首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Petiole heat-girdle treatments (followed by a 5 min 14CO2 assimilation)were performed on mature leaves of Vicia faba, in order to assesstheir effect on the partitioning of photo-assimilates to theminor vein phloem. Whole leaf autoradiographic evidence indicateda high leaf-to-leaf variation in the image intensity over theminor veins (relative to the mesophyll/epidermal background)in both control and heat-girdled groups of leaves. The averagedegree of minor vein labelling in heat-girdled leaves, however,was found to be significantly lower than that in controls. Comparativeassessment of vein labelling was based on microscopic densityreadings of silver grains over veinal and interveinal regionsin autoradiographic images. Investigations into the cause ofthis alteration in vein labelling indicated no involvement ofan inhibition of apoplasmic phloem loading, as both heat-girdledand control leaves of Vicia were shown to have comparable minorvein uptake of exogenously supplied 14C-sucrose. Heat-girdlingwas shown, however, to increase significantly the partitioningof recently fixed carbon into the insoluble (mainly starch)fraction relative to the ethanol-soluble fraction, within 12min of the treatment. We suggest that this carbon partitioningchange can primarily account for the change in vein labelling,since an increase in the insoluble fraction would result in(1) more 14C-activity remaining in the leaf mesophyll and (2)less 14C-activity going into the mesophyll export pool, andthus, less 14C-sucrose being transferred to the minor vein region.Additionally, although leaf export was completely halted inheat-girdled leaves, 14C-activity was found within the majorveins as far as the point of petiole heat-girdling (followinga 5 min assimilation and 4 h chase). Apparently, continued (butlimited) solution flow within the sieve elements is maintainedby transport pathway unloading within the treated leaves. Key words: Phloem loading, carbon partitioning, heat-girdle, Vicia faba  相似文献   

2.
HO  L. C.; NICHOLS  R. 《Annals of botany》1975,39(3):439-446
The pathway and distribution of 14C-sugars in flower parts havebeen examined to find out in which tissue sugars are translocatedin the stem of the cut carnation; 14C-sucrose or 14C-glucosewas supplied at the base of the cut stem from a feeding solutionand the localization and chemical nature of the carbon-14 recoveredfrom flower parts were investigated. By reducing the rate oftranspiration it was found that the uptake of feeding solutionwas also reduced, but the distribution of absorbed 14C-sucrosein the flower parts was different from that which would be expectedif sucrose moved exclusively in the transpiration stream. Autoradiographsdemonstrated that 14C absorbed from the feeding solution as14C-sucrose appeared in both xylem and phloem but predominantlyin the latter; girdling failed to stop the translocation ofthe absorbed 14C-sucrose. Results of experiments with 14C-sucroseand 14C-glucose showed that sucrose was the mobile sugar andthat glucose was converted to sucrose before it was translocated.It was concluded that the translocation of sucrose absorbedfrom the feeding solution takes place both in xylem and phloemand is regulated by a mechanism involving the loading and translocationof sucrose in the phloem.  相似文献   

3.
Shiroya M 《Plant physiology》1968,43(10):1605-1610
When single leaves attached at a given node were allowed to carry on photosynthesis in 14CO2 for 30 min, younger plants showed a higher proportion of upward translocation than did older plants. Downward translocation of 14C-photosynthate was stimulated by ATP pre-treatment of the translocating leaf, while upward translocation was not affected by ATP. A similar phenomenon was observed in the translocation of 14C-sucrose infiltrated into a leaf with or without ATP. Downward translocation of photosynthate was inhibited by DNP pre-treatment of a fed leaf. Upward translocation, however, was not affected by DNP. Thirty min after infiltration of 14C-glucose into a leaf, almost all the 14C translocated upwards was found to be in the form of glucose, while a great part of the 14C translocated downwards was in the form of sucrose. In the case of translocation of infiltrated 14C-sucrose, 14C found both above and below the fed leaf was mainly in the form of sucrose.  相似文献   

4.
Analysis of products formed in Chlorella vulgaris 11 h cellsduring photosynthesis in air containing 3,000 ppm 14CO2 at varioustemperatures revealed that the level of 14C-starch was maximumaround 20–24?C and decreased with further rise in temperatureuntil 40?C, while 14C-sucrose greatly increased at temperaturesabove about 28?C. Elevating the temperature from 20 to 38?Cduring photosynthetic 14CO2 fixation resulted in a remarkabledecrease in 14C in starch and a concomitant increase in 14Cin sucrose. This conversion of starch to sucrose when shiftingthe temperature from 20 to 38?C proceeded even in the dark.Hydrolysis of sucrose by rß-fructosidase showed that,irrespective of the experimental conditions, the radioactivitiesin sucrose were equally distributed between glucose and fructose.The enhancement of starch degradation with temperature risewas more remarkable than that of the activity of ribulose bisphosphatecarboxylase from the same cells. When Chlorella cells whichhad been preloaded with 14C-starch after photosynthesis for30 min at 20?C were incubated in the dark for an additional30 min at 20?C, 14C-starch was degraded by only about 4%. However,the values after 30-min dark incubation at 28, 32, 36 and 40?Cwere increased by about 10, 19, 36 and 50%, respectively. Duringthe temperature-dependent conversion of starch to sucrose, nosignificant amount of radioactivity accumulated in free glucoseand maltose. (Received October 27, 1981; Accepted January 9, 1982)  相似文献   

5.
Carbohydrate accumulation in young, fully expanded leaves ofCitrus sinensis L. Osbeck is affected by the presence of thefruitlet on the shoot. Previous work gave evidence that gibberellinsmay be involved in this 'fruit effect'. In the present workwe have studied the effect of gibberellic acid (GA3) on 14C-sucroseuptake by leaf discs and whether its action could be due toa modulation of the plasma membrane ATPase, which maintainsthe H+ gradient that drives H+/sucrose co-transport. The effect of GA3 on 14C-sucrose uptake depended on the osmolarityof the assay medium. At 300 mOsm a reduction in the uptake ratewas observed. The inhibitory effect of the hormone disappearedafter preincubating the leaf discs with para-chloromercuri-phenylsulphonicacid (PCMPS), a sulphydril binding inhibitor. ATPase activityof isolated plasma membrane vesicles was inhibited by IAA treatments,while GA3 or ABA did not affect this enzyme, even after a 3h preincubation period. However, in the absence of a surfactantin the assay medium, GA3, together with turgor pressure, modulatedplasma membrane ATPase activity, possibly through modificationsof membrane permeability. The hormone effect on 14 C-sucroseuptake may involve action on the sucrose carrier.Copyright 1994,1999 Academic Press Abscisic acid, Citrus sinensis, gibberellic acid, indoleacetic acid, orange, osmotic pressure, plasma membrane ATPase, 14C-sucrose uptake  相似文献   

6.
Assimilate distribution in leaves of Lolium temulentum was establishedby root absorption of [14C]sucrose and after exposure to 14CO2.Age determined the amount of carbon assimilated, with more labelbeing incorporated during expansion than at maturity. Duringsenescence 14C assimilation was much lower. Ethanol-solubleextracts from various tissues of root-labelled plants containedmost of the radioactivity chiefly in basic and acidic compounds.The neutral fraction was composed predominantly of sucrose. Sucrose was comparably labelled in leaves from plants fed equalamounts of either [14C]sucrose, glucose, or fructose and onlytraces of labelled monosaccharides appeared in extracts. Radioactive sucrose was translocated rapidly from mature leaveswhereas, in the expanding leaf, carbon incorporation was directedtowards growth and the greater proportion of label present atligule formation was in ethanol-insoluble material. Induced senescence, of a mature leaf fed during expansion, produceda rapid loss from the pool of insoluble 14C. This was accompaniedby a reduction in the contents of chlorophyll and soluble proteinand an accumulation of amino acids. The onset of senescencecaused changes in leaf sugar levels which were correlated withincreased rates of respiration.  相似文献   

7.
Fisher DB 《Plant physiology》1970,45(2):114-118
The kinetics of 14C-assimilates in the soybean leaf were studied in pulse labeling and steady state labeling experiments. 14C-Sucrose apparently served as the ultimate source, at least, of translocated 14C-sucrose. However, since the specific activity of leaf sucrose reached a maximum within 5 minutes after pulse labeling, whereas that of exported sucrose did not reach a maximum until at least 20 minutes, it appeared that there were two sucrose compartments in the leaf. A possible physical basis for the two compartments may be the mesophyll (a photosynthetic compartment) and a specialized “paraveinal mesophyll” (a nonphotosynthetic compartment), through which photosynthate must pass on its way to the veins.  相似文献   

8.
To examine the effects of ethylene on sugar transport from endospermsto coleoptiles in rice (Oryza sativa L. cv. Sasanishiki) seedlings,the contents of free sugars in the coleoptiles of explants fedcold glucose and the distributions of 14C-activities after feedingof 14C-glucose to the scutella were determined at various timesafter ethylene application. Changes in sucrose, glucose andfructose in the cold glucose-fed explants exposed to ethylenewere similar to those in the ethylene-treated intact seedlingshaving endosperms. Ethylene enhanced the transport of 14C-labeledmetabolites from the scutella to the coleoptiles. Most of the14C accumulated in the ethylene-treated coleoptiles were presentas neutral substances in the ethanol-soluble fraction. Regardlessof the presence or absence of ethylene, the incorporation of14C into sucrose preceded that into glucose and fructose. Theglucose and fructose moieties of 14C-sucrose in the coleoptileswere almost equally labeled, and the specific activities of14C-sucrose were higher than those of 14C-glucose and 14C-fructose.These results suggested that sucrose synthesized in the scutellawas exported to the coleoptiles, and cleaved there into glucoseand fructose. Ethylene may accelerate the transport of 14C-labeledmetabolites by activating sucrose cleavage in the coleoptiles. (Received July 1, 1985; Accepted September 17, 1985)  相似文献   

9.
The transport of [2-14C]IAA and its derived products has beeninvestigated in segments of the leaf sheath base of Echinochloacolonum. Segments orientated vertically in the normal uprightposition transport 14C basipetally at rates approximately 10times higher that acropetally. In horizontal segments the basipetalrates are lower, being only 1–4 times higher than acropetalrates. Segments orientated vertically in the inverted positiontransport 14C basipetally at approximately 1/10 of the acropetalrate. 14C in the receiver discs from vertically orientated segmentswas found to be present predominantly as [2-14C]IAA and itsderived metabolite. The levels of each of these compounds from upright and invertedvertical segments followed the same pattern as that of theirtotal 14C content.  相似文献   

10.
When 14CO2 was administered to a fully expanded leaf (12th leaf)of tobacco plant at the stage just before flower budding, about30% of 14C assimilated was translocated to other organs after3 hours. After 21 hours, 20{small tilde}30% of the radioactivitywas translocated to the roots, about 20% to upper stem, 10%to lower stem, and 10% to the 17th leaf located directly abovethe 12th leaf. The amount of 14C translocated to other leaveswas small after 31 hours. When 14CO2 was applied to the 17th leaf, radioactivity in otherorgans was negligible. Judging from the time course of 14C-incorporation into organicsubstances, it was inferred that sucrose imported into the rootsfrom the 12th leaf was converted into compounds of cationicfraction and sugar esters. 14C imported into the 17th leaf was mostly incorporated into80% ethanol-soluble fraction, especially into sucrose. On theother hand, 14C fixed photosynthetically by the 17th leaf wasmostly recovered in starch and protein fraction after 8 hoursof 14CO2 assimilation. 1A part of this paper was presented at the Japanese Societyof Plant Physiologists, in April, 1965. 2Present address: Central Research Institute, Japan MonopolyCorporation, Shinagawa-ku, Tokyo.  相似文献   

11.
The photosynthetic production of oxalic acid in Oxalis corniculata   总被引:2,自引:0,他引:2  
The biogenesis of oxalic acid in Oxalis corniculata has beeninvestigated. In O. corniculata the bulk of the oxalic acidis produced by CO2 fixation both in light and in darkness butthe rate of its photosynthetic formation is much higher thanin darkness. Several other plants some of which are known toaccumulate oxalic acid e.g., Biophytum sensitivum, Averrhoacarambola, Impatiens balsamina, Amorphophallus campanulatusand Colocassia antiquorum also fix 14CO2 into oxalic acid photosyntheticallywithin 1 min of exposure to the gas. In O. corniculata 14C canbe detected in oxalic acid within 5 sec and about half of thetotal 14C fixed in the 70% ethanol soluble fraction can be locatedin this compound after 5 min. This is accompanied by a declineof radioactivity in two compounds, the chromatographic behaviourand melting points of one of which and its DNP hydrazone aresimilar to those of an authentic sample of glyoxylic acid. Whenglyoxylate 1, 2-14C is incubated with Oxalis leaf homogenateit is converted to oxalate-14C. Glycolate is also metabolizedto oxalate. The conversion of both glycolate and glyoxylateare favoured by light. The C2 compounds acetate and glycinehowever are utilized rather poorly. Sucrose-14C is also notmetabolized markedly for this purpose. (Received August 20, 1969; )  相似文献   

12.
Callose formation in phloem tissue was promoted by 0.5% eosinin 1 cm segments taken from first year Willow (Salix viminalisL.) shoots and by localized heat treatments in intact secondyear shoots. The eosin did not cause any change in the incorporationof 14C from labelled sucrose into an insoluble fraction butless of the label: from UDP-glucose labelled in the glucosemoiety was incorporated when eosin was present. Localized heattreatments of intact second-year tissue which was translocating[14C]sucrose failed to cause an increase in the amount of labelin an insoluble fraction in the zone where callose formationwas stimulated. The results indicate that the callose formedrapidly in response to stress and wounding is not derived directlyfrom translocated sucrose. An alternative possible origin, fromsugar nucleotides released from ruptured plastids, is discussed.  相似文献   

13.
Tissue pieces excised from orchard-grown apple trees duringa growing season exhibited different and changing capabilitiesof transferring 14C-label from sucrose, fructose and sorbitolto other soluble carbohydrates. All tissues incorporated fructose14C into sucrose but only leaves incorporated significant amountsof label from sucrose into sorbitol. As seeds developed andmatured, their ability to incorporate 14C from sorbitol andfrom fructose into sucrose increased. Sorbitol and sucrose arethe major translocated photosynthetic products of apple leavesbut whereas sorbitol appears to be an end-product of synthesis,sucrose may be considered as a substrate involved more directlyin carbohydrate utilization. Key words: Malus domestica, Apple, Carbohydrate interconversions  相似文献   

14.
HOCKING  P. J. 《Annals of botany》1980,45(6):633-643
The composition of xylem sap and exudate from stem incisionsof Nicotiana glauca Grah. was compared in detail. Exudationfrom stem incisions occurred over a 5 min period in certainplants, enabling collection of 5–30 µl of sap. Therate of exudation showed an exponential decline. Exudate hada high dry matter content (170–196 mg ml–1) andhigh sugar (sucrose) levels. Xylem sap had a low pH (5.8) andexudate a pH of 7.9. Glutamine dominated the amino compoundsin xylem sap and exudate, and K+ was the major cation. Totalamino compounds in stem exudate reached 10.8 mg ml–1 whereasxylem sap contained much lower levels (0.28 mg ml–1).All mineral elements and amino compounds with the exceptionof calcium were more concentrated in stem exudate than in xylemsap. Sucrose was labelled heavily in stem exudate following pulsingof an adjacent leaf with 14CO2. A concentration gradient ofsugar (2.1 bar m–1) was recorded for stems. Levels ofsucrose, amino compounds and K+ ions in stem exudate showeda diurnal periodicity. Each commodity reached maximum concentrationat or near noon and minimum concentration about dawn. The evidencesuggests that exudate from stem incisions of N. glauca is arepresentative sample of solutes translocated in the phloem. Nicotiana glauca Grah., phloem sap, xylem sap, sucrose, amino compounds, mineral ions  相似文献   

15.
HO  L. C.; PEEL  A. J. 《Annals of botany》1969,33(5):833-844
Sieve-tube sap was collected as honeydew from the aphid Tuberolachnussalignus (Gmelin) feeding on a young shoot or a mature stemof willow (Salix viminalis L.). Two radioactive tracers (either3H-glucose and 14C-sucrose, or 14CO2, Na2 14CO3, and 32P-orthophosphate)were applied to leaves or to bark abrasions at each end of thestem. In some experiments the tracers were applied after thestart of honeydew production, whilst in others the tracers wereapplied before the aphids were sited. In most cases aphids feeding between the tracer applicationpoints produced doubly-labelled honeydew during a 24–48-hperiod from tracer application. In some instances the firstdrops of honeydew contained one tracer, followed several hourslater by the other tracer, whilst some aphids produced doubly-labelledhoneydew from the first drop. Singly-labelled or inactive honeydewwas found in only a few cases. It was demonstrated that when 3H-glucose and 14C-sucrose wereapplied at opposite ends of a stem that the tracers moved inopposite directions in the form of sucrose. The data suggest that a simultaneous bidirectional movementof two tracers may occur in the same sieve tube. However, thepossibility that the doubly-labelled honeydew could be producedby lateral movement from one sieve tube carrying one tracerto an adjacent punctured sieve tube carrying the other tracercannot be discounted.  相似文献   

16.
We present the results of our attempt to determine the metabolicstatus of excised maize roots (Zea mays L. cv. ZP SC704) andits effect on the trans-root electrical potential difference(TRP). Besides the electrical potential difference, we measuredoxygen consumption, sugar content and 14C-sucrose uptake anddistribution by supplying the cut end of root with sucrose.Our experiments show that sucrose added to the cut end of excisedroots was taken up by them, increasing the sugar content andmetabolic activity of such roots. These sugar-supplemented rootsexhibited approximately 60% higher internal sugar content andrespiratory rates, and 30% higher magnitudes of TRP, comparedto sugar-depleted roots. By optimizing the ionic composition(pH, K+, Ca2+) and sucrose concentration of the upper solutionfor sucrose uptake and translocation, maintenance of energeticstatus and transport functions of the excised root, closer tothat existing in situ, was ensured. (Received July 4, 1994; Accepted October 17, 1994)  相似文献   

17.
The single rooted leaf of soybean (Glycine max L. Merr.) wasused to study source-sink relationships in photosynthesis. Whenthe leaves were kept under a regime of 10 h light (410–480µmol photons m–2, 400–700 nm)–14 h dark,they did not expand, the increase in leaf dry weight almoststopped, and photosynthetic activity remained at a high andconstant level for 8 d while the dry weight of the roots increasedat a constant rate throughout the period. Thus, under this conditionthe leaf and the root system served as the only source and sinkorgans, respectively. When leaves grown for 7 d under this conditionwere placed under continuous light to alter the source/sinkbalance in photosynthate, the root dry weight increased at aconstant rate equal to that found under the 10 h light–14h dark condition. The leaf dry weight markedly increased andby day 5 of continuous light had increased 1.6-fold, mainlyas a consequence of accumulation of starch and sucrose, whichwere not translocated for root growth. The continuous lightcaused an abrupt decrease in the photosynthetic activity (40%of initial value by day 5). However, the activity recoveredalmost completely after a 32-h transfer to darkness. Significantnegative correlations existed between photosynthetic activityand the sucrose and starch contents in the rooted leaves placedunder continuous light. When the plants were treated with variouslight conditions, there was no significant difference (p<0.01)among the regression line slopes for photosynthetic activityon the sucrose content, but there was some deviation among thosefor the photosynthetic activity on the starch content. Thisresult suggests that sucrose accumulated in the leaf has a moredirect influence on photosynthetic activity when the source/sinkbalance was altered. (Received September 9, 1985; Accepted February 21, 1986)  相似文献   

18.
The partitioning of photosynthetically fixed carbon betweencarbohydrate fractions and the processes of export and storagewere compared in mature leaf blades and sheaths of the grassPoa pratensis L. Most of the fixed carbon was destined for exportfrom the leaf blade with only 1% of the carbon fixed duringthe photoperiod being stored after 24 h. Although most of theassimilates imported to the sheath from the blade were subsequentlyexported, there was some unloading and storage of assimilates.Autoradiography was used to compare the translocation of 14C-labelledassimilates through non-fed areas of leaf blade and sheath andrevealed that the veins in the sheath showed a greater capacityfor storage of assimilates compared to the leaf blade. Biphasickinetics of sucrose and glucose uptake were observed in segmentsof leaf blade and sheath. Although similar carriers for eachof the sugars appear to exist in the blade and sheath, the rateof uptake via these carriers was significantly lower in thesheath compared to the blade. Assuming that unloading proceedsvia a symplastic pathway, it would appear that the conversionof sucrose to starch in the sheath could be an important meansof regulating unloading and in determining sink strength ofthe sheath. It is concluded that although the net amount ofsugars unloaded in the sheath is small, the storage of assimilatesin the vein network could be an important means of bufferingchanges in sucrose concentration in the translocate during periodsof fluctuating assimilation. Key words: Poa pratensis, autoradiography, sugar uptake, leaf blade, leaf sheath  相似文献   

19.
NICHOLS  R.; HO  L. C. 《Annals of botany》1975,39(2):287-296
The translocation and distribution of dry matter were studiedin the floral and vegetative parts of the cut carnation duringsenescence. The change in dry weights of the tissues and theamount of radioactivity recovered from them after feeding with14C-sucrose were measured. Treatments with ethylene and sucrosewere used to alter the rate of senescence of the flowers. Sucrosemoved through the stem relatively unchanged but was rapidlyinverted and metabolized in the petals. During natural ageing,14C moved from the stem to the flower and the movement was enhancedby exogenous sucrose, which also reduced the loss of dry matterin the petals and promoted their growth. Treatment with ethylenecaused petals to wilt and lose dry weight, and ovaries to enlargeand increase in dry weight. The distribution of radioactivityin flowers fed with 14C-sucrose before and after ethylene treatmentsupported the observation that dry matter was translocated betweenthe flower parts. The results indicate that a change in thesource-ink relationships of the flower parts contributes tothe factors that determine the rate of flower senescence.  相似文献   

20.
The apical portions of intact sunflower leaves were infiltratedwith 14C-glucose, 14C-fructose or 3-O-methyl-14C-glucose andthe basal portions were treated with inhibitors. The effects of oligomycin, ouabain and phlorizin on translocationwere studied. Inhibition of translocation from the basal portionof the leaf to the stem was determined by experiments usingoligomycin. In other experiments, each leaf was divided intothree parts. The apical portion was fed with 14C-glucose andthe basal part treated with oligomycin. The effects of oligomycinon the distribution of 14C-glucose, 14C-sucrose, 14C-fructoseand 14C-sugar phosphate along the three parts of the leaf wereinvestigated. Inhibition of sucrose synthesis in the leavestreated with oligomycin was observed. Oligomycin inhibited 14Ctranslocation from the leaf. 1Present address: Department of Biology, Faculty of Science,Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo,Japan. (Received August 17, 1978; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号