首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The neuronal systems that contain gonadotropin-releasing hormone (GnRH) were quantitatively examined in the forebrain of two cichlid species (Oreochromis niloticus Lin. and Tilapia maria Boulenger) using tracing methods and immunostaining. In both species the nucleus olfacto-retinalis and a population of neurons in the basal preoptic region contained GnRH. The nucleus olfacto-retinalis was divided into several neuronal subpopulations which differed with respect to cytology, projection pattern, and peptide content. GnRH cell number increased with body size, the rates being different for the different subpopulations. A sexual dimorphism was found in the basal preoptic region of Tilapia; males had significantly fewer GnRH-containing cells than females. Selective staining of the basal preoptic region demonstrated that this cell group is the main source of GnRH-innervation of the pituitary gland and indicate that the molecular forms of GnRH expressed in the two cell populations studied may be different.  相似文献   

2.
The intrinsic neuronal organisation in the nucleus of the basal optic root of chickens was investigated. The divergent connections with various areas and the functional complexity of the nucleus require a complex intrinsic structural arrangement. Therefore, an analysis of Golgi impregnated material, ultrastructure, GABA-immunocytochemistry and biotinylated dextran-amine anterograde tracer analysis of the nucleus was carried out. In the Golgi analysis, a characteristic dendritic ramification pattern of two types of putative projection neurons was observed. These neurons form dendritic nests with their overlapping dendritic terminal sections, that develop synaptic fields with the optic fibre terminals. These synaptic fields were confirmed by electron microscopy. GABA-immunopositive terminals synapse with distinct loci of the dendritic trees of projection neurons; they may therefore play an important role in the inhibitory-modulatory system of the nucleus of the basal optic root. The GABA-immunopositive terminals derive from small and/or elongated local circuit neurons which receive retinal afferents, and from myelinated fibres afferents to the nucleus of unknown origin.  相似文献   

3.
Linking synaptic plasticity with behavioral learning requires understanding how synaptic efficacy influences postsynaptic firing in neurons whose role in behavior is understood. Here, we examine plasticity at a candidate site of motor learning: vestibular nerve synapses onto neurons that mediate reflexive movements. Pairing nerve activity with changes in postsynaptic voltage induced bidirectional synaptic plasticity in vestibular nucleus projection neurons: long-term potentiation relied on calcium-permeable AMPA receptors and postsynaptic hyperpolarization, whereas long-term depression relied on NMDA receptors and postsynaptic depolarization. Remarkably, both forms of plasticity uniformly scaled synaptic currents evoked by pulse trains, and these changes in synaptic efficacy were translated into linear increases or decreases in postsynaptic firing responses. Synapses onto local inhibitory neurons were also plastic but expressed only long-term depression. Bidirectional, linear gain control of vestibular nerve synapses onto projection neurons provides a plausible mechanism for motor learning underlying adaptation of vestibular reflexes.  相似文献   

4.
C K Tan  H H Lim 《Acta anatomica》1992,143(4):306-308
There have been few studies of the central projection of the sensory fibres of the recurrent laryngeal nerve into the medulla oblongata. In the present study terminal degeneration was observed in both the nucleus of the tractus solitarius and the nucleus of the spinal tract of the trigeminal nerve after transection of the nerve and after injection of a lectin, Ricinus communis agglutinin (RCA). Degeneration was observed to be more extensive after RCA injection than after nerve transection. In both instances, however, degeneration was observed bilaterally.  相似文献   

5.
Medaka (Oryzias latipes) is one of the few vertebrate experimental animals in which inbred lines have been established. It is also a species that has advanced in genetic studies in a manner comparable to zebrafish. This fish is therefore a good model for studying functional organization of the nervous system, but anatomical analysis of its nervous system has been limited to embryonic stages. In the present study, we investigated anatomy of cranial nerves in adult fish focusing on the visual function, using an inbred strain of medaka. Cranial nerves of medaka were labeled using biocytin, revealing a central distribution of retinofugal terminals, retinopetal neurons, and oculomotor, trochlear and abducens motor neurons. The optic nerve of the adult medaka was of a complete decussation type. Retinofugal terminals were located in 8 brain nuclei, the suprachiasmatic nucleus, nucleus pretectalis superficialis, nucleus dorsolateralis thalami, area pretectalis pars dorsalis (APd), area pretectalis pars ventralis (APv), nucleus of the posterior commissure (NPC), accessory optic nucleus, and the tectum opticum. Retinopetal neurons were identified in 6 brain nuclei, the ganglion of the terminal nerve, preoptic retinopetal nucleus, nucleus dorsolateralis thalami, APd, APv, and NPC. The oculomotor neurons were mostly labeled ipsilaterally and were located dorsomedially, abutting the fasciculus longitudinalis medialis in the mesencephalon. The trochlear nucleus was located contralaterally and dorsolaterally adjacent to the fasciculus longitudinalis medialis in the mesencephalon. The abducens nucleus was located ipsilaterally in a ventrolateral part of the rhombencephalic reticular formation. These results, generally similar to those in other teleosts, provide the basis for future behavioral and genetic studies in medaka.  相似文献   

6.
Abstract: Apolipoprotein E (apoE)-deficient mice provide a useful system for studying the role of apoE in neuronal maintenance and repair. Previous studies revealed specific memory impairments in these mice that are associated with presynaptic derangements in projecting forebrain cholinergic neurons. In the present study we examined whether dopaminergic, noradrenergic, and serotonergic projecting pathways of apoE-deficient mice are also affected and investigated the mechanisms that render them susceptible. The densities of nerve terminals of forebrain cholinergic projections were monitored histochemically by measurements of acetylcholinesterase activity, whereas those of the dopaminergic nigrostriatal pathway, the noradrenergic locus coeruleus cortical projection, and the raphe-cortical serotonergic tract were measured autoradiographically using radioligands that bind specifically to the respective presynaptic transporters of these neuronal tracts. The results obtained revealed that synaptic densities of cholinergic, noradrenergic, and serotonergic projections in specific brain regions of apoE-deficient mice are markedly lower than those of controls. Furthermore, the extent of presynaptic derangement within each of these tracts was found to be more pronounced the further away the nerve terminal is from its cell body. In contrast, the nerve terminal density of the dopaminergic neurons that project from the substantia nigra to the striatum was unaffected and was similar to that of the controls. The rank order of these presynaptic derangements at comparable distances from the respective cell bodies was found to be septohippocampal cholinergic > nucleus basalis cholinergic > locus coeruleus adrenergic > raphe serotonergic ? nigrostriatal dopaminergic, which interestingly is similar to that observed in Alzheimer's disease. These results suggest that two complementary factors determine the susceptibility of brain projecting neurons to apoE deficiency: pathway-specific differences and the distance of the nerve terminals from their cell body.  相似文献   

7.
Summary The distribution of FMRFamide-like immunoreactivity was investigated in the brain of a myxinoid, the Pacific hagfish,Eptatretus stouti, by means of immunocytochemistry. In the forebrain, labelled cell bodies occurred in the infundibular nucleus of the hypothalamus and some closely adjacent nuclei. Labelled fibers formed a diffuse network in the forebrain, but there was no evidence for the presence of intracerebral ganglionic cells of the terminal nerve or a central projection of the terminal nerve. In the hindbrain, a group of labelled cells was found in the trigeminal sensory nucleus. A distinet terminal arborization occurred in the ventrally adjacent nucleus A of Kusunoki and around the nuclei of the branchial motor column. These findings suggest that FMRFamide may play a role in the central control of branchiomotor activity.  相似文献   

8.
Summary The octavo-lateral efferent system of several anuran species was studied by means of retrograde transport of horseradish peroxidase. This system is organized similarly in all larval anurans and in all adult aglossids. All have two groups of efferent neurons in the nucleus reticularis medialis between the VIIIth and the IXth motor nucleus. The caudal group consists of efferent neurons that supply the posterior lateral-line nerve (NLLp) and a considerably smaller group of neurons supplying both the NLLp and the anterior lateral-line nerve (NLLa). The rostral group is composed of efferent neurons supplying the NLLa, neurons projecting to the inner ear and neurons supplying both the inner ear and the NLLa. Efferent neurons of the VIIIth cranial nerve exhibit a rostrocaudal cytoarchitectonic differentiation. Caudal perikarya, which are rounder in shape than those of the rostral part, have a dendritic projection to the superior olive. It is suggested that this differentiation reflects a functional differentiation of acoustic and vestibular efferent neurons.Labeled neurons were ipsilateral to the site of application of HRP. None were found in the vestibular nuclei or in the cerebellum.Efferent axons projecting to neuromasts of the NLLa leave the medulla with the VIIth nerve, axons projecting to neuromasts of the NLLp exit via the IXth nerve. Cell counts and the observation of axonal branching revealed that efferent units of both the lateral-line and the VIIIth-nerve system supply more than one receptor organ. In contrast to the lateral-line system, dendrites of efferent neurons of the VIIIth nerve project dorsally onto its nuclei, and afferents of the VIIIth nerve project onto efferent neurons. These structures most probably represent a feedback loop between the afferent and efferent systems of the VIIIth cranial nerve.  相似文献   

9.
RFamides constitute a large family of neuromodulatory peptides. We have cloned a zebrafish gene, which is presumably a homologue to the mammalian PQRF subfamily of RFamides, and named it zfPQRF for its species and subfamily allocation. We report that in contrast to its mammalian counterparts zfPQRF is expressed in the olfactory bulb and the nucleus olfactoretinalis in the telencephalon, but absent in more caudal regions, including hypothalamus, brain stem and spinal cord. zfPQRF-expressing neurons originate in the vicinity of the olfactory placode and populate the nuclei of the terminal nerve during later development, as demonstrated by co-expression of zebrafish salmon-type gonadotropin releasing hormone, which was found to exclusively label terminal nerve neurons.  相似文献   

10.
We have investigated the subcortical projections of the rat striate cortex by using the silver-degeneration method and the HRP-technique too. Cortical lesions were made in 60 young animals (1, 4, 5, 6, 7, 10 and 14 days old) and in 6 adult rats. The terminal regions of projection occurred only ipsilateral to the lesions. After passing the internal capsule the degenerating pathway divides into 2 bundles. In the dorsal thalamus one of them runs in caudal direction. The other bundle turns ventrally, reaches the cerebral peduncle and terminates in the pons. The first fibre bundle terminates in the following structures: Nc. reticularis thalami, Nc. lateralis thalami, Nc. lateralis posterior thalami, Corpus geniculatum laterale, pars dorsalis (Cgld), Corpus geniculatum laterale, pars ventralis (Cglv), Nc. praetectalis anterior et posterior and Colliculus superior. The fibers of the second bundle innervate the Nc. lateralis pontis. Fibers from this bundle terminate probably in the Cglv and in the Zona incerta too. By using the HRP-technique it could be demonstrated that the axons terminating in the Cgld originate in layer VI of the area 17. In contrast, the projection to Cglv, Nc. lateralis posterior, Colliculus superior and Nc. lateralis pontis originates from pyramidal cells in layer V. The development of the projection in young animals indicates: Like in adults rats, terminal degeneration is present in all subcortical projection regions at postnatal day (PD) 10. At PD 4-7 we can observe heavily degenerating axons but the terminal degeneration is different. It is remarkable in the "visual" part of the reticular nucleus and iln the Cgld (decreasing from inside to outside). Only a weak terminal degeneration is visible in the pretectal region and in the superior colliculus. At PD 1 the trajectory of degenerating fibres is clearly visible. Signs of terminal degeneration can only be found in the reticular nucleus. It is discussed whether the date of generation of the cortical neurons and the time of the differentiation of the cortical layers is of importance for the time of innervation of the subcortical projection fields. The question when the axons arrive at their terminal region and form there synaptic contacts has not yet been exactly answered. To solve this problem electronmicroscopic investigations are necessary.  相似文献   

11.
S Korsia  S W Bottjer 《Neuron》1989,3(4):451-460
Using a double-labeling technique to characterize projection neurons and androgen target cells, we examined ontogenetic changes in the cellular composition of IMAN, a forebrain nucleus that plays an important role in song learning during a restricted period of male zebra finch development. This nucleus undergoes a massive loss of neurons during the time of song acquisition. We report that during the period of cell loss in IMAN, neither the property of projecting to an efferent target nor the ability to concentrate androgens is able to spare neurons from ontogenetic cell death. Furthermore, we report that, at the time when IMAN ceases to influence song production, a large proportion of androgen-sensitive cells that do not make an efferent projection lose the ability to accumulate androgens.  相似文献   

12.
Summary Central projections of afferents from the lateral line nerves and from the individual branches of the VIIIth cranial nerve in Xenopus laevis and Xenopus mülleri were studied by the application of HRP to the cut end of the nerves.Upon entering the rhombencephalon, the lateral line afferents form a longitudinal fascicle of ascending and descending branches in the ventro-lateral part of the lateral line neuropile. The fascicle exhibits a topographic organization, that is not reflected in the terminal field of the side branches. The terminal field can be subdivided into a rostral, a medial and a caudal part, each of which shows specific branching and terminal pattern of the lateral line afferents. These different patterns within the terminal field are interpreted as the reflection of functional subdivisions of the lateral line area. The study did not reveal a simple topographic relationship between peripheral neuromasts and their central projections.Two nuclei of the alar plate with significant lateral line input were delineated: the lateral line nucleus (LLN) and the medial part of the anterior nucleus (AN). An additional cell group, the intermediate nucleus (IN), is a zone of lateral line and eighth nerve overlap, although such zones also exist within the ventral part of the LLN and the dorsal part of the caudal nucleus (CN). Six nuclei which receive significant VIIIth nerve input are recognized: the cerebellar nucleus (CbN), the lateral part of the anterior nucleus, the dorsal medullary nucleus (DMN), the lateral octavus nucleus (LON), the medial vestibular nucleus (MVN) and the caudal nucleus (CN).All inner ear organs have more than one projection field. All organs project to the dorsal part of the LON and the lateral part of the AN. Lagena, amphibian papilla and basilar papilla project to separate regions of the dorsal medullary nucleus (DMN). There is evidence for a topographic relation between the hair cells of the amphibian papilla (AP) and the central projections of AP fibers. The sacculus projects extensively to a region between the DMN and the LON. Fibers from the sacculus and the lagena project directly to the superior olive. Fibers from the utriculus and the three crista organs terminate predominantly in the medial vestibular nucleus (MVN) and in the adjacent parts of the reticular formation, and their terminal structures appear to be organotopically organised. Octavus fiber projections to the cerebellum and to the spinal cord are also described.  相似文献   

13.
Following a demonstration of Golgi-impregnated neurons and their terminal axon arborization in the optic tectum, the neurons of the nucleus parvocellularis and magnocellularis isthmi were studied by means of postembedded electron-microscopical (EM) γ-aminobutyric acid (GABA)-immunogold staining. In the parvocellular nucleus, none of the neuronal cell bodies or dendrites displayed GABA-like immunoreactivity in EM preparations stained by postembedded GABA-immunogold. However, numerous GABA-like immunoreactive and also unlabeled terminals established synapses with GABA-negative neurons. GABA-like immunoreactive terminals were usually found at the dendritic origin. Around the dendritic profiles, isolated synapses of both GABA-like immunoreactive and immunonegative terminals established glomerulus-like structures enclosed by glial processes. All giant and large neurons of the magnocellular nucleus of the isthmi displayed GABA-like immunoreactivity. Their cell surface was completely covered by GABA-like immunoreactive and unlabeled terminals that established synapses with the neurons. These neurons are thought to send axon collaterals to the parvocellular nucleus; their axons enter the tectum opticum. The morphological characteristics of neurons of both isthmic nuclei are like those of interneurons, because of their numerous axosomatic synapses with both asymmetrical and symmetrical features. These neurons are not located among their target neurons and exert their modulatory effect on optic transmission in the optic tectum at a distance.  相似文献   

14.
The restoration of the cercal afferent projection of crickets was examined after severing the cercal nerve or amputating the cercus and reimplanting it. After either maneuver the sensory neurons regenerated arborizations in the central nervous system (CNS) within about 1 month. In order to assess the role of the pathway taken to the CNS in controlling the growth of the terminal arborization, we transplantated left cerci to the right side of the host. The operation mismatched the mediolateral axes of host and graft tissues. In one-third of the neurons examined, the axon trajectories of the regenerated neurons were altered. The terminal arborizations in these cases were unusual; for example, one neuron arborized in an abnormal area as well as in its normal area. In rare instances this neuron arborized only in incorrect areas of the CNS. Thus, it appears that axon pathway can have an effect on the central structure of sensory neurons. However, in most cases after the surgery, the neurons were able to reach their proper target areas even by circuitous routes. The proximodistal coordinate of the map is isomorphic with sensory neuron age, because the most distal receptors are produced early in postembryonic development and new ones are added proximally at each molt. We tested the possibility that the order of differentiation was critical for generating the afferent projection with two experiments. First, the distal cercus including the distal members of the clavate array was amputated. The specimen regenerated an entire distal cercus including distal clavate receptors. When newly generated, distal neurons were stained, the terminal arbors were identical to the amputated neurons they replaced. In this case, both age and order of arrival were reversed from normal yet the topographic projection pattern was not altered. Second, we transplanted young cerci onto older specimens and then examined the regenerated arbors of the transplanted sensory neuron. The immature neuron arborized in the adult nervous system exactly as the mature homolog. Thus the age of a sensory neuron did not appear to be a controlling variable in the elaboration of a terminal arborization. The significance of these results is discussed in the context of two models for development of orderly neuronal connections.  相似文献   

15.
Summary Innervation of the cirri in three teleost species (Hypsoblennius gilberti, Hypsoblennius gentilis, Oxylebius pictus) was investigated with the use of HRP- and cobalttracing techniques. All projections were found to be ipsilateral. Labeled cells were demonstrated in both portions of the trigeminal ganglion and in the facial ganglion. Cirrus nerve fibers running in the trigeminal nerve project to terminal fields in an isthmic sensory trigeminal nucleus, to areas adjacent to the descending trigeminal root in the brainstem, and to the medial funicular nucleus in the medulla. Distribution of labeled cells in the trigeminal ganglion complex suggests a functional distinction of the two ganglion portions. Cirrus nerve fibers belonging to the facial nerve terminate in a circumscribed part of of the facial lobe, indicating a somatotopic projection. Pathways were principally the same in all three species investigated. Findings of facial innervation of teleost cirri suggest a suspected gustatory function of teleost head appendages.  相似文献   

16.
应用神经示踪物BDA(biotinylateddextranamine)和免疫组织化学方法对环鸽(streptopeliarisoria)丘脑听区和下丘脑内分泌脑区间的神经通路进行了研究。结果发现,丘脑卵形核壳(Ovshel)及周围区域存在丰富脑啡肽免疫反应神经元。丘脑卵形核尾侧(Ovp)有传出纤维直接投射至Ov壳和下丘脑腹内侧核(VMN)。卵形核壳周围和下丘脑内分泌脑区间的传出神经通路显示了丰富的脑啡肽阳性免疫反应细胞和终末标记,在下丘脑腹内侧核中亦存在大量脑腓肽终末标记。结果提示Ov周围的部分脑啡肽神经元发出的传出纤维可能参与了鸽丘脑听区向内分泌下丘脑区投射的神经通路。  相似文献   

17.
Summary The fate of ascending projections of thoracic interneurons in the metamorphosing brain of Tenebrio molitor is described. Persistent brain neurons were identified and their fate is described during metamorphosis. The projection sites of ascending elements are invariable throughout metamorphosis both in quantitative and in qualitative terms. Some of these ascending neurons are serotonin-immunoreactive and this set of neurons maintains a constant projection site within the metamorphosing brain. The alterations in the projection sites of these and other ascending neurons in the ventral nerve cord were analysed experimentally. The central projection sites of these persistent ascending neurons are not important for the maintenance of their nerve cord projections throughout metamorphosis. Experimental deletion of ascending neurons which project into the suboesophageal ganglion varies the shape of persistent central neurons.  相似文献   

18.
This study describes the projection of cervical spinal afferent nerve fibers to the medulla in the brush-tailed possum, a marsupial mammal. After single dorsal roots (between C2 and T1) were cut in a series of animals, the Fink-Heimer method was used to demonstrate the projection fields of fibers entering the CNS via specific dorsal roots. In the high cervical spinal cord, afferent fibers from each dorsal root form a discrete layer in the dorsal funiculus. The flattened laminae from upper cervical levels are lateral and those from lower cervical levels are medial within the dorsal columns. All afferent fibers at this level are separated from gray matter by the corticospinal fibers in the dorsal funiculus. All cervical roots project throughout most of the length of the well-developed main cuneate nucleus in a loosely segmentotopic fashion. Fibers from rostral roots enter more lateral parts of the nucleus, and fibers from lower levels pass to more medial areas; but terminal projection fields are typically large and overlap extensively. At more rostral medullary levels, fibers from all cervical dorsal roots also reach the external cuneate nucleus. The spatial arrangement here is more complex and more extensively overlapped than in the cuneate nucleus. Rostral cervical root fibers reach ventral and ventrolateral areas of the external cuneate nucleus and continue to its rostral pole; more caudal root fibers project to more dorsal and medial regions within the nucleus. These results demonstrate that projection patterns of spinal afferents in this marsupial are similar to those seen in the few placental species for which detailed data concerning this system are available.  相似文献   

19.
Although neuroanatomical tracing studies have defined the origin and targets of major projection neurons (PN) of the central nervous system (CNS), there is much less information about the circuits that influence these neurons. Recently, genetic approaches that use Cre recombinase-dependent viral vectors have greatly facilitated such circuit analysis, but these tracing approaches are limited by the availability of Cre-expressing mouse lines and the difficulty in restricting Cre expression to discrete regions of the CNS. Here, we illustrate an alternative approach to drive Cre expression specifically in defined subsets of CNS projection neurons, so as to map both direct and indirect presynaptic inputs to these cells. The method involves a combination of Cre-dependent transneuronal viral tracers that can be used in the adult and that does not require genetically modified mice. To trigger Cre-expression we inject a Cre-expressing adenovirus that is retrogradely transported to the projection neurons of interest. The region containing the retrogradely labeled projection neurons is next injected with Cre-dependent pseudorabies or rabies vectors, which results in labeling of poly- and monosynaptic neuronal inputs, respectively. In proof-of-concept experiments, we used this novel tracing system to study the circuits that engage projection neurons of the superficial dorsal horn of the spinal cord and trigeminal nucleus caudalis, neurons of the parabrachial nucleus of the dorsolateral pons that project to the amygdala and cortically-projecting neurons of the lateral geniculate nucleus. Importantly, because this dual viral tracing method does not require genetically derived Cre-expressing mouse lines, inputs to almost any projection system can be studied and the analysis can be performed in larger animals, such as the rat.  相似文献   

20.
In order to define central neurons projecting to the subcommissural organ (SCO) and to related areas in the postero-medial diencephalon, Phaseolus vulgaris-leucoagglutinin (PHA-L) was injected into the lateral geniculate nucleus of the rat. PHA-L-labelled neurons send axonal processes medially through the posterior thalamic nuclei and the posterior commissure to the other hemisphere. Branches of fibres originating from this projection form a plexus of nerve terminals in the underlying precommissural nucleus and in the nucleus of the posterior commissure. A small number of PHA-L-immunoreactive nerve fibres penetrate from the precommissural nucleus into the lateral part of the SCO. A few labelled fibres penetrate directly from the posterior commissure into the medial part of the caudal SCO. Most of the PHA-L-immunoreactive fibres occur in the hypendymal layer, although a few terminate near the ependymal cells of the organ. Many labelled fibres are found in the ventricular ependyma adjacent to the SCO, some fibres lying close to the ventricular lumen. These results were obtained only if the tracer was delivered into the intergeniculate leaflet of the lateral geniculate nucleus (IGL). The IGL innervates both the suprachiasmatic nucleus and the pineal organ; the connections between the IGL and the midline structures, including the SCO, suggest that these areas are influenced by the circadian system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号