首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Though lacking adaptive immunity, insects possess a powerful innate immune system, a genome-encoded defence machinery used to confront infections. Studies in the fruit fly Drosophila melanogaster revealed a remarkable capacity of the innate immune system to differentiate between and subsequently respond to different bacteria and fungi. However, hematophagous compared to non-hematophagous insects encounter additional blood-borne infectious agents, such as parasites and viruses, during their lifetime. Anopheles mosquitoes become infected with the malaria parasite Plasmodium during feeding on infected human hosts and may then transmit the parasite to new hosts during subsequent bites. Whether Anopheles has developed mechanisms to confront these infections is the subject of this review. Initially, we review our current understanding of innate immune reactions and give an overview of the Anopheles immune system as revealed through comparative genomic analyses. Then, we examine and discuss the capacity of mosquitoes to recognize and respond to infections, especially to Plasmodium, and finally, we explore approaches to investigate and potentially utilize the vector immune competence to prevent pathogen transmission. Such approaches constitute a new challenge for insect immunity research, a challenge for global health.  相似文献   

3.
Summary. Parasites represent significant challenges to social insects. The high density, interaction rate and relatedness of individuals within colonies are all predicted to make social insect colonies particularly vulnerable to parasites. To cope with this pressure, social insects have evolved a number of defence mechanisms. These include the immune response, which, aside from in bumblebees, has been relatively little studied in social insects. Here we compare the immune responses of males and workers of the leaf-cutting ant Acromyrmex echinatior and examine the effect upon immunocompetence of prior exposure to a virulent parasite. Males have a far lower immune response than workers, suggesting either haploid susceptibility or reduced investment in immunity by the short-lived males. There was also significantly less variation in the immune response of males than of workers, which may be due to leaf-cutting ant workers being more variable in age or more genetically diverse within colonies. When exposed to the entomopathogenic fungus Metarhizium, workers expressed a substantially reduced immune response 96 h after infection, suggesting that the immune system was either depleted by having to respond to the Metarhizium infection or was depressed by the parasite. The results suggest that the immune response is a costly and limited process, but further experiments are needed to distinguish between the alternative explanations for the effects observed.Received 3 August 2004; revised 3 February 2005; accepted 2 March 2005.  相似文献   

4.
5.
Host susceptibility and patterns of infection are predicted to differ between males and females due to sex-based tradeoffs between the demands of reproduction and costly immune defenses. In this study, we examined immune defenses and the response to experimental infection by a protozoan parasite, Ophryocystis elektroscirrha, in male and female monarch butterflies, Danaus plexippus. We quantified two measures of immunity in late instar larvae: the concentration of circulating hemocytes and mid-gut phenoloxidase activity, and also quantified final parasite loads, body size, longevity, and wing melanism of adult butterflies. Results showed that females had greater average hemocyte counts than males in the absence of infection; males, but not females, showed an increased concentration of hemocytes in the presence of infection. However, higher hemocyte concentrations in larvae were not significantly correlated with lower adult parasite loads, and mid-gut phenoloxidase activity was not significantly associated with hemocyte counts or parasite treatments. Among unparasitized females, greater hemocyte concentrations were costly in terms of reduced body size, but for parasite-treated females, hemocyte concentrations and body size were positively associated. Across all monarchs, unparasitized butterflies showed greater wing melanism (darker forewings) than parasitized monarchs. Overall, this study provides support for differential costs of immune defenses in male and female monarch butterflies, and a negative association between parasite infection and monarch wing melanism.  相似文献   

6.
Hepatitis B virus (HBV) infection is still a worldwide health problem; however, the current antiviral therapies for chronic hepatitis B are limited in efficacy. The outcome of HBV infection is thought to be the result of complex interactions between the HBV and the host immune system. While the role of the adaptive immune responses in the resolution of HBV infection has been well characterized, the contribution of innate immune mechanisms remains elusive until recent evidence implicates that HBV appears to activate the innate immune response and this response is important for controlling HBV infection. Here, we review our current understanding of innate immune responses to HBV infection and the multifaceted evasion by the virus and discuss the potential strategies to combat chronic HBV infection via induction and restoration of host innate antiviral responses.  相似文献   

7.
The cestode Schistocephalus solidus is a frequent parasite of three-spined sticklebacks and has a large impact on its host's fitness. Selection pressure should therefore be high on stickleback defence mechanisms, like an efficient immune system, and also on parasite strategies to overcome these. Even though there are indications for manipulation of the immune system of its specific second intermediate host by the cestode, nothing is yet known about the chronology of specific interactions of S. solidus with the stickleback immune system. We here expected sticklebacks to first mount an innate immune response directly post-exposure to the parasite to clear the infection at an early stage and after an initial lag phase to upregulate adaptive immunity. Most interestingly, we did not find any upregulation of the specific lymphocyte-mediated immune response. Also, the pattern of activation of the innate immune system did not match our expectations: the proliferation of monocytes followed fluctuating kinetics suggesting that the parasite repeatedly installs a new surface coat not immunogenic to the host. Furthermore, the respiratory burst activity, which has the potential to clear an early S. solidus infection, was upregulated very late during infection, when the parasite was too big to be cleared but ready for transmission to its final host. We here suggest that the late activation of the innate immune system interferes with the neuroendocrine system, which mediates reduced predation avoidance behaviour and so facilitates the transmission to the final host.  相似文献   

8.
Pattern recognition receptors (PRRs) are essential for recognition of conserved molecular constituents found on infectious microbes. Toll-like receptors (TLRs) are a critical component of the PRR repertoire and are coupled to downstream production of cytokines, chemokines, and antimicrobial peptides by TLR adaptor proteins. Our laboratory previously demonstrated a role for TLR function in the differential innate response of two lines of chickens to bacterial infections. The aim of the present study was to elucidate the role of TLRs in the differential innate responsiveness by measuring differences between lines A (resistant) and B (susceptible) in heterophil mRNA expression of selected TLRs (TLRs 4, 5, and 15) and TLR adaptor proteins (MyD88, TRIF, and TIRAP) in response to stimulation with Salmonella enterica serovar Enteritidis (SE). Although heterophils from both lines had significantly increased expression of TLR 15 mRNA in response to stimulation with SE, heterophils from chickens resistant to infection with SE had significantly greater levels of TLR 15 mRNA expression prior to and following stimulation with SE than heterophils from chickens susceptible to infection with SE. No significant differences were noted between lines in nonstimulated levels of TIRAP, but upon SE stimulation, line A birds had higher levels of expression than B birds. No significant differences were found in heterophils between lines for mRNA expression of TLRs 4 and 5 nor MyD88 and TRIF. These data indicate that differences in the gene expression of TLR 15 by heterophils likely accounts for some of the observed differences between the lines in their susceptibility to infection.  相似文献   

9.
10.
Hepatitis B virus(HBV) infection is still a worldwide health problem;however,the current antiviral therapies for chronic hepatitis B are limited in efficacy.The outcome of HBV infection is thought to be the result of complex interactions between the HBV and the host immune system.While the role of the adaptive immune responses in the resolution of HBV infection has been well characterized,the contribution of innate immune mechanisms remains elusive until recent evidence implicates that HBV appears to activate the innate immune response and this response is important for controlling HBV infection.Here,we review our current understanding of innate immune responses to HBV infection and the multifaceted evasion by the virus and discuss the potential strategies to combat chronic HBV infection via induction and restoration of host innate antiviral responses.  相似文献   

11.
NK and NKT cell functions in immunosenescence   总被引:6,自引:0,他引:6  
Immunosenescence is defined as the state of dysregulated immune function that contributes to the increased susceptibility to infection, cancer and autoimmune diseases observed in old organisms, including humans. However, dysregulations in the immune functions are normally counterbalanced by continuous adaptation of the body to the deteriorations that occur over time. These adaptive changes are likely to occur in healthy human centenarians. Both innate (natural) and adaptive (acquired) immune responses decline with advancing age. Natural killer (NK) and natural killer T (NKT) cells represent the best model to describe innate and adaptive immune response in aging. NK and NKT cell cytotoxicity decreases in aging as well as interferon-gamma (IFN-gamma) production by both activated cell types. Their innate and acquired immune responses are preserved in very old age. However, NKT cells bearing T-cell receptor (TCR) gammadelta also display an increased cytotoxicity and IFN-gamma production in very old age. This fact suggests that NKT cells bearing TCRgammadelta are more involved in maintaining innate and adaptive immune response in aging leading to successful aging. The role played by the neuroendocrine-immune network and by nutritional factors, such as zinc, in maintaining NK and NKT cell functions in aging is discussed.  相似文献   

12.
Epidemiological data suggest that previous infections can alter an individual's susceptibility to unrelated diseases. Nevertheless, the underlying mechanisms are not completely understood. Substantial research efforts have expanded the classical concept of immune memory to also include long‐lasting changes in innate immunity and antigen‐independent reactivation of adaptive immunity. Collectively, these processes provide possible explanations on how acute infections might induce long‐term changes that also affect immunity to unrelated diseases. Here, we review lasting changes the immune compartment undergoes upon infection and how infection experience alters the responsiveness of immune cells towards universal signals. This heightened state of alert enhances the ability of the immune system to combat even unrelated infections but may also increase susceptibility to autoimmunity. At the same time, infection‐induced changes in the regulatory compartment may dampen subsequent immune responses and promote pathogen persistence. The concepts presented here outline how infection‐induced changes in the immune system may affect human health.  相似文献   

13.
In invertebrate–parasite systems, the likelihood of infection following parasite exposure is often dependent on the specific combination of host and parasite genotypes (termed genetic specificity). Genetic specificity can maintain diversity in host and parasite populations and is a major component of the Red Queen hypothesis. However, invertebrate immune systems are thought to only distinguish between broad classes of parasite. Using a natural host–parasite system with a well‐established pattern of genetic specificity, the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa, we found that only hosts from susceptible host–parasite genetic combinations mounted a cellular response following exposure to the parasite. These data are compatible with the hypothesis that genetic specificity is attributable to barrier defenses at the site of infection (the gut), and that the systemic immune response is general, reporting the number of parasite spores entering the hemocoel. Further supporting this, we found that larger cellular responses occurred at higher initial parasite doses. By studying the natural infection route, where parasites must pass barrier defenses before interacting with systemic immune responses, these data shed light on which components of invertebrate defense underlie genetic specificity.  相似文献   

14.
禽坦布苏病毒(Avian Tembusu virus,ATMUV)是近年来在我国新发现的一种病毒,可感染多种蛋禽,感染动物临床特征为采食量下降,产蛋量骤减,甚至停产,感染后期呈神经症状,如腿和翅膀麻痹、共济失调等。ATMUV在我国多个省市地区流行,给我国甚至世界养禽业带来严重影响。固有免疫是机体抵抗病原感染的第一道重要防线,是机体与生俱来的抵御病原微生物的能力。适应性免疫是机体免疫系统在抗原刺激下产生特异性抗体及免疫效应细胞的过程,以建立针对某种病原微生物的抵抗力,是机体免疫系统的重要部分。本文将从禽坦布苏病毒诱导宿主固有免疫应答和适应性免疫应答两方面进行综述。  相似文献   

15.
16.
Herpes simplex viruses (HSV) are human pathogens responsible for a variety of diseases,including localized mucocutaneous lesions,encephalitis,and disseminated diseases.HSV infection leads to rapid induction of innate immune responses.A critical part of this host response is the type I IFN system including the induction of type I IFNs,IFN-mediated signaling and amplification of IFN response.This provides the host with immediate countermeasure during acute infection to limit initial viral replication and to facilitate an appropriate adaptive immune response.However,HSV has devised multiple strategies to evade and interfere with innate immunity.This review will focus on the induction of type I IFN response by HSV during acute infection and current knowledge of mechanisms by which HSV interferes with this induction process.  相似文献   

17.
18.
The experimental studies of Brucei group trypanosomes presented here demonstrate that the balance of host and parasite factors, especially IFN-γ GPI-sVSG respectively, and the timing of cellular exposure to them, dictate the predominant MP and DC activation profiles present at any given time during infection and within specific tissues. The timing of changes in innate immune cell functions following infection consistently support the conclusion that the key events controlling host resistance occur within a short time following initial exposure to the parasite GPI substituents. Once the changes in MP and DC activities are initiated, there appears little that the host can do to reverse these changes and alter the final outcome of these regulatory events. Instead, despite the availability of multiple innate and adaptive immune mechanisms that can control parasites, there is an inability to control trypanosome numbers sufficiently to prevent the emergence and establishment of virulent trypanosomes that eventually kill the host. Overall it appears that trypanosomes have carefully orchestrated the host innate and adaptive immune response so that parasite survival and transmission, and alterations of host immunity, are to its ultimate benefit.  相似文献   

19.
Genetic variation in susceptibility to pathogens is a central concern both to medicine and agriculture and to the evolution of animals. Here, we have investigated the link between such natural genetic variation and the immune response in wild-type Drosophila melanogaster, a major model organism for immunological research. We found that within nine wild-type strains, different Drosophila genotypes show wide-ranging variation in their ability to survive infection from the pathogenic bacteria Listeria monocytogenes. Canton-S, a resistant strain, showed increased capacity to induce stronger innate immune activities (antimicrobial peptides (AMPs), phenol oxidase activity, and phagocytosis) compared to the susceptible strain (white) at early time points during bacterial infection. Moreover, PGRP-LE-induced innate immune activation immediately after infection greatly improves survival of the susceptible strain strongly suggesting a mechanism behind the natural genetic variation of these two strains. Taken together we provide the first experimental evidence to suggest that differences in innate immune activity at early time points during infection likely mediates infection susceptibility in Drosophila.  相似文献   

20.
The effects of dexamethasone (dex) treatment on infections with the microsporidian parasite, Loma salmonae and the effects of dex on initiation of the adaptive immune response were investigated in rainbow trout, Oncorhynchus mykiss experimentally infected with the parasite. Dex treatment resulted in significantly higher infections with the parasite in the gills and other internal organs, suggesting that dex inhibits aspects of the innate immune response to L. salmonae; the heavier infections in the gills and organs of rainbow trout resembled infections seen in Chinook salmon. Mean xenoma counts per microscope field in the gills of fish infected with L. salmonae treated with dex or left untreated were 169 and 30, respectively. Although higher numbers of xenomas were observed in dex treated fish, the xenomas were generally smaller in size than in infected control fish. The xenomas in dex treated fish showed morphological signs of degeneration including loss and degeneration of early parasite stages, accumulation of amorphous material in xenomas, and infiltration with phagocytic cells containing degenerated parasites. The xenomas in infected untreated fish had larger xenomas with a more uniform size and contained identifiable parasite stages in the cytoplasm. According to this study, once fish have developed an adaptive immune response to the parasite by previous exposure, then fish have 100% protection to reinfection even when treated with heavy doses of dex. L. salmonae immune fish treated or untreated with dex during reinfection with the parasite developed no xenomas in the gills 6 weeks post reinfection. These results indicate that once the cellular response is primed to L. salmonae, then dex related immunosuppression does not reduce the effectiveness of the adaptive immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号