首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Characterisation of Hepatitis C virus (HCV)-specific CD8+ T-cell responses in the context of multiple HCV exposures is critical to identify broadly protective immune responses necessary for an effective HCV vaccine against the different HCV genotypes. However, host and viral genetic diversity complicates vaccine development. To compensate for the observed variation in circulating autologous viruses and host molecules that restrict antigen presentation (human leucocyte antigens; HLA), this study used a reverse genomics approach that identified sites of viral adaptation to HLA-restricted T-cell immune pressure to predict genotype-specific HCV CD8+ T-cell targets. Peptides representing these putative HCV CD8+ T-cell targets, and their adapted form, were used in individualised IFN-γ ELISpot assays to screen for HCV-specific T-cell responses in 133 HCV-seropositive subjects with high-risk of multiple HCV exposures. The data obtained from this study i) confirmed that genetic studies of viral evolution is an effective approach to detect novel in vivo HCV T-cell targets, ii) showed that HCV-specific T-cell epitopes can be recognised in their adapted form and would not have been detected using wild-type peptides and iii) showed that HCV-specific T-cell (but not antibody) responses against alternate genotypes in chronic HCV-infected subjects are readily found, implying clearance of previous alternate genotype infection. In summary, HCV adaptation to HLA Class I-restricted T-cell responses plays a central role in anti-HCV immunity and multiple HCV genotype exposure is highly prevalent in at-risk exposure populations, which are important considerations for future vaccine design.  相似文献   

2.
In this study, we demonstrate that killer cell lectin-like receptor subfamily G member 1 (KLRG1), a transmembrane protein preferentially expressed on T cells, is highly expressed on CD56+ NK cells, which are significantly reduced in their numbers and functions in the peripheral blood of patients with chronic hepatitis C virus (HCV) infection compared to subjects without infection. KLRG1 expression is also upregulated on healthy NK cells exposed to Huh-7 hepatocytes infected with HCV in vitro. Importantly, the expression levels of KLRG1 are inversely associated with the capacity of NK cells to proliferate and to produce gamma interferon (IFN-γ) but positively associated with apoptosis of NK cells in response to inflammatory cytokine stimulation. KLRG1+ NK cells, including CD56bright and CD56dim subsets, exhibit impaired cell activation and IFN-γ production but increased apoptosis compared to KLRG1 NK cells, particularly in HCV-infected individuals. Importantly, blockade of KLRG1 signaling significantly recovered the impaired IFN-γ production by NK cells from HCV-infected subjects. Blockade of KLRG1 also enhanced the impaired phosphorylation of Akt (Ser473) in NK cells from HCV-infected subjects. Taken together, these results indicate that KLRG1 negatively regulates NK cell numbers and functions via the Akt pathway, thus providing a novel marker and therapeutic target for HCV infection.  相似文献   

3.
In hepatitis C Virus (HCV) high-risk groups, HCV-specific T cell responses have been detected in seronegative, aviremic persons who have no evidence of HCV infection. Herein, we investigated functional profiles of HCV-specific T-cell responses in seronegative, aviremic patients of a HCV high-risk group. Seventy seven hemodialysis patients with chronic renal disease were analyzed by IFN-γ ELISpot assays, and eight of 71 (11.3%) seronegative, aviremic patients displayed HCV-specific T-cell responses. Their HCV-specific memory T cells were characterized by assessing cytokine polyfunctionality, known to provide antiviral protection. By intracellular staining of IFN-γ, TNF-α, IL-2 and MIP-1β, we identified two distinct populations in the seronegative, aviremic patients: polyfunctional responders and TNF-α-predominant responders. In further analysis, occult HCV infection was excluded as a cause of the HCV-specific T cell response via secondary nested RT-PCR of HCV RNA in peripheral blood mononuclear cell samples. HCV-specific T cells targeted multiple epitopes including non-structural proteins in a single patient, implying that their T cells might have been primed by HCV proteins synthesized within the host. We conclude that HCV-specific memory T cells of seronegative, aviremic patients arise from authentic HCV replication in the host, but not from current occult HCV infection. By functional pattern of HCV-specific T cells, there are two distinct populations in these patients: polyfunctional responders and TNF-α-predominant responders.  相似文献   

4.
Chronic hepatitis C virus (HCV) infection is associated with impaired proliferative, cytokine, and cytotoxic effector functions of HCV-specific CD8(+) T cells that probably contribute significantly to viral persistence. Here, we investigated the potential role of T cells with a CD4(+)CD25(+) regulatory phenotype in suppressing virus-specific CD8(+) T-cell proliferation during chronic HCV infection. In vitro depletion studies and coculture experiments revealed that peptide specific proliferation as well as gamma interferon production of HCV-specific CD8(+) T cells were inhibited by CD4(+)CD25(+) T cells. This inhibition was dose dependent, required direct cell-cell contact, and was independent of interleukin-10 and transforming growth factor beta. Interestingly, the T-cell-mediated suppression in chronically HCV-infected patients was not restricted to HCV-specific CD8(+) T cells but also to influenza virus-specific CD8(+) T cells. Importantly, CD4(+)CD25(+) T cells from persons recovered from HCV infection and from healthy blood donors exhibited significantly less suppressor activity. Thus, the inhibition of virus-specific CD8(+) T-cell proliferation was enhanced in chronically HCV-infected patients. This was associated with a higher frequency of circulating CD4(+)CD25(+) cells observed in this patient group. Taken together, our results suggest that chronic HCV infection leads to the expansion of CD4(+)CD25(+) T cells that are able to suppress CD8(+) T-cell responses to different viral antigens. Our results further suggest that CD4(+)CD25(+) T cells may contribute to viral persistence in chronically HCV-infected patients and may be a target for immunotherapy of chronic hepatitis C.  相似文献   

5.
During chronic hepatitis C virus (HCV) infection, the role of intra-hepatic (IH) natural killer (NK) cells is still controversial. To clarify their functions, we investigated anti-viral and cytotoxic activity of NK cells in human fresh liver biopsies. We compared the functions of IH-NK cells in HCV-infected and NASH patients in physiological conditions as well as after stimulation using flow cytometric and immunohistochemical analyses. Interestingly, few IH-NK cells produced anti-viral cytokine IFN-γ in HCV-infected patients similarly as in non-infected individuals. Spontaneous degranulation activity was extremely low in peripheral NK cells compared to IH-NK cells, and was significantly higher in IH-NK cells from HCV-infected patients compared to non-infected individuals. Immunohistochemical analysis revealed that perforin granules were polarized at the apical pole of IH-NK cells. The presence of CD107a and perforin in IH-NK cells demonstrated that NK cells exerted a cytolytic activity at the site of infection. Importantly, IH-NK cell functions from HCV-infected patients were inducible by specific exogenous stimulations. Upon ex vivo K562 target cell stimulations, the number of degranulating NK cells was significantly increased in the pool of IH-NK cells compared to circulating NK cells. Interestingly, after stimulation, the frequency of IFN-γ-producing IH-NK cells in HCV-infected patients was significantly higher at early stage of inflammation whereas the spontaneous IH-NK cell degranulation activity was significantly impaired in patients with highest inflammation and fibrosis Metavir scores. Our study highlights that some IH-NK cells in HCV-infected patients are able to produce INF-γ and degranulate and that those two activities depend on liver environment including the severity of liver injury. Thus, we conclude that critical roles of IH-NK cells have to be taken into account in the course of the liver pathogenesis associated to chronic HCV infection.  相似文献   

6.
Numerous studies have suggested that an effective Hepatitis C Virus (HCV) vaccine must induce strong cytotoxic and IFN-γ+ T cell responses targeting the non-structural region of the virus. Most importantly, these responses must be able to migrate into and remain functional within the liver, an organ known to cause T cell tolerance. Using three novel HCV DNA vaccines encoding non-structural proteins NS4B, NS5A and NS5B, we assessed the ability of peripheral immunization to induce functional intrahepatic immunity both in the presence and absence of cognate HCV antigen expression within the liver. We have shown that these constructs induced potent HCV-specific CD4+ and CD8+ T cell responses in the spleen of C57BL/6 mice and that these responses were detected within the liver following peripheral immunization. Additionally, using a transfection method to express HCV antigen within the liver, we showed that intrahepatic HCV-specific T cells remained highly functional within the liver and retained the ability to become highly activated as evidenced by upregulation of IFN-γ and clearance of HCV protein expressing hepatocytes. Taken together, these findings suggest that peripheral immunization can induce potent HCV-specific T cell responses able to traffic to and function within the tolerant environment of the liver.  相似文献   

7.
Hepatitis C virus (HCV) infection is a major cause of morbidity and mortality in the HIV co-infected population. Interferon-alpha (IFN-α) remains a major component of anti-HCV therapy despite its deleterious effects on the immune system. Furthermore, IFN-α was recently shown to diminish the size of the latent HIV reservoir. The objectives of this study were to monitor the impact of IFN-α on T cell phenotype and proliferation of HIV and HCV-specific T cells during IFN therapy, and to identify immune markers that can predict the response to IFN in HICV/HIV co-infected patients. We performed longitudinal analyses of T cell numbers, phenotype and function in co-infected patients undergoing IFN-α therapy with different outcomes including IFN-α non-responders (NR) (n = 9) and patients who achieved sustained virologic response (SVR) (n = 19). We examined the expression of activation (CD38, HLA-DR), functional (CD127) and exhaustion markers (PD1, Tim-3, CD160 and CD244) on total CD4 and CD8 T cells before, during and after therapy. In addition, we examined the HIV- and HCV-specific proliferative responses against HIV-p24 and HCV-NS3 proteins. Frequencies of CD127+ CD4 T cells were higher in SVR than in NR patients at baseline. An increase in CD127 expression on CD8 T cells was observed after IFN-α therapy in all patients. In addition, CD8 T cells from NR patients expressed a higher exhaustion status at baseline. Finally, SVR patients exhibited higher proliferative response against both HIV and HCV antigens at baseline. Altogether, SVR correlated with higher expression of CD127, lower T cell exhaustion status and better HIV and HCV proliferative responses at baseline. Such factors might be used as non-invasive methods to predict the success of IFN–based therapies in co-infected individuals.  相似文献   

8.
Hepatitis C virus (HCV) is a major cause of post-transfusion and sporadic hepatitis worldwide, leading to chronic liver disease in at least 50% of infected individuals. The pathogenic mechanisms that result in chronic hepatitis are unknown. Lymphocytes are typically observed within the hepatic parenchyma, but the functional characteristics of these cells have not been defined. In this study, liver-infiltrating lymphocytes from two subjects with chronic HCV hepatitis were cloned at limiting dilution and tested for HCV-specific cytolytic activity using autologous target cells infected with vaccinia viruses expressing recombinant HCV Ag or sensitized with synthetic HCV peptides. In both subjects, HCV-specific, HLA class I-restricted CTL were identified that recognized epitopes in variable regions of either the envelope or nonstructural proteins. These results demonstrate the presence of HCV-specific CTL at the site of tissue damage in persons with chronic HCV hepatitis, and provide a means to evaluate the possible pathogenic role of these cells in HCV infection.  相似文献   

9.

Objectives

CD100, also known as Sema4D, is a member of the semaphorin family and has important regulatory functions that promote immune cell activation and responses. The role of CD100 expression on B cells in immune regulation during chronic hepatitis C virus (HCV) infection remains unclear.

Materials and Methods

We longitudinally investigated the altered expression of CD100, its receptor CD72, and other activation markers CD69 and CD86 on B cells in 20 chronic HCV-infected patients before and after treatment with pegylated interferon-alpha (Peg-IFN-α) and ribavirin (RBV) by flow cytometry.

Results

The frequency of CD5+ B cells as well as the expression levels of CD100, CD69 and CD86 was significantly increased in chronic HCV patients and returned to normal in patients with sustained virological response after discontinuation of IFN-α/RBV therapy. Upon IFN-α treatment, CD100 expression on B cells and the two subsets was further up-regulated in patients who achieved early virological response, and this was confirmed by in vitro experiments. Moreover, the increased CD100 expression via IFN-α was inversely correlated with the decline of the HCV-RNA titer during early-phase treatment.

Conclusions

Peripheral B cells show an activated phenotype during chronic HCV infection. Moreover, IFN-α therapy facilitates the reversion of disrupted B cell homeostasis, and up-regulated expression of CD100 may be indirectly related to HCV clearance.  相似文献   

10.
BackgroundHepatic steatosis is a risk factor for both liver disease progression and an impaired response to interferon alpha (IFN-α)-based combination therapy in chronic hepatitis C virus (HCV) infection. Previously, we reported that free fatty acid (FFA)-treated HCV cell culture induces hepatocellular steatosis and impairs the expression of interferon alpha receptor-1 (IFNAR1), which is why the antiviral activity of IFN-α against HCV is impaired.AimTo investigate the molecular mechanism by which IFNAR1 expression is impaired in HCV cell culture with or without free fatty acid-treatment.MethodHCV-infected Huh 7.5 cells were cultured with or without a mixture of saturated (palmitate) and unsaturated (oleate) long-chain free fatty acids (FFA). Intracytoplasmic fat accumulation in HCV-infected culture was visualized by oil red staining. Clearance of HCV in FFA cell culture treated with type I IFN (IFN-α) and Type III IFN (IFN-λ) was determined by Renilla luciferase activity, and the expression of HCV core was determined by immunostaining. Activation of Jak-Stat signaling in the FFA-treated HCV culture by IFN-α alone and IFN-λ alone was examined by Western blot analysis and confocal microscopy. Lysosomal degradation of IFNAR1 by chaperone-mediated autophagy (CMA) in the FFA-treated HCV cell culture model was investigated.ResultsFFA treatment induced dose-dependent hepatocellular steatosis and lipid droplet accumulation in HCV-infected Huh-7.5 cells. FFA treatment of infected culture increased HCV replication in a concentration-dependent manner. Intracellular lipid accumulation led to reduced Stat phosphorylation and nuclear translocation, causing an impaired IFN-α antiviral response and HCV clearance. Type III IFN (IFN-λ), which binds to a separate receptor, induces Stat phosphorylation, and nuclear translocation as well as antiviral clearance in FFA-treated HCV cell culture. We show here that the HCV-induced autophagy response is increased in FFA-treated cell culture. Pharmacological inhibitors of lysosomal degradation, such as ammonium chloride and bafilomycin, prevented IFNAR1 degradation in FFA-treated HCV cell culture. Activators of chaperone-mediated autophagy, including 6-aminonicotinamide and nutrient starvation, decreased IFNAR1 levels in Huh-7.5 cells. Co-immunoprecipitation, colocalization and siRNA knockdown experiments revealed that IFNAR1 but not IFNLR1 interacts with HSC70 and LAMP2A, which are core components of chaperone-mediated autophagy (CMA).ConclusionOur study presents evidence indicating that chaperone-mediated autophagy targets IFNAR1 degradation in the lysosome in FFA-treated HCV cell culture. These results provide a mechanism for why HCV induced autophagy response selectively degrades type I but not the type III IFNAR1.  相似文献   

11.
CD4(+)CD25(+) regulatory T cells (CD25(+) Tregs) play a key role in immune regulation. Since hepatitis C virus (HCV) persists with increased circulating CD4(+)CD25(+) T cells and virus-specific effector T-cell dysfunction, we asked if CD4(+)CD25(+) T cells in HCV-infected individuals are similar to natural Tregs in uninfected individuals and if they include HCV-specific Tregs using the specific Treg marker FoxP3 at the single-cell level. We report that HCV-infected patients display increased circulating FoxP3(+) Tregs that are phenotypically and functionally indistinguishable from FoxP3(+) Tregs in uninfected subjects. Furthermore, HCV-specific FoxP3(+) Tregs were detected in HCV-seropositive persons with antigen-specific expansion, major histocompatibility complex class II/peptide tetramer binding affinity, and preferential suppression of HCV-specific CD8 T cells. Transforming growth factor beta contributed to antigen-specific Treg expansion in vitro, suggesting that it may contribute to antigen-specific Treg expansion in vivo. Interestingly, FoxP3 expression was also detected in influenza virus-specific CD4 T cells. In conclusion, functionally active and virus-specific FoxP3(+) Tregs are induced in HCV infection, thus providing targeted immune regulation in vivo. Detection of FoxP3 expression in non-HCV-specific CD4 T cells suggests that immune regulation through antigen-specific Treg induction extends beyond HCV.  相似文献   

12.

Background

CD56+ T cells are abundant in liver and play an important role in host innate immunity against viral infections, including hepatitis C virus (HCV) infection, a common infection among heroin abusers. We thus investigated the in vivo impact of heroin use or heroin use plus HCV infection on the CD56+ T cell frequency and function.

Methodology/Principal Findings

A total of 37 heroin users with (17) or without (20) HCV infection and 17 healthy subjects were included in the study. Although there was no significant difference in CD56+ T cell frequency in PBMCs among three study groups, CD56+ T cells isolated from the heroin users had significantly lower levels of constitutive interferon-gamma (IFN-γ) expression than those from the normal subjects. In addition, when stimulated by interleukin (IL)-12, CD56+ natural T cells from HCV-infected heroin users produced significantly lower levels of IFN-γ than those from the normal subjects. This diminished ability to produce IFN-γ by CD56+ T cells was associated with the increased plasma HCV viral loads in the HCV-infected heroin users. Investigation of the mechanisms showed that although heroin use or heroin use plus HCV infection had little impact on the expression of the key positive regulators (IL-12 receptors, STAT-1, 3, 4, 5, JAK-2, and TYK-2) in IL-12 pathway, heroin use or heroin use plus HCV infection induced the expression of suppressor of cytokine signaling protein-3 (SOCS-3) and protein inhibitors of activated STAT-3 (PIAS-3), two key inhibitors of IL-12 pathway.

Conclusion/Significance

These findings provide compelling in vivo evidence that heroin use or heroin use plus HCV infection impairs CD56+ T cell-mediated innate immune function, which may account for HCV infection and persistence in liver.  相似文献   

13.
Impaired APC functions may play important roles in chronicity of hepatitis C virus (HCV) and HIV infections. To investigate the separate and combined effects of HCV and HIV infection on immature dendritic cells (DCs), we evaluated myeloid-derived DC (MDC) and plasmacytoid-derived DC (PDC) frequencies and functions, measured by Toll-like receptor ligand-induced IFN-alpha and IL-12, in healthy controls and subjects with chronic HCV, HIV, and HCV-HIV infection. To evaluate the relation between innate and adaptive immunity, we measured HCV-specific IFN-gamma-producing T cell frequency. MDC frequencies tended to be reduced in HIV infection (1.8-fold), while PDC frequencies were minimally reduced in HCV infection (1.4-fold). In contrast, a striking reduction in non-PDC-associated IFN-alpha production was observed in HIV-infected subjects (17-fold), while PDC-associated IFN-alpha production was markedly reduced in HCV-infected subjects (20-fold). Both non-PDC and PDC functions were impaired in HCV-HIV coinfection. MDC-associated IL-12 production was markedly reduced in both HCV and HIV-infected subjects (over 10-fold). Functional defects were attenuated with slowly progressive HIV infection. The proportion of subjects with HCV-specific T cell responses, and the number of Ags recognized were reduced in HCV-HIV subjects as compared with HCV singly infected subjects. A positive association was observed between MDC-associated IL-12 production and HCV-specific T cell frequency in HCV-infected subjects. These results indicate that immature DC function is dysregulated in HIV and HCV infections, but differentially, and that these defects are attenuated in slowly progressive HIV infection. These selectively different impairments may contribute to the reduced adaptive immune response to HCV in HCV-HIV coinfection.  相似文献   

14.
Hepatitis B and hepatitis C viruses (HBV and HCV) are both noncytopathic and can cause acute and chronic infections of the liver. Although they share tropism for the same organ, development of chronic hepatitis is much more frequent following HCV infection, suggesting different mechanisms of viral persistence. In this study, we show that circulating HBV- and HCV-specific tetramer-positive CD8 cells during the acute phase of hepatitis B and C belong almost entirely to an effector-memory subset (CCR7(-) CD45RA(-)). Despite this phenotypic similarity, HBV- and HCV-specific CD8 cells show striking functional differences. HBV-specific tetramer-positive CD8 cells express high perforin content ex vivo, expand vigorously, and display efficient cytotoxic activity and gamma interferon (IFN-gamma) production upon peptide stimulation. A comparable degree of functional efficiency is maintained after the resolution of hepatitis B. In contrast, HCV-specific CD8 cells in the acute phase of hepatitis C express significantly lower levels of perforin molecules ex vivo and show depressed CD8 function in terms of proliferation, lytic activity, and IFN-gamma production, irrespective of the final outcome of the disease. This defect is transient, because HCV-specific CD8 cells can progressively improve their function in patients with self-limited hepatitis C, while the CD8 function remains persistently depressed in subjects with a chronic evolution.  相似文献   

15.
The role of virus-specific T cells in hepatitis C virus (HCV) pathogenesis is not clear. Existing knowledge on the frequency, phenotype, and behavior of these cells comes from analyses of blood and liver, but other lymphoid compartments that may be important sites for functionally mature T cells have not yet been analyzed. We studied HCV-specific T cells from bone marrow, in comparison to those from peripheral blood and liver biopsy tissue, from 20 persistently HCV-infected patients with benign hematological disorders. Bone marrow contained a sizeable pool of CD8(+) T cells specific for epitopes from structural and nonstructural HCV proteins. These cells displayed the same effector memory phenotype as liver-derived equivalents and the same proliferative potential as blood-derived equivalents but had greater antiviral effector functions such as Ag-specific cytotoxicity and IFN-gamma production. These features were not shared by influenza virus-specific CD8(+) T cells in the same bone marrow samples. Despite their highly differentiated phenotype and activated status, some bone marrow-resident HCV-specific CD8(+) T cells were not directed against the infecting virus but, instead, against historical HCV Ags (i.e., viral species of a previous infection or minor viral species of the current infection). These findings provide a snapshot view of the distribution, differentiation, and functioning of virus-specific memory T cells in patients with persistent HCV infection.  相似文献   

16.
Specific inhibitory mechanisms suppress the T-cell response against the hepatitis C virus (HCV) in chronically infected patients. However, the relative importance of suppression by IL-10, TGF-β and regulatory T-cells and the impact of pegylated interferon-alpha and ribavirin (PegIFN-α/ribavirin) therapy on these inhibitory mechanisms are still unclear. We revealed that coregulation of the HCV-specific T-cell responses in blood of 43 chronic HCV patients showed a highly heterogeneous pattern before, during and after PegIFN-α/ribavirin. Prior to treatment, IL-10 mediated suppression of HCV-specific IFN-γ production in therapy-naive chronic HCV patients was associated with higher HCV-RNA loads, which suggests that protective antiviral immunity is controlled by IL-10. In addition, as a consequence of PegIFN-α/ribavirin therapy, negative regulation of especially HCV-specific IFN-γ production by TGF-β and IL-10 changed dramatically. Our findings emphasize the importance of negative regulation for the dysfunctional HCV-specific immunity, which should be considered in the design of future immunomodulatory therapies.  相似文献   

17.
In hepatitis C virus (HCV) infection the immune response is ineffective, leading to chronic hepatitis and liver damage. Primed CD8 T cells are critical for antiviral immunity and subsets of circulating CD8 T cells have been defined in blood but these do not necessarily reflect the clonality or differentiation of cells within tissue. Current models divide primed CD8 T cells into effector and memory cells, further subdivided into central memory (CCR7+, L-selectin+), recirculating through lymphoid tissues and effector memory (CCR7-, L-selectin-) mediating immune response in peripheral organs. We characterized CD8 T cells derived from organ donors and patients with end-stage HCV infection to show that: 1) all liver-infiltrating CD8 T cells express high levels of CD11a, indicating the effective absence of naive CD8 T cells in the liver. 2) The liver contains distinct subsets of primed CD8+ T cells including a population of CCR7+ L-selectin- cells, which does not reflect current paradigms. The expression of CCR7 by these cells may be induced by the hepatic microenvironment to facilitate recirculation. 3) The CCR7 ligands CCL19 and CCL21 are present on lymphatic, vascular, and sinusoidal endothelium in normal liver and in patients with HCV infection. We suggest that the recirculation of CCR7+/L-selectin- intrahepatic CD8 T cells to regional lymphoid tissue will be facilitated by CCL19 and CCL21 on hepatic sinusoids and lymphatics. This centripetal pathway of migration would allow restimulation in lymph nodes, thereby promoting immune surveillance in normal liver and renewal of effector responses in chronic viral infection.  相似文献   

18.
Infection with hepatitis C virus (HCV) is associated with persistence in the majority of individuals. We demonstrate here that the inhibitory molecule programmed death-1 (PD-1) is significantly upregulated on total and HCV-specific CD8(+) cytotoxic T lymphocytes (CTLs) in the peripheral blood and livers of patients with chronic infection compared to subjects with spontaneous HCV resolution, patients with nonviral liver disease, and normal controls. PD-1 expression on cytomegalovirus-specific CTLs also varies according to HCV status and is highest in patients with chronic infection. HCV-specific CTLs that are PD-1(high) express higher levels of the senescence marker CD57 than PD-1(low) CTLs, and CD57 expression is greater in chronic than in resolved infection. In vitro blockade of PD-1 by monoclonal antibodies specific to its ligands (PD-L1 and PD-L2) results in restoration of functional competence (proliferation and gamma interferon and interleukin-2 secretion) of HCV-specific CTLs, including those residing in the liver. This reversal of CTL exhaustion is evident even in individuals who lack HCV-specific CD4(+) T-cell help. Our data indicate that the PD-1/PD-L pathway is critical in persistent HCV infection in humans and represents a potential novel target for restoring function of exhausted HCV-specific CTLs.  相似文献   

19.
Early alpha interferon (IFN-α) therapy against hepatitis C virus (HCV) rescues polyfunctional, virus-specific memory CD8+ T cells, but whether immune restoration is possible during late therapy remains controversial. We compared immune restoration of HCV-specific memory T cells in patients who cleared HCV infection spontaneously and following early or late IFN therapy. Multifunctional CD4+ and CD8+ memory T cells were detected in spontaneous resolvers and in individuals treated early following an acute infection. In contrast, limited responses were detected in patients treated during chronic infection, and the phenotype of HCV-specific cells was influenced by autologous viral sequences. Our data suggest that irreversible damage to the HCV-specific memory T-cell response is associated with chronic HCV infection.The majority of acute hepatitis C virus (HCV) infections become chronic, with persistent viremia and serious liver complications (12). Alpha interferon (IFN-α)-based therapy is the only approved treatment for chronic HCV; its success rate ranges from 40 to 90% depending on the infecting genotype (9, 18). The success of therapy is characterized by a sustained virological response (SVR), defined as undetectable HCV RNA in plasma at 6 months after termination of therapy. SVR rates are greatly enhanced if therapy is started between 3 and 6 months following acute HCV infection, but the underlying mechanisms are not well understood (27, 28). We have demonstrated that early interferon therapy for HCV can rescue and select for long-lived polyfunctional CD8+ memory T cells (1). Treatment-induced memory T cells were similar in phenotype and function to natural memory T cells generated following spontaneously resolved infection. They expressed high levels of CD127 and Bcl-2 (CD127hi, Bcl-2hi) and low levels of PD1 (PD1lo) and were polyfunctional in nature (1). However, restoration of HCV-specific memory CD4+ T cells has not been examined. Furthermore, whether immune restoration is possible following the late initiation of therapy during the chronic phase remains controversial. Kamal et al. demonstrated that SVR is associated with a recovery in HCV-specific CD4+ T-cell responses (13). In contrast, Barnes et al. and Rahman et al. demonstrated that the induction of HCV-specific immunity during therapy does not correlate with outcomes (2, 21).  相似文献   

20.
The interaction between hepatitis C virus (HCV) and human hepatic innate antiviral responses is unclear. The aim of this study was to examine how human hepatocytes respond to HCV infection. An infectious HCV isolate, JFH1, was used to infect a newly established human hepatoma cell line HLCZ01. Viral RNA or NS5A protein was examined by real-time PCR or immunofluorescence respectively. The mechanisms of HCV-induced IFN-β and apoptosis were explored. Our data showed that HLCZ01 cells supported the entire HCV lifecycle and IFN-β and interferon-stimulated genes (ISGs) were induced in HCV-infected cells. Viral infection caused apoptosis of HLCZ01 cells. Silencing of RIG-I, IRF3 or TRAIL inhibited ISG12a expression and blocked apoptosis of viral-infected HLCZ01 cells. Knockdown ISG12a blocked apoptosis of viral-infected cells. MiR-942 is a candidate negative regulator of ISG12a predicted by bioinformatics search. Moreover, HCV infection decreased miR-942 expression in HLCZ01 cells and miR-942 was inversely correlated with ISG12a expression in both HCV-infected cells and liver biopsies. MiR-942 forced expression in HLCZ01 cells decreased ISG12a expression and subsequently suppressed apoptosis triggered by HCV infection. Conversely, silencing of miR-942 expression by anti-miR-942 increased ISG12a expression and enhanced apoptosis in HCV-infected cells. Induction of Noxa by HCV infection contributed to ISG12a-mediated apoptosis. All the data indicated that innate host response is intact in HCV-infected hepatocytes. MiR-942 regulates HCV-induced apoptosis of human hepatocytes by targeting ISG12a. Our study provides a novel mechanism by which human hepatocytes respond to HCV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号