首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The replicative life span of human fibroblasts is heterogeneous, with a fraction of cells senescing at every population doubling. To find out whether this heterogeneity is due to premature senescence, i.e. driven by a nontelomeric mechanism, fibroblasts with a senescent phenotype were isolated from growing cultures and clones by flow cytometry. These senescent cells had shorter telomeres than their cycling counterparts at all population doubling levels and both in mass cultures and in individual subclones, indicating heterogeneity in the rate of telomere shortening. Ectopic expression of telomerase stabilized telomere length in the majority of cells and rescued them from early senescence, suggesting a causal role of telomere shortening. Under standard cell culture conditions, there was a minor fraction of cells that showed a senescent phenotype and short telomeres despite active telomerase. This fraction increased under chronic mild oxidative stress, which is known to accelerate telomere shortening. It is possible that even high telomerase activity cannot fully compensate for telomere shortening in all cells. The data show that heterogeneity of the human fibroblast replicative life span can be caused by significant stochastic cell-to-cell variation in telomere shortening.  相似文献   

2.
Most human cells do not express telomerase and irreversibly arrest proliferation after a finite number of divisions (replicative senescence). Several lines of evidence suggest that replicative senescence is caused by short dysfunctional telomeres, which arise when DNA is replicated in the absence of adequate telomerase activity. We describe a method to reversibly bypass replicative senescence and generate mass cultures that have different average telomere lengths. A retrovirus carrying hTERT flanked by excision sites for Cre recombinase rendered normal human fibroblasts telomerase-positive and replicatively immortal. Superinfection with retroviruses carrying wild-type or mutant forms of TIN2, a negative regulator of telomere length, created telomerase-positive, immortal populations with varying average telomere lengths. Subsequent infection with a Cre-expressing retrovirus abolished telomerase activity, creating mortal cells with varying telomere lengths. Using these cell populations, we show that, after hTERT excision, cells senesce with shorter telomeres than parental cells. Moreover, long telomeres, but not telomerase, protected cells from the loss of division potential caused by ionizing radiation. Finally, although telomerase-negative cells with short telomeres senesced after fewer doublings than those with long telomeres, telomere length per se did not correlate with senescence. Our results support a role for telomere structure, rather than length, in replicative senescence.  相似文献   

3.
The lifespan of human fibroblasts and other primary cell strains can be extended by expression of the telomerase catalytic subunit (hTERT). Since replicative senescence is accompanied by substantial alterations in gene expression, we evaluated characteristics of in vitro-aged dermal fibroblast populations before and after immortalization with telomerase. The biological behavior of these populations was assessed by incorporation into reconstituted human skin. Reminiscent of skin in the elderly, we observed increased fragility and subepidermal blistering with increased passage number of dermal fibroblasts, but the expression of telomerase in late passage populations restored the normal nonblistering phenotype. DNA microarray analysis showed that senescent fibroblasts express reduced levels of collagen I and III, as well as increased levels of a series of markers associated with the destruction of dermal matrix and inflammatory processes, and that the expression of telomerase results in mRNA expression patterns that are substantially similar to early passage cells. Thus, telomerase activity not only confers replicative immortality to skin fibroblasts, but can also prevent or reverse the loss of biological function seen in senescent cell populations.  相似文献   

4.
Different telomere damage signaling pathways in human and mouse cells   总被引:24,自引:0,他引:24  
Programmed telomere shortening in human somatic cells is thought to act as a tumor suppressor pathway, limiting the replicative potential of developing tumor cells. Critically short human telomeres induce senescence either by activating p53 or by inducing the p16/RB pathway, and suppression of both pathways is required to suppress senescence of aged human cells. Here we report that removal of TRF2 from human telomeres and the ensuing de-protection of chromosome ends induced immediate premature senescence. Although the telomeric tracts remained intact, the TRF2(DeltaBDeltaM)-induced premature senescence was indistinguishable from replicative senescence and could be mediated by either the p53 or the p16/RB pathway. Telomere de-protection also induced a growth arrest and senescent morphology in mouse cells. However, in this setting the loss of p53 function was sufficient to completely abrogate the arrest, indicating that the p16/RB response to telomere dysfunction is not active in mouse cells. These findings reveal a fundamental difference in telomere damage signaling in human and mouse cells that bears on the use of mouse models for the telomere tumor suppressor pathway.  相似文献   

5.
Several lines of evidence indicate that telomere shortening during in vitro aging of human somatic cells plays a causal role in cellular senescence. A critical telomere length seems to be associated with the replicative block characterizing senescent cells. In this paper we analyzed the mean length of the terminal restriction fragments (TRF) in fibroblast strains from 4 healthy centenarians, that is, in cells aged in vivo, and from 11 individuals of different ages. No correlation between mean TRF length and donor age was found. As expected, telomere shortening was detected during in vitro propagation of centenarian fibroblasts, suggesting that in fibroblasts aged in vivo telomeres can be far from reaching a critical length. Accordingly, chromosome analysis did not show the presence of telomeric associations in early passage centenarian fibroblasts. In blood cells from various individuals, the expected inverse correlation between mean TRF length and donor age was found. In particular, a substantial difference (about 2 kb) between telomere length in the two cell types was observed in the same centenarian. Expression analysis of three senescence-induced genes, i.e., fibronectin, apolipoprotein J, and p21, revealed for only the fibronectin expression levels a clear positive correlation with donor age. Our results suggest that (1) telomere shortening could play a different role in the aging of different cell types and (2) the characteristics of fibroblasts aged in vitro might not be representative of what occurs in vivo.  相似文献   

6.
Telomere loss: mitotic clock or genetic time bomb?   总被引:38,自引:0,他引:38  
C B Harley 《Mutation research》1991,256(2-6):271-282
The Holy Grail of gerontologists investigating cellular senescence is the mechanism responsible for the finite proliferative capacity of somatic cells. In 1973, Olovnikov proposed that cells lose a small amount of DNA following each round of replication due to the inability of DNA polymerase to fully replicate chromosome ends (telomeres) and that eventually a critical deletion causes cell death. Recent observations showing that telomeres of human somatic cells act as a mitotic clock, shortening with age both in vitro and in vivo in a replication dependent manner, support this theory's premise. In addition, since telomeres stabilize chromosome ends against recombination, their loss could explain the increased frequency of dicentric chromosomes observed in late passage (senescent) fibroblasts and provide a checkpoint for regulated cell cycle exit. Sperm telomeres are longer than somatic telomeres and are maintained with age, suggesting that germ line cells may express telomerase, the ribonucleoprotein enzyme known to maintain telomere length in immortal unicellular eukaryotes. As predicted, telomerase activity has been found in immortal, transformed human cells and tumour cell lines, but not in normal somatic cells. Telomerase activation may be a late, obligate event in immortalization since many transformed cells and tumour tissues have critically short telomeres. Thus, telomere length and telomerase activity appear to be markers of the replicative history and proliferative potential of cells; the intriguing possibility remains that telomere loss is a genetic time bomb and hence causally involved in cell senescence and immortalization.  相似文献   

7.
Human diploid fibroblast cells can divide for only a limited number of times in vitro, a phenomenon known as replicative senescence or the Hayflick limit. Variability in doubling potential is observed within a clone of cells, and between two sister cells arising from a single mitotic division. This strongly suggests that the process by which cells become senescent is intrinsically stochastic. Among the various biochemical mechanisms that have been proposed to explain replicative senescence, particular interest has been focussed on the role of telomere reduction. In the absence of telomerase--an enzyme switched off in normal diploid fibro-blasts-cells lose telomeric DNA at each cell division. According to the telomere hypothesis of cell senescence, cells eventually reach a critically short telomere length and cell cycle arrest follows. In support of this concept, forced expression of telomerase in normal fibroblasts appears to prevent cell senescence. Nevertheless, the telomere hypothesis in its basic form has some difficulty in explaining the marked stochastic variations seen in the replicative lifespans of individual cells within a culture, and there is strong empirical and theoretical support for the concept that other kinds of damage may contribute to cellular ageing. We describe a stochastic network model of cell senescence in which a primary role is played by telomere reduction but in which other mechanisms (oxidative stress linked particularly to mitochondrial damage, and nuclear somatic mutations) also contribute. The model gives simulation results that are in good agreement with published data on intra-clonal variability in cell doubling potential and permits an analysis of how the various elements of the stochastic network interact. Such integrative models may aid in developing new experimental approaches aimed at unravelling the intrinsic complexity of the mechanisms contributing to human cell ageing.  相似文献   

8.
The loss of telomere repeats has been causally linked to in vitro replicative senescence of human diploid fibroblasts (HDFs). In order to study the mechanism(s) by which telomere shortening signals cell senescence, we analyzed the telomere length at specific chromosome ends at cumulative population doublings in polyclonal and clonal HDFs by quantitative fluorescence in situ hybridization. The rate of telomere shortening at individual telomeres varied between 50 and 150 bp per population doubling and short telomeres with an estimated 1-2 kb of telomere repeats accumulated prior to senescence. The average telomere length in specific chromosome ends was remarkably similar between clones. However, some exceptions with individual telomeres measuring 0.5-1 kb were observed. In the fibroblast clones, the onset of replicative senescence was significantly correlated with the mean telomere fluorescence but, strikingly, not with chromosomes with the shortest telomere length. The accumulation of short telomeres in late passages of cultured HDFs is compatible with selection of cells on the basis of telomere length and limited recombination between telomeres prior to senescence.  相似文献   

9.
10.
Replicative senescence is induced by critical telomere shortening and limits the proliferation of primary cells to a finite number of divisions. To characterize the activity status of the replicative senescence program in the context of cell cycle activity, we analyzed the senescence phenotypes and signaling pathways in quiescent and growth-stimulated primary human fibroblasts in vitro and liver cells in vivo. This study shows that replicative senescence signaling operates at a low level in cells with shortened telomeres but becomes fully activated when cells are stimulated to enter the cell cycle. This study also shows that the dysfunctional telomeres and nontelomeric DNA lesions in senescent cells do not elicit a DNA damage signal unless the cells are induced to enter the cell cycle by mitogen stimulation. The amplification of senescence signaling and DNA damage responses by mitogen stimulation in cells with shortened telomeres is mediated in part through the MEK/mitogen-activated protein kinase pathway. These findings have implications for the further understanding of replicative senescence and analysis of its role in vivo.  相似文献   

11.
Telomerase maintains telomere structure in normal human cells   总被引:68,自引:0,他引:68  
In normal human cells, telomeres shorten with successive rounds of cell division, and immortalization correlates with stabilization of telomere length. These observations suggest that human cancer cells achieve immortalization in large part through the illegitimate activation of telomerase expression. Here, we demonstrate that the rate-limiting telomerase catalytic subunit hTERT is expressed in cycling primary presenescent human fibroblasts, previously believed to lack hTERT expression and telomerase activity. Disruption of telomerase activity in normal human cells slows cell proliferation, restricts cell lifespan, and alters the maintenance of the 3' single-stranded telomeric overhang without changing the rate of overall telomere shortening. Together, these observations support the view that telomerase and telomere structure are dynamically regulated in normal human cells and that telomere length alone is unlikely to trigger entry into replicative senescence.  相似文献   

12.
13.
The Werner syndrome (WS) is a segmental progeroid syndrome caused by a recessive mutation (WRN) mapped to 8p12. The replicative life spans of somatic cells cultured from WS patients are substantially reduced compared to age-matched controls. Certain molecular concomitants of the replicative decline of normal fibroblast cultures have recently been defined, and it appears that multiple changes in gene expression accompany normal cell senescence. If the mechanisms by which WS cells exit the cell cycle were entirely comparable, the molecular markers of senescence should be identical in normal and WS cells. We find that this is not the case. The constitutive expression of statin, a nuclear protein associated with the nonproliferating state, was comparably expressed in normal and WS senescent cells. Likewise, the steady state levels of p53, a protein known to be involved in the G1 checkpoint of the cell cycle, were similar in early-passage fibroblasts from normal and WS subjects. The levels of p53 were not increased in senescent fibroblasts, whether derived from normal or WS subjects. By contrast, the inducibility of mRNA and protein expression of the c-fos protooncogene is preserved in late-passage WS cells. This is in contrast to what is observed in late-passage fibroblasts from normal subjects. Additional genotypes will have to be examined, however, to determine the specificity of this new aspect of the WS phenotype. © 1995 Wiley-Liss, Inc.  相似文献   

14.
Loss of telomeric DNA leads to telomere uncapping, which triggers a persistent, p53-centric DNA damage response that sustains a stable senescence-associated proliferation arrest. Here, we show that in normal cells telomere uncapping triggers a focal telomeric DNA damage response accompanied by a transient cell cycle arrest. Subsequent cell division with dysfunctional telomeres resulted in sporadic telomeric sister chromatid fusions that gave rise to next-mitosis genome instability, including non-telomeric DNA lesions responsible for a stable, p53-mediated, senescence-associated proliferation arrest. Unexpectedly, the blocking of Rad51/RPA-mediated homologous recombination, but not non-homologous end joining (NHEJ), prevented senescence despite multiple dysfunctional telomeres. When cells approached natural replicative senescence, interphase senescent cells displayed genome instability, whereas near-senescent cells that underwent mitosis despite the presence of uncapped telomeres did not. This suggests that these near-senescent cells had not yet acquired irreversible telomeric fusions. We propose a new model for telomere-initiated senescence where tolerance of telomere uncapping eventually results in irreversible non-telomeric DNA lesions leading to stable senescence. Paradoxically, our work reveals that senescence-associated tumor suppression from telomere shortening requires irreversible genome instability at the single-cell level, which suggests that interventions to repair telomeres in the pre-senescent state could prevent senescence and genome instability.  相似文献   

15.
The proliferative life span of human cells is limited by telomere shortening, but the specific telomeres responsible for determining the onset of senescence have not been adequately determined. We here identify the shortest telomeres by the frequency of signal-free ends after in situ hybridization with telomeric probes and demonstrate that probes adjacent to the shortest ends colocalize with gammaH2AX-positive DNA damage foci in senescent cells. Normal BJ cells growth arrest at senescence before developing significant karyotypic abnormalities. We also identify all of the telomeres involved in end-associations in BJ fibroblasts whose cell-cycle arrest at the time of replicative senescence has been blocked and demonstrate that the 10% of the telomeres with the shortest ends are involved in >90% of all end-associations. The failure to find telomeric end-associations in near-senescent normal BJ metaphases, the presence of signal-free ends in 90% of near-senescent metaphases, and the colocalization of short telomeres with DNA damage foci in senescent interphase cells suggests that end-associations rather than damage signals from short telomeres per se may be the proximate cause of growth arrest. These results demonstrate that a specific group of chromosomes with the shortest telomeres rather than either all or only one or two sentinel telomeres is responsible for the induction of replicative senescence.  相似文献   

16.
Werner syndrome (WS) is marked by early onset of features resembling aging, and is caused by loss of the RecQ family DNA helicase WRN. Precisely how loss of WRN leads to the phenotypes of WS is unknown. Cultured WS fibroblasts shorten their telomeres at an increased rate per population doubling and the premature senescence this loss induces can be bypassed by telomerase. Here we show that WRN co-localizes with telomeric factors in telomerase-independent immortalized human cells, and further that the budding yeast RecQ family helicase Sgs1p influences telomere metabolism in yeast cells lacking telomerase. Telomerase-deficient sgs1 mutants show increased rates of growth arrest in the G2/M phase of the cell cycle as telomeres shorten. In addition, telomerase-deficient sgs1 mutants have a defect in their ability to generate survivors of senescence that amplify telomeric TG1-3 repeats, and SGS1 functions in parallel with the recombination gene RAD51 to generate survivors. Our findings indicate that Sgs1p and WRN function in telomere maintenance, and suggest that telomere defects contribute to the pathogenesis of WS and perhaps other RecQ helicase diseases.  相似文献   

17.
Bai Y  Murnane JP 《Human genetics》2003,113(4):337-347
Werner Syndrome (WS) is an autosomal recessive disease characterized by premature aging and chromosome instability. The protein involved in WS, WRN, is a RecQ-type helicase that also has exonuclease activity. WRN has been demonstrated to bind to a variety of other proteins, including RPA, DNA-PKcs, and TRF2, suggesting that WRN is involved in DNA replication, repair, recombination, and telomere maintenance. In culture, WS cells show premature senescence, which can be overcome by transfection with an expression vector containing the gene for the catalytic subunit of telomerase. However, telomerase expression does not eliminate chromosome instability in WS cells, which led to the proposal that telomere loss is not the cause of the high rate of chromosome rearrangements in WS cells. In the present study, we have investigated how a WRN protein containing a dominant-negative mutation (K577M-WRN) influences the stability of telomeres in a human tumor cell line expressing telomerase. The results demonstrate an increased rate of telomere loss and chromosome fusion in cells expressing K577M-WRN. Expression of K577M-WRN results in reduced levels of telomerase activity, however, the absence of detectable changes in average telomere length demonstrates that WRN-associated telomere loss results from stochastic events involving complete telomere loss or loss of telomere capping function. Thus, telomere loss can contribute to chromosome instability in cells deficient in WRN regardless of the expression of telomerase activity.  相似文献   

18.
19.
Werner syndrome (WS) is characterized by features of premature aging and is caused by loss of the RecQ helicase protein WRN. WS fibroblasts display defects associated with telomere dysfunction, including accelerated telomere erosion and premature senescence. In yeast, RecQ helicases act in an alternative pathway for telomere lengthening (ALT) via homologous recombination. We found that WRN associates with telomeres when dissociation of telomeric D loops is likely during replication and recombination. In human ALT cells, WRN associates directly with telomeric DNA. The majority of TRF1/PCNA colocalizing foci contained WRN in live S phase ALT cells but not in telomerase-positive HeLa cells. Biochemically, the WRN helicase and 3' to 5' exonuclease act simultaneously and cooperate to release the 3' invading tail from a telomeric D loop in vitro. The telomere binding proteins TRF1 and TRF2 limit digestion by WRN. We propose roles for WRN in dissociating telomeric structures in telomerase-deficient cells.  相似文献   

20.
The mechanisms of replicative senescence by telomere shortening are not fully understood. The Indian muntjac has the fewest chromosomes of all mammals, greatly simplifying the analysis of each telomere over time. In this study, telomere shortening was observed throughout the life span of cultured normal muntjac cells by quantitative fluorescence in situ hybridization and terminal restriction fragment analysis. Ectopic expression of the human telomerase catalytic subunit in these cells reconstituted telomerase activity, extended telomere lengths, and immortalized the cells, demonstrating that the Indian muntjac cells can serve as a telomere-based replicative senescence model for human cells. In one strain, two chromosome ends had significantly shorter telomeres than the other ends, which led to a variety of chromosome abnormalities. Near senescence, additional ends became telomere signal free, and chromosome aberrancies increased dramatically. Interstitial telomere sequences coincided with fragile sites, suggesting that these remnants of chromosome fusion events might contribute to genome instability. One SV40-immortalized cell line lacked telomerase, and its genetic instability was corrected by the ectopic expression of telomerase, confirming that too-short telomeres were the source of abnormalities. Indian muntjac cells provide an excellent system for understanding the mechanism of replicative senescence and the role of telomerase in the elongation of individual telomeres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号