首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The endogenous indol-3yl-acetic acid (IAA) of detipped apical segments from roots of maize (cv ORLA) was greatly reduced by an exodiffusion technique which depended upon the preferential acropetal transport of the phytohormone into buffered agar. When IAA was applied to the basal cut ends of freshly prepared root segments only growth inhibitions were demonstrable but after the endogenous auxin concentration had been reduced by the exodiffusion technique it became possible to stimulate growth by IAA application. The implications of the interaction between exogenous and endogenous IAA in the control of root segment growth are discussed with special reference to the role of endogenous IAA in the regulation of root growth and geotropism.Abbreviations IAA indol-3yl-acetic acid - GC-MS gas chromatography-mass spectrometry  相似文献   

2.
Gas chromatography-mass spectrometric analyses of purified extracts from cultures of Rhizobium phaseoli wild-type strain 8002, grown in a non-tryptophan-supplemented liquid medium, demonstrated the presence of indole-3-acetic acid (IAA), indole-3-ethanol (IEt), indole-3-aldehyde and indole-3-methanol (IM). In metabolism studies with 3H-, 14C- and 2H-labelled substrates the bacterium was shown to convert tryptophan to IEt, IAA and IM; IEt to IAA and IM; and IAA to IM. Indole-3-acetamide (IAAm) could not be detected as either an endogenous constituent or a metabolite of [3H]tryptophan nor did cultures convert [14C]IAAm to IAA. Biosynthesis of IAA in R. phaseoli, thus, involves a different pathway from that operating in Pseudomonas savastanio and Agrobacterium tumefaciens-induced crown-gall tumours.Abbreviations IAA indole-3-acetic acid - IAld indole-3-aldehyde - IAAm indole-3-acetamide - IEt indole-3-ethanol - IM indole-3-methanol - HPLC-RC high-performance liquid chromatography-radio counting - GC-MS gas chromatography-mass spectrometry  相似文献   

3.
Using gas chromatography-mass spectrometry (GC/MS) techniques of analyses, it has been found that endogenous abscisic acid (ABA) becomes asymmetrically distributed in the elongation zone of horizontal Zea mays (cv. LG 11) roots which are showing a positive gravitropic response. There is a relative increase in the ABA content of the lower half and a concomitant decrease for the upper half in such roots. Asymmetric distribution of ABA is also detected in the elongation zone of half-decapped roots.Abbreviations IAA indoleacetic acid - ABA abscisic acid - GC/MS gas chromatography-mass spectrometry  相似文献   

4.
The endogenous indole auxins of red-light grown pea (Pisum sativum L.) epicotyls were investigated. Immunoaffinity purification of indole-3-acetic acid (IAA) and its methylester was achieved using two monoclonal antibodies. Antibodies against free IAA were raised against IAA-C5-BSA, a hapten-carrier-conjugate giving rise to highly specific antibodies for indole auxins with a free acetic-acid group at position 3. Immunoaffinity adsorbents prepared with these antibodies were used for single-step purification of extracts of Alaska pea epicotylar tissue prior to quantification by high-performance liquid chromatography (HPLC) with on-line fluorescence detection. Monoclonal antibodies against a hapten-carrier-conjugate with IAA linked to bovine serum albumin through the carboxyl group (IAA-C1-BSA) were used for the isolation of IAA esters. Indol-3-acetic acid was identified in the elongation zone of the third internode of red-light-grown Alaska pea. 4-Chloro-indole-3-acetic acid, a constituent of immature pea seeds which is considered to be a very active auxin, was absent from the elongation zone. Several compounds were retained by the column based on antibodies against IAA-C1-BSA. Of these the methylester of IAA was identified by HPLC with on-line fluorescence detection, by co-migration in thin-layer chromatography and by gas chromatography-mass spectrometry. The methyl ester of IAA was very active in promoting elongation of pea third-internode segments. When fed to the epicotylar segments the IAA methylester was rapidly metabolized with IAA being the major metabolite. The methylester of IAA should therefore be classified as a labile auxin conjugate.Abbreviations 4Cl-IAA 4-chloro-indole-3-acetic acid - GC-MS gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - IAA Indole-3-acetic acid - IAA-C5-BSA, IAA-C1-BSA, IAA-NI-BSA hapten-carrier-conjugates with IAA linked to bovine serum albumin through the C5-position, the carboxyl group, and the indole nitrogen, respectively - IAA-Me the methylester of IAA This study was supported by the Danish Research Council (SJVF 13-4148 and 13-4547 to P.U.) and by The Research Center for Plant Biotechnology.  相似文献   

5.
A. Chanson  P. E. Pilet 《Planta》1982,154(6):556-561
The tips of intact maize (cv. LG 11) roots, maintained vertically, were pretreated with a droplet of buffer solution or a bead of anion exchange resin, both containing [214-C]abscisic acid (ABA). A significant basipetal ABA movement was observed and two metabolites of ABA (possibly phaseic acid and dihydrophaseic acid) were found. ABA pretreatment enhanced the gravireaction of 10 mm apical root segments kept both in the dark and in the light. The possibility that ABA could be one of the endogenous growth inhibitors produced or released by the cap cells is discussed.Abbreviations ABA abscisic acid - 3,3-DGA 3,3-dimethyl-glutaric acid - DPA dihydrophaseic acid - PA phaseic acid - GCMS gas chromatography-mass spectrometry  相似文献   

6.
P. E. Pilet  P. Meuwly 《Planta》1986,169(1):16-22
Five types of anion-exchanger resin beads which had adsorbed indole-3-acetic acid (IAA) were tested as IAA donors. The rate of IAA-uptake by beads was a function of time and pH. The release was relatively steady during 6 h application on vertical maize roots. No IAA degradation occurred in the beads (Amberlite IRA 400 type) but 45.8% was metabolised in the roots during treatment. Beads loaded with IAA and placed on one side of the root (at 2.20±0.03 mm from the tip) induced a curvature towards and above the bead (23.3±1.1 degrees after 5.25 h application). In contrast, control beads (without IAA) did not change the axial growth rate. Applied IAA seemed to move differently from endogenous IAA. The use of resin beads loaded with IAA offers a technique to study the effects of local IAA application on intact growing roots.Abbreviations 3,3-DGA 3,3 dimethyl-glutaric acid - HPLC high-performance liquid chromatography - IAA indole-3-acetic acid - Ox-IAA oxindole-3-acetic acid  相似文献   

7.
Seeds from mature flowers of Heracleum laciniatum were collected locally (Tromsø, Norway). Seed coats were removed and the seeds were analyzed for their content of free, free plus ester-conjugate, and total indole-3-acetic acid (IAA) by quantitative gas chromatography-mass spectrometry. Seeds contained high levels of free and amide-linked IAA relative to other dicotyledonous seeds for which values have been published. The major amide conjugate in this material was identified as indole-3-acetylaspartate by gas chromatography-mass spectrometry of its bis-methyl ester.  相似文献   

8.
Göran Sandberg 《Planta》1984,161(5):398-403
Combined gas chromatography-mass spectrometry has been used to identify indole-3-ethanol (IEt) in a purified extract from needles of Pinus sylvestris L. Quantitative estimates obtained by high-performance liquid chromatography with fluorescence detection, corrected for samples losses occurring during purification, indicate that Pinus needles contain 46±4 ng g-1 IEt. This compares with 24.5±6.5 ng g-1 indole-3-acetic acid (IAA) and 2.3±0.4 ng g-1 indole-3-carboxylic acid (ICA) (Sandberg et al. 1984, Phytochemistry, 23, 99–102). Metabolism studies with needles incubated in a culture medium in darkness revealed that both [3-14C]-tryptophan and [2-14C]tryptamine mine are converted to [14C]IEt. It was also shown that [3-14C]IEt acted as a precursor of [14C]IAA. The observed metabolism appears to be enzymic in nature. The [2-14C]IAA was not catabolised to [14C]ICA in detectable quantities implying that, at best, only a minor portion of the endogenous ICA pool in the Pinus needles originates from IAA.Abbreviations DEAE diethylaminoethyl - GC-MS gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - IAA indole-3-acetic acid - ICA indole-3-carboxylic acid - IEt indole-3-ethanol - PVP polyvinylpyrrolidone  相似文献   

9.
Indole compounds secreted byFrankia sp. HFPArI3 in defined culture medium were identified with gas chromatography-mass spectrometry (GC-MS). WhenFrankia was grown in the presence of13C(ring-labelled)-L-tryptophan,13C-labelled indole-3-acetic acid (IAA), indole-3-ethanol (IEtOH), indole-3-lactic acid (ILA), and indole-3-methanol (IMeOH) were identified.High performance liquid chromatography (HPLC) and GC-MS with selected ion monitoring were used to quantify levels of IAA and IEtOH inFrankia culture medium. IEtOH was present in greater abundance than IAA in every experiment. When no exogenous trp was supplied, no or only low levels of indole compounds were detected.Seedling roots ofAlnus rubra incubated in axenic conditions in the presence of indole-3-ethanol formed more lateral roots than untreated plants, indicating that IEtOH is utilized by the host plant, with physiological effects that modify patterns of root primordium initiation.  相似文献   

10.
Synthesis of indole-3-acetic acid (IAA), using stable-isotope incorporation, was investigated in Zea mays L. Incorporation of 2H from 2H2O into IAA molecules was shown to occur in intact plantlets and excised primary roots cultured in vitro. This demonstrates the de-novo formation of IAA, a process which is quantitatively well defined and is initiated early in germination.Abbreviations IAA indole-3-acetic acid  相似文献   

11.
Muday GK  Lomax TL  Rayle DL 《Planta》1995,195(4):548-553
Roots of the tomato (Lycopersicon esculentum, Mill.) mutant diageotropica (dgt) exhibit an altered phenotype. These roots are agravitropic and lack lateral roots. Relative to wild-type (VFN8) roots, dgt roots are less sensitive to growth inhibition by exogenously applied IAA and auxin transport inhibitors (phytotropins), and the roots exhibit a reduction in maximal growth inhibition in response to ethylene. However, IAA transport through roots, binding of the phytotropin, tritiated naphthylphthalamic acid ([3H]NPA), to root microsomal membranes, NPA-sensitive IAA uptake by root segments, and uptake of [3H]NPA into root segments are all similar in mutant and wild-type roots. We speculate that the reduced sensitivity of dgt root growth to auxin-transport inhibitors and ethylene is an indirect result of the reduction in sensitivity to auxin in this single gene, recessive mutant. We conclude that dgt roots, like dgt shoots, exhibit abnormalities indicating they have a defect associated with or affecting a primary site of auxin perception or action.Abbreviations BCA bicinchoninic acid - IAA indole 3-acetic acid - dgt diageotropica - IC50 concentration for 50% inhibition of growth - NPA N-1-naphthylphthalamic acid - SCB-1 semicarbazone 1 This research was supported by grants from Sandoz Agro, Inc. (G.K.M), the National Aeronautics and Space Administration (NASA) and the National Science Foundation (T.L.L), and NASA (D.L.R.).  相似文献   

12.
Elongation, indolyl-3-acetic acid (IAA) and abscisic acid (ABA) levels, – gas chromatography-mass spectrometry quantification –, in the elongating zone were analysed for maize ( Zea mays L., Cv. LG11) roots immersed in buffer solution with or without zeatin (Z). The effect of Z depends on the initial extension rate of roots. The slower growing roots are more strongly inhibited by Z (10−7−10−5 M ) and they show a greater increase in IAA and ABA content. When compared to the rapidly growing roots, the larger reactivity of the 'slow'ones cannot be attributed to a higher Z uptake as shown when using [14C]-Z. It is suggested that Z could regulate root elongation by acting on the IAA and/or ABA level. The comparative action of these two hormones is discussed.  相似文献   

13.
14.
Reverse-phase high-performance liquid chromatography was used to analyse 14C-labelled metabolites of indole-3-acetic acid (IAA) formed in the cortical and stelar tissues of Zea mays roots. After a 2-h incubation in [14C]IAA, stelar segments had metabolised between 1–6% of the methanol-extractable radioactivity compared with 91–92% by the cortical segments. The pattern of metabolites produced by cortical segments was similar to that produced by intact segments bathed in aqueous solutions of [14C]IAA. In contrast, when IAA was supplied in agar blocks to stelar tissue protruding from the basal ends of segments, negligible metabolism was evident. On the basis of its retention characteristics both before and after methylation, the major metabolite of [14C]IAA in Zea mays root segments was tentatively identified by high-performance liquid chromatography as oxindole-3-acetic acid.Abbreviations HPLC High-performance liquid chromatography - IAA Indole-3-acetic acid  相似文献   

15.
16.
Qualitative analysis by gas chromatography-mass spectrometry (GC-MS) of the auxins present in the root, cotyledons and epicotyl of 3-dold etiolated pea (Pisum sativum L., cv. Alaska) seedlings has shown that all three organs contain phenylacetic acid (PAA), 3-indoleacetic acid (IAA) and 4-chloro-3-indoleacetic acid (4Cl-IAA). In addition, 3-indolepropionic acid (IPA) was present in the root and 3-indolebutyric acid (IBA) was detected in both root and epicotyl. Phenylacetic acid, IAA and IPA were measured quantitatively in the three organs by GC-MS-single ion monitoring, using deuterated internal standards. Levels of IAA were found to range from 13 to 115 pmol g-1 FW, while amounts of PAA were considerably higher (347–451 pmol g-1 FW) and the level of IPA was quite low (5 pmol g-1 FW). On a molar basis the PAA:IAA ratio in the whole seedling was approx. 15:1.Abbreviations IAA 3-indoleacetic acid - 4Cl-IAA 4-chloro-3-indoleacetic acid - IBA 3-indolebutyric acid - IPA 3-indolepropionic acid - PAA phenylacetic acid - GC-MS gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - PFB pentafluorobenzyl ester - PFBBr pentafluorobenzyl bromide - SIM single-ion monitoring - TMSI trimethylsilyl ester  相似文献   

17.
The role of auxins in induction of roots byAgrobacterium rhizogenes was studied in carrot root disks. Transformed roots were produced on root disks by inoculation withA. rhizogenes, A4. Measurement of indole-3-acetic acid (IAA) by gas chromatography-mass spectrometry (GC-MS) indicated that there was a significant increase in the concentration of IAA in transformed callus and induced roots compared with initial IAA concentrations in carrot disks. Indole-3-butyric acid (IBA) was found to occur naturally in carrot roots. The presence of IBA, a potent root inducer, must be taken into account when assessing the role of auxin during transformation and induction of roots byA. rhizogenes.  相似文献   

18.
Water stress and indol-3yl-acetic acid content of maize roots   总被引:2,自引:0,他引:2  
J. M. Ribaut  P. E. Pilet 《Planta》1994,193(4):502-507
Water-stress conditions were applied to the apical 12 mm of intact or excised roots ofZea mays L. (cv. LG 11) using mannitol solutions (0 to 0.66 M) and changes in weight, water content, growth and IAA level of these roots were investigated. With increasing stress a decrease in growth, correlated with an increased IAA level, was observed. The largest increase in IAA (about 2.7-fold) was found in the apical 5 mm of the root and was obtained under a stress corresponding to an osmotic potential of −1.39 MPa in the solution. This stress led to an isotonic state in the cells after 1 h. When the duration of water stress (−1.09 MPa) was increased to 2 or 3 h, no further increase in the IAA content was observed in the root segments. This indicated that there was no correlation between a hypothetical passive penetration of mannitol in the cells and IAA content. Indol-3yl-acetic acid rose to the same level in excised as in intact roots. In both cases, IAA accumulation was apparently independent of the hydrolysis of the conjugated form. The caryopsis and shoot seem not to be necessary to induce the increase of the IAA level in the roots during water stress (−1.09 MPa). Therefore, there seems to be a high rate of IAA biosynthesis in excised maize roots under water-stress conditions. Exodiffusion of IAA was observed during an immersion in either buffer or stress (−1.09 MPa) solution. In both cases, this IAA efflux into the medium represented about 50% of the endogenous level. Considering the present results, IAA appears to play an important part in the regulation of maize root metabolism and growth under water deficiency.  相似文献   

19.
[5-3H]Indol-3yl-acetic acid (IAA) applied to the shoot apices of intact 6-day-old maize (Zea mays L.) plants moved into the primary root and accumulated at the root apex. IAA from the shoot could partially satisfy the requirement of the primary root for IAA for growth.Abbreviation IAA indol-3yl-acetic acid  相似文献   

20.
Mary Jo Vesper  Carol L. Kuss 《Planta》1990,182(4):486-491
To locate functionally the primary site of auxin action in growing cells, the pool of auxin relevant to induction of growth in maize (Zea mays L.) coleoptile sections was determined. A positive correlation was consistently noted between growth and intracellular levels of indole-3-acetic acid (IAA), i.e. growth appears to be relatively independent of the external level of IAA. N-1-Naphthylphthalamic acid (NPA), a potent inhibitor of auxin transport, was used to enhance accumulation of IAA in coleoptile cells. From the use of NPA, it is shown that: 1) increasing the accumulation of IAA in cells, while the external concentration is held constant, resulted in a concomitant increase in growth, and 2) blocking the exit of IAA from cells with NPA sustained an IAA-induced growth response in the absence of externally applied IAA. Furthermore, the absence of any alterations in auxin binding to microsomal fractions by NPA indicates that the action of NPA in causing enhancement of auxin-induced growth is based upon its inhibition of efflux of IAA from the cells. This research was supported by National Science Foundation grant No. DMB 8515925. The careful assistance of Laurie Brulport is gratefully acknowledged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号