation drug delivery vehicle, can be formed in vitro using a recombinant viral capsid protein VP1 from SV40. Seventy-two VP1 pentamers interconnect to form the T = 7d lattice of SV40 capsids, through three types of C-terminal interactions, alpha-alpha'-alpha', beta-beta' and gamma-gamma. These appear to require VP1 conformational switch, which involve in particular the region from amino acids 301-312 (herein Region I). Here we show that progressive deletions from the C-terminus of VP1, up to 34 amino acids, cause size and shape variations in the resulting VLPs, including tubular formation, whereas deletions beyond 34 amino acids simply blocked VP1 self-assembly. Mutants carrying in Region I point mutations predicted to disrupt alpha-alpha'-alpha'-type and/or beta-beta'-type interactions formed small VLPs resembling T = 1 symmetry. Chimeric VP1, in which Region I of SV40 VP1 was substituted with the homologous region from VP1 of other polyomaviruses, assembled only into small VLPs. Together, our results show the importance of the integrity of VP1 C-terminal region and the specific amino acid sequences within Region I in the assembly of normal VLPs. By understanding how to alter VLP sizes and shapes contributes to the development of drug delivery systems using VLPs.  相似文献   

3.
Polymorphism in the assembly of polyomavirus capsid protein VP1.   总被引:16,自引:2,他引:14       下载免费PDF全文
Polyomavirus major capsid protein VP1, purified after expression of the recombinant gene in Escherichia coli, forms stable pentamers in low-ionic strength, neutral, or alkaline solutions. Electron microscopy showed that the pentamers, which correspond to viral capsomeres, can be self-assembled into a variety of polymorphic aggregates by lowering the pH, adding calcium, or raising the ionic strength. Some of the aggregates resembled the 500-A-diameter virus capsid, whereas other considerably larger or smaller capsids were also produced. The particular structures formed on transition to an environment favoring assembly depended on the pathway of the solvent changes as well as on the final conditions. Mass measurements from cryoelectron micrographs and image analysis of negatively stained specimens established that a distinctive 320-A-diameter particle consists of 24 close-packed pentamers arranged with octahedral symmetry. Comparison of this unexpected octahedral assembly with a 12-capsomere icosahedral aggregate and the 72-capsomere icosahedral virus capsid by computer graphics methods indicates that similar connections are made among trimers of pentamers in these shells of different size. The polymorphism in the assembly of VP1 pentamers can be related to the switching in bonding specificity required to build the virus capsid.  相似文献   

4.
The capsid of SV40 is regarded as a potential nano-capsule for delivery of biologically active materials. The SV40 capsid is composed of 72 pentamers of the VP1 major capsid protein and 72 copies of the minor coat proteins VP2/3. We have previously demonstrated that, when expressed in insect Sf9 cells by the baculovirus system, VP1 self-assembles into virus-like particles (VP1-VLPs), which are morphologically indistinguishable from the SV40 virion and can be easily purified. Here, we show that heterologous proteins fused to VP2/3 can be efficiently incorporated into the VP1-VLPs. Using EGFP as a model protein, we have optimized this encapsulation system and found that fusion to the C-terminus of VP2/3 is preferable and that the C-terminal VP1-interaction domain of VP2/3 is sufficient for incorporation into VLPs. The VLPs encapsulating EGFP retain the ability to attach to the cell surface and enter the cells. Using this system, we have encapsulated yeast cytosine deaminase (yCD), a prodrug-modifying enzyme that converts 5-fluorocytosine to 5-fluorouracil, into VLPs. When CV-1 cells are challenged by the yCD-encapsulating VLPs, they become sensitive to 5-fluorocytosine-induced cell death. Therefore, proteins of interest can be encapsulated in VP1-VLPs by fusion to VP2/3 and successfully delivered to cells.  相似文献   

5.
Nonenveloped viruses such as Simian Virus 40 (SV40) exploit established cellular pathways for internalization and transport to their site of penetration. By analyzing mutant SV40 genomes that do not express VP2 or VP3, we found that these structural proteins perform essential functions that are regulated by VP1. VP2 significantly enhanced SV40 particle association with the host cell, while VP3 functioned downstream. VP2 and VP3 both integrated posttranslationally into the endoplasmic reticulum (ER) membrane. Association with VP1 pentamers prevented their ER membrane integration, indicating that VP1 controls the function of VP2 and VP3 by directing their localization between the particle and the ER membrane. These findings suggest a model in which VP2 aids in cell binding. After capsid disassembly within the ER lumen, VP3, and perhaps VP2, oligomerizes and integrates into the ER membrane, potentially creating a viroporin that aids in viral DNA transport out of the ER.  相似文献   

6.
The simian virus 40 capsid is composed of 72 pentamers of VP1 protein. Although the capsid is known to dissociate to pentamers in vitro following simultaneous treatment with reducing and chelating agents, the functional roles of disulfide linkage and calcium ion-mediated interactions are not clear. To elucidate the roles of these interactions, we introduced amino acid substitutions in VP1 at cysteine residues and at residues involved in calcium binding. We expressed the mutant proteins in a baculovirus system and analyzed both their assembly into virus-like particles (VLPs) in insect cells and the disassembly of those VLPs in vitro. We found that disulfide linkages at both Cys-9 and Cys-104 conferred resistance to proteinase K digestion on VLPs, although neither linkage was essential for the formation of VLPs in insect cells. In particular, reduction of the disulfide linkage at Cys-9 was found to be critical for VLP dissociation to VP1 pentamers in the absence of calcium ions, indicating that disulfide linkage at Cys-9 prevents VLP dissociation, probably by increasing the stability of calcium ion binding. We found that amino acid substitutions at carboxy-terminal calcium ion binding sites (Glu-329, Glu-330, and Asp-345) resulted in the frequent formation of unusual tubular particles as well as VLPs in insect cells, indicating that these residues affect the accuracy of capsid assembly. In addition, unexpectedly, amino acid substitutions at any of the calcium ion binding sites tested, especially at Glu-157, resulted in increased stability of VLPs in the absence of calcium ions in vitro. These results suggest that appropriate affinities of calcium ion binding are responsible for both assembly and disassembly of the capsid.  相似文献   

7.
8.
Production of the major capsid protein of SV40, VP1, is of great interest for the study on capsid assembly in vitro. Production of soluble His6-VP1 in Escherichia coli strains deficient in the GroELS chaperone machine was substantially higher than in the wild-type strain. The His6-VP1 produced in a groEL mutant strain was readily purified. The protein was able to form higher-order structures as evidenced by analysis of the soluble fraction by gel filtration, by sedimentation in sucrose gradient, and by electron microscopy. We propose the use of groE mutants for the production of the major capsid protein of SV40 and perhaps also other papovaviruses.  相似文献   

9.
The abundant nuclear enzyme poly(ADP-ribose) polymerase (PARP) functions in DNA damage surveillance and repair and at the decision between apoptosis and necrosis. Here we show that PARP binds to simian virus 40 (SV40) capsid proteins VP1 and VP3. Furthermore, its enzymatic activity is stimulated by VP3 but not by VP1. Experiments with purified mutant proteins demonstrated that the PARP binding domain in VP3 is localized to the 35 carboxy-terminal amino acids, while a larger peptide of 49 amino acids was required for full stimulation of its activity. The addition of 3-aminobenzamide (3-AB), a known competitive inhibitor of PARP, demonstrated that PARP participates in the SV40 life cycle. The titer of SV40 propagated on CV-1 cells was reduced by 3-AB in a dose-dependent manner. Additional experiments showed that 3-AB did not affect viral DNA replication or capsid protein production. PARP did not modify the viral capsid proteins in in vitro poly(ADP-ribosylation) assays, implying that it does not affect SV40 infectivity. On the other hand, it greatly reduced the magnitude of the host cytopathic effects, a hallmark of SV40 infection. Additional experiments suggested that the stimulation of PARP activity by VP3 leads the infected cell to a necrotic pathway, characterized by the loss of membrane integrity, thus facilitating the release of mature SV40 virions from the cells. Our studies identified a novel function of the minor capsid protein VP3 in the recruitment of PARP for the SV40 lytic process.  相似文献   

10.
A recombinant system for the major capsid VP1 protein of budgerigar fledgling disease virus has been established. The VP1 gene was inserted into a truncated form of the pFlag-1 vector and expressed in Escherichia coli. The budgerigar fledgling disease virus VP1 protein was purified to near homogeneity by immunoaffinity chromatography. Fractions containing highly purified VP1 were pooled and found to constitute 3.3% of the original E. coli-expressed VP1 protein. Electron microscopy revealed that the VP1 protein was isolated as pentameric capsomeres. Electron microscopy also revealed that capsid-like particles were formed in vitro from purified VP1 capsomeres with the addition of Ca2+ ions and the removal of chelating and reducing agents.  相似文献   

11.
The major capsid protein of polyomavirus, VP1, has been expression cloned in Escherichia coli, and the recombinant VP1 protein has been purified to near homogeneity (A. D. Leavitt, T. M. Roberts, and R. L. Garcea, J. Biol. Chem. 260:12803-12809, 1985). With this recombinant protein, a nitrocellulose filter transfer assay was developed for detecting DNA binding to VP1 (Southwestern assay). In optimizing conditions for this assay, dithiothreitol was found to inhibit DNA binding significantly. With recombinant VP1 proteins deleted at the carboxy and amino termini, a region of the protein affecting DNA binding was identified within the first 7 amino acids (MAPKRKS) of the VP1 amino terminus. Southwestern analysis of virion proteins separated by two-dimensional gel electrophoresis demonstrated equivalent DNA binding among the different VP1 isoelectric focusing subspecies, suggesting that VP1 phosphorylation does not modulate this function. By means of partial proteolysis of purified recombinant VP1 capsomeres for assessing structural features of the protein domain affecting DNA binding, a trypsin-sensitive site at lysine 28 was found to eliminate VP1 binding to DNA. The binding constant of recombinant VP1 to polyomavirus DNA was determined by an immunoprecipitation assay (R. D. G. McKay, J. Mol. Biol. 145:471-488, 1981) to be 1 x 10(-11) to 2 x 10(-11) M, which was not significantly different from its affinity for plasmid DNA. McKay analysis of deleted VP1 proteins and VP1-beta-galactosidase fusion proteins indicated that the amino terminus was both necessary and sufficient for DNA binding. As shown by electron microscopy, DNA inhibited in vitro capsomere self-assembly into capsidlike structures (D. M. Salunke, D. L. D. Caspar, and R. L. Garcea, Cell 46:895-904, 1986). Thus, VP1 is a high-affinity, non-sequence-specific DNA-binding protein with the binding function localized near its trypsin-accessible amino terminus. The inhibitory effects of disulfide reagents on DNA binding and of DNA on capsid assembly suggest possible intermediate steps in virion assembly.  相似文献   

12.
Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is a double-stranded RNA virus. The IBDV capsid is formed by two major structural proteins, VP2 and VP3, which assemble to form a T=13 markedly nonspherical capsid. During viral infection, VP2 is initially synthesized as a precursor, called VPX, whose C end is proteolytically processed to the mature form during capsid assembly. We have computed three-dimensional maps of IBDV capsid and virus-like particles built up by VP2 alone by using electron cryomicroscopy and image-processing techniques. The IBDV single-shelled capsid is characterized by the presence of 260 protruding trimers on the outer surface. Five classes of trimers can be distinguished according to their different local environments. When VP2 is expressed alone in insect cells, dodecahedral particles form spontaneously; these may be assembled into larger, fragile icosahedral capsids built up by 12 dodecahedral capsids. Each dodecahedral capsid is an empty T=1 shell composed of 20 trimeric clusters of VP2. Structural comparison between IBDV capsids and capsids consisting of VP2 alone allowed the determination of the major capsid protein locations and the interactions between them. Whereas VP2 forms the outer protruding trimers, VP3 is found as trimers on the inner surface and may be responsible for stabilizing functions. Since elimination of the C-terminal region of VPX is correlated with the assembly of T=1 capsids, this domain might be involved (either alone or in cooperation with VP3) in the induction of different conformations of VP2 during capsid morphogenesis.  相似文献   

13.
SV40 assembles in the nucleus by addition of capsid proteins to the minichromosome. The VP15VP2/3 capsomer is composed of a pentamer of the major protein VP1 complexed with a monomer of a minor protein, VP2 or VP3. In the capsid, the capsomers are bound together via their flexible carboxy-terminal arms. Our previous studies suggested that the capsomers are recruited to the packaging signal ses via avid interaction with Sp1. During assembly Sp1 is displaced, allowing chromatin compaction. Here we investigated the interactions in vitro of VP1(5)VP2/3 capsomers with the entire SV40 genome, using mutant VP1 deleted in the carboxy-arm that cannot assemble, but retains DNA-binding capacity. EM revealed that VP1(5)VP2/3 complexes bind non-specifically at random locations around the DNA. Sp1 was absent from mature virions. The findings suggest that multiple capsomers attach simultaneously to the viral genome, increasing their local concentration, facilitating rapid, concerted assembly reaction and removal of Sp1.  相似文献   

14.
Hydroxyproline in the major capsid protein VP1 of polyomavirus.   总被引:4,自引:4,他引:0       下载免费PDF全文
Amino acid analysis of [3H]proline-labeled polyomavirus major capsid protein VP1 by two-dimensional paper chromatography of the acid-hydrolyzed protein revealed the presence of 3H-labeled hydroxyproline. Addition of the proline analog L-azetidine-2-carboxylic acid to infected mouse kidney cell cultures prevented or greatly reduced hydroxylation of proline in VP1. Immunofluorescence analysis performed on infected cells over a time course of analog addition revealed that virus proteins were synthesized but that transport from the cytoplasm to the nucleus was impeded. A reduction in the assembly of progeny virions demonstrated by CsCl gradient purification of virus from [35S]methionine-labeled infected cell cultures was found to correlate with the time of analog addition. These results suggest that incorporation of this proline analog into VP1, accompanied by reduction of the hydroxyproline content of the protein, influences the amount of virus progeny produced by affecting transport of VP1 to the cell nucleus for assembly into virus particles.  相似文献   

15.
The agnoprotein of simian virus 40 (SV40) is a 61-amino-acid protein encoded in the leader of some late mRNAs. In indirect immunofluorescence studies with antisera against SV40 capsid proteins, we show that mutants which make no agnoprotein display abnormal perinuclear-nuclear localization of VP1, the major capsid protein, but not VP2 or VP3, the minor capsid proteins. In wild-type (WT) SV40-infected CV-1P cells, VP1 was found predominantly in the cytoplasm until 36 h postinfection (p.i.), approximately the time that high levels of agnoprotein became detectable under our infection conditions. Thereafter, VP1 localized rapidly to the perinuclear region and to the nucleus. In contrast, in agnoprotein-minus mutant-infected CV-1P cells, perinuclear-nuclear accumulation of VP1 occurred much less efficiently; a significantly greater fraction of cells with predominantly cytoplasmic fluorescence was observed up to 48 h p.i. At 48 and 60 h p.i., more cells with largely perinuclear and little nuclear staining were seen than in WT-infected controls. In similar analyses with stably transfected cell lines constitutively expressing the agnoprotein, VP1 localized to the nucleus before 30 h p.i., regardless of the infecting virus. Delayed nuclear entry of VP1 in a mutant which makes no agnoprotein was also overcome in a revertant which has a second site point mutation in VP1. This suggests that an alteration of VP1 can partially overcome the defect of the agnogene mutation by enhancement of the rate of its own nuclear localization. Taken together, these results indicate that at least one function of the agnoprotein is to enhance the efficiency of perinuclear-nuclear localization of VP1.  相似文献   

16.
Direct insertion of amino acid sequences into the adeno-associated virus type 2 (AAV) capsid open reading frame (cap ORF) is one strategy currently being developed for retargeting this prototypical gene therapy vector. While this approach has successfully resulted in the formation of AAV particles that have expanded or retargeted viral tropism, the inserted sequences have been relatively short, linear receptor binding ligands. Since many receptor-ligand interactions involve nonlinear, conformation-dependent binding domains, we investigated the insertion of full-length peptides into the AAV cap ORF. To minimize disruption of critical VP3 structural domains, we confined the insertions to residue 138 within the VP1-VP2 overlap, which has been shown to be on the surface of the particle following insertion of smaller epitopes. The insertion of coding sequences for the 8-kDa chemokine binding domain of rat fractalkine (CX3CL1), the 18-kDa human hormone leptin, and the 30-kDa green fluorescent protein (GFP) after residue 138 failed to lead to formation of particles due to the loss of VP3 expression. To test the ability to complement these insertions with the missing capsid proteins in trans, we designed a system for producing AAV vectors in which expression of one capsid protein is isolated and combined with the remaining two capsid proteins expressed separately. Such an approach allows for genetic modification of a specific capsid protein across its entire coding sequence leaving the remaining capsid proteins unaffected. An examination of particle formation from the individual components of the system revealed that genome-containing particles formed as long as the VP3 capsid protein was present and demonstrated that the VP2 capsid protein is nonessential for viral infectivity. Viable particles composed of all three capsid proteins were obtained from the capsid complementation groups regardless of which capsid proteins were supplied separately in trans. Significant overexpression of VP2 resulted in the formation of particles with altered capsid protein stoichiometry. The key finding was that by using this system we successfully obtained nearly wild-type levels of recombinant AAV-like particles with large ligands inserted after residue 138 in VP1 and VP2 or in VP2 exclusively. While insertions at residue 138 in VP1 significantly decreased infectivity, insertions at residue 138 that were exclusively in VP2 had a minimal effect on viral assembly or infectivity. Finally, insertion of GFP into VP1 and VP2 resulted in a particle whose trafficking could be temporally monitored by using confocal microscopy. Thus, we have demonstrated a method that can be used to insert large (up to 30-kDa) peptide ligands into the AAV particle. This system allows greater flexibility than current approaches in genetically manipulating the composition of the AAV particle and, in particular, may allow vector retargeting to alternative receptors requiring interaction with full-length conformation-dependent peptide ligands.  相似文献   

17.
The capsid protein VP2 of budgerigar fledgling disease virus (BFDV) contains two sequences (residues 309-315 and 334-340) which are homologous to the prototypic nuclear localization sequence (NLS) of the simian virus 40 T-antigen. Using recombinant potential NLS-beta-galactosidase fusion proteins we identified amino acid residues 308-317 (VPKRKRKLPT) to be the NLS of BFDV capsid proteins VP2 and VP3. Microfluorometry studies show that the BFDV-VP2 signal is considerably more efficient in nuclear transport kinetics, than the NLS of SV40-VP2, corresponding to amino acid residues 317-326 (PNKKKRKLSR).  相似文献   

18.
The poliovirus capsid precursor polyprotein, P1, is cotranslationally modified by the addition of myristic acid. We have examined the importance of myristylation of the P1 capsid precursor during the poliovirus assembly process by using a recently described recombinant vaccinia virus expression system which allows the independent production of the poliovirus P1 protein and the poliovirus 3CD proteinase (D. C. Ansardi, D. C. Porter, and C. D. Morrow, J. Virol. 65:2088-2092, 1991). We constructed a site-directed mutation in the poliovirus cDNA encoding an alanine at the second amino acid position of P1 in place of the glycine residue required for the myristic acid addition and isolated a recombinant vaccinia virus (VVP1myr-) that expressed a nonmyristylated form of the P1 capsid precursor. The 3CD proteinase expressed by a coinfecting vaccinia virus, VVP3, proteolytically processed the nonmyristylated precursor P1 expressed by VVP1myr-. However, the processed capsid proteins, VP0, VP3, and VP1, did not assemble into 14S or 75S subviral particles, in contrast to the VP0, VP3, and VP1 proteins derived from the myristylated P1 precursor. When cells were coinfected with VVP1myr- and poliovirus type 1, the nonmyristylated P1 precursor expressed by VVP1myr- was processed by 3CD expressed by poliovirus, and the nonmyristylated VP0-VP3-VP1 (VP0-3-1) protomers were incorporated into capsid particles and virions which sedimented through a 30% sucrose cushion. Thus, the nonmyristylated P1 precursor and VP0-3-1 protomers were not excluded from sites of virion assembly, and the assembly defects observed for the nonmyristylated protomers were overcome in the presence of myristylated capsid protomers expressed by poliovirus. We conclude that myristylation of the poliovirus P1 capsid precursor plays an important role during poliovirus assembly by facilitating the appropriate interactions required between 5S protomer subunits to form stable 14S pentamers. The results of these studies demonstrate that the independent expression of the poliovirus P1 and 3CD proteins by using recombinant vaccinia viruses provides a unique experimental tool for analyzing the dynamics of the poliovirus assembly process.  相似文献   

19.
Rotaviruses are the leading cause of severe infantile gastroenteritis worldwide. These viruses are large, complex icosahedral particles consisting of three concentric capsid layers enclosing a genome of eleven segments of double-stranded RNA (dsRNA). The amino terminus of the innermost capsid protein VP2 possesses a nonspecific single-stranded RNA and dsRNA binding activity, and the amino terminus is also essential for the incorporation of the polymerase enzyme VP1 and guanylyltransferase VP3 into the core of the virion. Biochemical and structural studies have suggested that VP2, and especially the amino terminus, appears to act as a scaffold for proper assembly of the components of the viral core. To locate the amino terminus of VP2 within the core, we have used electron cryomicroscopy and image reconstruction to determine the three-dimensional structures of recombinant virus-like particles that contain either full-length or amino-terminal-deleted forms of VP2 coexpressed with the intermediate capsid protein VP6. A comparison of these structures indicates two significant changes along the inner surface of VP2 in the structure lacking the amino terminus: a loss of mass adjacent to the fivefold axes and a redistribution of mass along the fivefold axes. Examination of the VP2 layer suggests that the proteins are arranged as dimers of 120 quasi-equivalent molecules, with each dimer extending between neighboring fivefold axes. Our results indicate that the amino termini of both quasi-equivalent VP2 molecules are located near the icosahedral vertices.  相似文献   

20.
C Wychowski  S van der Werf  M Girard 《Gene》1985,37(1-3):63-71
The poliovirus cDNA fragment coding for capsid polypeptide VP1 was inserted between the EcoRI and BamHI sites of SV40 DNA, generating a chimaeric gene in which the sequence of the 302 amino acids (aa) of poliovirus capsid polypeptide VP1 was placed downstream from that of the 94 N-terminal aa of SV40 capsid polypeptide VP1. The resulting defective, hybrid virus, SV40-delta 1 polio, was propagated in CV1 cells using an early SV40 mutant, am404, as a helper. Cells doubly infected by SV40-delta 1 polio and am404 expressed a 50-kDal fusion protein which was specifically immunoprecipitated by polyclonal and/or monoclonal antibodies raised against poliovirus capsids or against poliovirus polypeptide VP1. Examination of the infected cells by immunofluorescence after staining with anti-poliovirus VP1 immune sera revealed that the fusion protein was mostly located in the intra- and perinuclear space of the cells, in contrast to the exclusively intracytoplasmic location of genuine poliovirus VP1 polypeptide that was observed in poliovirus-infected cells. This suggests that the N-terminal part of the SV40-VP1 polypeptide could contain an important sequence element acting as a migration signal for the transport of proteins from the cytoplasm to the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号