首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Survival strategies of infectious biofilms   总被引:36,自引:0,他引:36  
Modern medicine is facing the spread of biofilm-related infections. Bacterial biofilms are difficult to detect in routine diagnostics and are inherently tolerant to host defenses and antibiotic therapies. In addition, biofilms facilitate the spread of antibiotic resistance by promoting horizontal gene transfer. We review current concepts of biofilm tolerance with special emphasis on the role of the biofilm matrix and the physiology of biofilm-embedded cells. The heterogeneity in metabolic and reproductive activity within a biofilm correlates with a non-uniform susceptibility of enclosed bacteria. Recent studies have documented similar heterogeneity in planktonic cultures. Nutritional starvation and high cell density, two key characteristics of biofilm physiology, also mediate antimicrobial tolerance in stationary-phase planktonic cultures. Advances in characterizing the role of stress response genes, quorum sensing and phase variation in stationary-phase planktonic cultures have shed new light on tolerance mechanisms within biofilm communities.  相似文献   

2.
Biofilm cells are less susceptible to antimicrobials than their planktonic counterparts. While this phenomenon is multifactorial, the ability of the matrix to reduce antibiotic penetration into the biofilm is thought to be of limited importance studies suggest that antibiotics move fairly rapidly through biofilms. In this study, we monitored the transport of two clinically relevant antibiotics, tobramycin and ciprofloxacin, into non‐mucoid Pseudomonas aeruginosa biofilms. To our surprise, we found that the positively charged antibiotic tobramycin is sequestered to the biofilm periphery, while the neutral antibiotic ciprofloxacin readily penetrated. We provide evidence that tobramycin in the biofilm periphery both stimulated a localized stress response and killed bacteria in these regions but not in the underlying biofilm. Although it is unclear which matrix component binds tobramycin, its penetration was increased by the addition of cations in a dose‐dependent manner, which led to increased biofilm death. These data suggest that ionic interactions of tobramycin with the biofilm matrix limit its penetration. We propose that tobramycin sequestration at the biofilm periphery is an important mechanism in protecting metabolically active cells that lie just below the zone of sequestration.  相似文献   

3.
4.
5.
Almost all moist surfaces are colonized by microbial biofilms. Biofilms are implicated in cross-contamination of food products, biofouling and various human infections such as dental cavities, ulcerative colitis and chronic respiratory infections. The recalcitrance of biofilms to typical antibiotic and antimicrobial treatments is one focus of current investigations. Neither reaction-diffusion limitation nor heterogeneities in growth-rate explain the observed tolerance. Another hypothesis is that specialized 'persister' cells, which are extremely tolerant of antimicrobials, are the source of resistance. In this investigation, we describe the formation of 'persister' cells which neither grow nor die in the presence of antibiotics. We propose that these cells are of a different phenotype whose expression is regulated by the growth rate and the antibiotic concentration. Based on several experiments describing the dynamics of persister cells, we introduce a mathematical model that is used to describes the effect of a periodic dosing regiment. Results from our analysis indicate that the relative dose/withdrawal times are important in determining the effectiveness of such a treatment. A reduced model is also introduced and the similar behavior is demonstrated analytically.  相似文献   

6.
The failure of antibiotic therapies to clear Pseudomonas aeruginosa lung infection, the key mortality factor for cystic fibrosis (CF) patients, is partly attributed to the high tolerance of P. aeruginosa biofilms. Mannitol has previously been found to restore aminoglycoside sensitivity in Escherichia coli by generating a proton-motive force (PMF), suggesting a potential new strategy to improve antibiotic therapy and reduce disease progression in CF. Here, we used the commonly prescribed aminoglycoside tobramycin to select for P. aeruginosa persister cells during biofilm growth. Incubation with mannitol (10–40 mM) increased tobramycin sensitivity of persister cells up to 1,000-fold. Addition of mannitol to pre-grown biofilms was able to revert the persister phenotype and improve the efficacy of tobramycin. This effect was blocked by the addition of a PMF inhibitor or in a P. aeruginosa mutant strain unable to metabolise mannitol. Addition of glucose and NaCl at high osmolarity also improved the efficacy of tobramycin although to a lesser extent compared to mannitol. Therefore, the primary effect of mannitol in reverting biofilm associated persister cells appears to be an active, physiological response, associated with a minor contribution of osmotic stress. Mannitol was tested against clinically relevant strains, showing that biofilms containing a subpopulation of persister cells are better killed in the presence of mannitol, but a clinical strain with a high resistance to tobramycin was not affected by mannitol. Overall, these results suggest that in addition to improvements in lung function by facilitating mucus clearance in CF, mannitol also affects antibiotic sensitivity in biofilms and does so through an active, physiological response.  相似文献   

7.
Biofilm-embedded bacteria are generally more resistant to antimicrobial agents than are planktonic bacteria. Two possible mechanisms for biofilm resistance are that the glycocalyx matrix secreted by cells in a biofilm reacts with and neutralizes the antimicrobial agent and that the matrix creates a diffusion barrier to the antimicrobial agent. This study was therefore conducted to examine the relationship between glycocalyx and enhanced povidone-iodine resistance in biofilms of Pseudomonas aeruginosa (ATCC 27853). Biofilms were generated by inoculation of polycarbonate membranes with broth-grown cells and incubation of them on the surfaces of nutrient agar plates. The quantities of glycocalyx material per cell were found not to be significantly different between biofilm and planktonic samples. Transmission electron microscopy showed that the distributions of glycocalyx material around cells differed in biofilm and in planktonic samples. Addition of alginic acid to planktonic cell suspensions resulted in a slight increase in resistance to povidone-iodine, suggesting some neutralizing interaction. However, the iodine demands created by biofilm and planktonic samples of equivalent biomass were not significantly different and, therefore, do not explain the contrast in resistance observed between biofilm and planktonic samples. Examination of the relationship between cell death and biomass detachment from the glycocalyx matrix revealed that most cell death occurred in the fraction of biomass that detached from a biofilm during treatment. The overall rate of iodine diffusion through biofilms was not different from that of planktonic cells collected on a polycarbonate membrane.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Staphylococcal biofilms are a major concern in both clinical and food settings because they are an important source of contamination. The efficacy of established cleaning procedures is often hindered due to the ability of some antimicrobial compounds to induce biofilm formation, and to the presence of persister cells, a small bacterial subpopulation that exhibits multidrug tolerance. Phage lytic enzymes have demonstrated antimicrobial activity against planktonic and sessile bacteria. However, their ability to lyse and/or select persister cells remains largely unexplored so far. In this work, the lytic activity of the endolysin LysH5 against Staphylococcus aureus and Staphylococcus epidermidis biofilms was confirmed. LysH5 reduced staphylococcal sessile cell counts by 1–3 log units, compared with the untreated control, and sub-inhibitory concentrations of this protein did not induce biofilm formation. LysH5-surviving cells were not resistant to the lytic activity of this protein, suggesting that no persister cells were selected. Moreover, to prove the lytic ability of LysH5 against this subpopulation, both S. aureus exponential cultures and persister cells obtained after treatment with rifampicin and ciprofloxacin were subsequently treated with LysH5. The results demonstrated that besides the notable activity of endolysin LysH5 against staphylococcal biofilms, persister cells were also inhibited, which raises new opportunities as an adjuvant for some antibiotics.  相似文献   

9.
Catheter-related bloodstream infections due to Staphylococcus aureus are of increasing clinical importance. The pathophysiological steps leading to colonization and infection, however, are still incompletely defined. We observed growth and detachment of S. aureus biofilms in an in vitro catheter-infection model by using time-lapse microscopy. Biofilm emboli were characterized by their size and their susceptibility for oxacillin. Biofilm dispersal was found to be a dynamic process in which clumps of a wide range of diameters detach. Large detached clumps were highly tolerant to oxacillin compared with exponential-phase planktonic cultures. Interestingly, the degree of antibiotic tolerance in stationary-phase planktonic cultures was equal to that in the large clumps. The mechanical disruption of large clumps reduced the minimal bactericidal concentration (MBC) by more than 1,000 times. The MBC for whole biofilm effluent, consisting of particles with an average number of 20 bacteria was 3.5 times higher than the MBC for planktonic cultures. We conclude that the antibiotic resistance of detached biofilm particles depends on the embolus size and could be attributed to nutrient-limited stationary-phase physiology of cells within the clumps. We hypothesize that the detachment of multicellular clumps may explain the high rate of symptomatic metastatic infections seen with S. aureus.  相似文献   

10.
11.
Bacteria in biofilms have higher antibiotic tolerance than their planktonic counterparts. A major outstanding question is the degree to which the biofilm-specific cellular state and its constituent genetic determinants contribute to this hyper-tolerant phenotype. Here, we used genome-wide functional profiling of a complex, heterogeneous mutant population of Pseudomonas aeruginosa MPAO1 in biofilm and planktonic growth conditions with and without tobramycin to systematically quantify the contribution of each locus to antibiotic tolerance under these two states. We identified large sets of mutations that contribute to antibiotic tolerance predominantly in the biofilm or planktonic setting only, offering global insights into the differences and similarities between biofilm and planktonic antibiotic tolerance. Our mixed population-based experimental design recapitulated the complexity of natural biofilms and, unlike previous studies, revealed clinically observed behaviors including the emergence of quorum sensing-deficient mutants. Our study revealed a substantial contribution of the cellular state to the antibiotic tolerance of biofilms, providing a rational foundation for the development of novel therapeutics against P. aeruginosa biofilm-associated infections.  相似文献   

12.
Biofilms can cause severe problems in industrial paper mills, particularly of economic and technological types (clogging of filters, sheet breaks or holes in the paper, machine breakdowns, etc.). We present here some promising results on the use of essential oil compounds to control these biofilms. Biofilms were grown on stainless-steel coupons with a microbial white water consortium sampled from an industrial paper mill. Five essential oil compounds were screened initially in the laboratory in terms of their antimicrobial activity against planktonic cells and biofilms. The three most active compounds were selected and then tested in different combinations. The combination finally selected was tested at the pilot scale to confirm its efficiency under realistic conditions. All the compounds tested were as active against biofilms as they were against planktonic cells. The most active compounds were thymol, carvacrol, and eugenol, and the most efficient combination was thymol–carvacrol. At a pilot scale, with six injections a day, 10 mM carvacrol alone prevented biocontamination for at least 10 days, and a 1 mM thymol–carvacrol combination enabled a 67 % reduction in biofilm dry matter after 11 days. The use of green antimicrobials could constitute a very promising alternative or supplement to the treatments currently applied to limit biofilm formation in the environment of paper mill machines.  相似文献   

13.
细菌生物膜研究技术   总被引:22,自引:0,他引:22  
细菌生物膜是细菌生长过程中为适应生存环境而在固体表面上生长的一种与游走态细胞相对应的存在形式。只要条件允许,绝大多数细菌都可以形成生物膜。一旦形成了生物膜细菌就具有极强的耐药性,在医疗、食品、工业、军事等诸多领域给人类社会带来了严重的危害,造成巨大的经济损失。因此,细菌生物膜已成为全球关注的重大难题,也是目前科学界研究的前沿和热点。本文结合细菌生物膜研究技术的最新进展,重点介绍了几种常用生物膜发生装置及检测量化技术,并对其原理及优缺点进行了讨论。  相似文献   

14.
AIMS: The purpose of this study was to compare the efficacy, in terms of bacterial biofilm penetration and killing, of alkaline hypochlorite (pH 11) and chlorosulfamate (pH 5.5) formulations. METHODS AND RESULTS: Two species biofilms of Pseudomonas aeruginosa and Klebsiella pneumoniae were grown by flowing a dilute medium over inclined stainless steel slides for 6 d. Microelectrode technology was used to measure concentration profiles of active chlorine species within the biofilms in response to treatment at a concentration of 1000 mg total chlorine l(-1). Chlorosulfamate formulations penetrated biofilms faster than did hypochlorite. The mean penetration time into approximately 1 mm-thick biofilms for chlorosulfamate (6 min) was only one-eighth as long as for the same concentration of hypochlorite (48 min). Chloride ion penetrated biofilms rapidly (5 min) with an effective diffusion coefficient in the biofilm that was close to the value for chloride in water. Biofilm bacteria were highly resistant to killing by both antimicrobial agents. Biofilms challenged with 1000 mg l(-1) alkaline hypochlorite or chlorosulfamate for 1 h experienced 0.85 and 1.3 log reductions in viable cell numbers, respectively. Similar treatment reduced viable numbers of planktonic bacteria to non-detectable levels (log reduction greater than 6) within 60 s. Aged planktonic and resuspended laboratory biofilm bacteria were just as susceptible to hypochlorite as fresh planktonic cells. CONCLUSION: Chlorosulfamate transport into biofilm was not retarded whereas hypochlorite transport clearly was retarded. Superior penetration by chlorosulfamate was hypothesized to be due to its lower capacity for reaction with constituents of the biofilm. Poor biofilm killing despite direct measurement of effective physical penetration of the antimicrobial agent into the biofilm demonstrates that bacteria in the biofilm are protected by some mechanism other than simple physical shielding by the biofilm matrix. SIGNIFICANCE AND IMPACT OF THE STUDY: This study lends support to the theory that the penetration of antimicrobial agents into microbial biofilms is controlled by the reactivity of the antimicrobial agent with biofilm components. The finding that chlorine-based biocides can penetrate, but fail to kill, bacteria in biofilms should motivate the search for other mechanisms of protection from killing by antimicrobial agents in biofilms.  相似文献   

15.
A study was undertaken to examine the effects of the heavy metals copper, lead, and zinc on biofilm and planktonic Pseudomonas aeruginosa. A rotating-disk biofilm reactor was used to generate biofilm and free-swimming cultures to test their relative levels of resistance to heavy metals. It was determined that biofilms were anywhere from 2 to 600 times more resistant to heavy metal stress than free-swimming cells. When planktonic cells at different stages of growth were examined, it was found that logarithmically growing cells were more resistant to copper and lead stress than stationary-phase cells. However, biofilms were observed to be more resistant to heavy metals than either stationary-phase or logarithmically growing planktonic cells. Microscopy was used to evaluate the effect of copper stress on a mature P. aeruginosa biofilm. The exterior of the biofilm was preferentially killed after exposure to elevated concentrations of copper, and the majority of living cells were near the substratum. A potential explanation for this is that the extracellular polymeric substances that encase a biofilm may be responsible for protecting cells from heavy metal stress by binding the heavy metals and retarding their diffusion within the biofilm.  相似文献   

16.
A study was undertaken to examine the effects of the heavy metals copper, lead, and zinc on biofilm and planktonic Pseudomonas aeruginosa. A rotating-disk biofilm reactor was used to generate biofilm and free-swimming cultures to test their relative levels of resistance to heavy metals. It was determined that biofilms were anywhere from 2 to 600 times more resistant to heavy metal stress than free-swimming cells. When planktonic cells at different stages of growth were examined, it was found that logarithmically growing cells were more resistant to copper and lead stress than stationary-phase cells. However, biofilms were observed to be more resistant to heavy metals than either stationary-phase or logarithmically growing planktonic cells. Microscopy was used to evaluate the effect of copper stress on a mature P. aeruginosa biofilm. The exterior of the biofilm was preferentially killed after exposure to elevated concentrations of copper, and the majority of living cells were near the substratum. A potential explanation for this is that the extracellular polymeric substances that encase a biofilm may be responsible for protecting cells from heavy metal stress by binding the heavy metals and retarding their diffusion within the biofilm.  相似文献   

17.
18.
Biofilms consist of groups of bacteria attached to surfaces and encased in a hydrated polymeric matrix. Bacteria in biofilms are more resistant to the immune system and to antibiotics than their free-living planktonic counterparts. Thus, biofilm-related infections are persistent and often show recurrent symptoms. The metal chelator EDTA is known to have activity against biofilms of gram-positive bacteria such as Staphylococcus aureus. EDTA can also kill planktonic cells of Proteobacteria like Pseudomonas aeruginosa. In this study we demonstrate that EDTA is a potent P. aeruginosa biofilm disrupter. In Tris buffer, EDTA treatment of P. aeruginosa biofilms results in 1,000-fold greater killing than treatment with the P. aeruginosa antibiotic gentamicin. Furthermore, a combination of EDTA and gentamicin results in complete killing of biofilm cells. P. aeruginosa biofilms can form structured mushroom-like entities when grown under flow on a glass surface. Time lapse confocal scanning laser microscopy shows that EDTA causes a dispersal of P. aeruginosa cells from biofilms and killing of biofilm cells within the mushroom-like structures. An examination of the influence of several divalent cations on the antibiofilm activity of EDTA indicates that magnesium, calcium, and iron protect P. aeruginosa biofilms against EDTA treatment. Our results are consistent with a mechanism whereby EDTA causes detachment and killing of biofilm cells.  相似文献   

19.
Behnke S  Camper AK 《Biofouling》2012,28(6):635-647
Disinfection efficacy testing is usually done with planktonic cells or more recently, biofilms. While disinfectants are much less effective against biofilms compared to planktonic cells, questions regarding the disinfection tolerance of detached biofilm clusters remain largely unanswered. Burkholderia cepacia and Pseudomonas aeruginosa were grown in chemostats and biofilm tubing reactors, with the tubing reactor serving as a source of detached biofilm clusters. Chlorine dioxide susceptibility was assessed for B. cepacia and P. aeruginosa in these three sample types as monocultures and binary cultures. Similar doses of chlorine dioxide inactivated samples of chemostat and tubing reactor effluent and no statistically significant difference between the log(10) reductions was found. This contrasts with chlorine, shown previously to be generally less effective against detached biofilm particles. Biofilms were more tolerant and required chlorine dioxide doses ten times higher than chemostat and tubing reactor effluent samples. A second species was advantageous in all sample types and resulted in lower log(10) reductions when compared to the single species cultures, suggesting a beneficial interaction of the species.  相似文献   

20.
Adaptive responses to antimicrobial agents in biofilms   总被引:3,自引:0,他引:3  
Bacterial biofilms demonstrate adaptive resistance in response to antimicrobial stress more effectively than corresponding planktonic populations. We propose here that, in biofilms, reaction-diffusion limited penetration may result in only low levels of antimicrobial exposure to deeper regions of the biofilm. Sheltered cells are then able to enter an adapted resistant state if the local time scale for adaptation is faster than that for disinfection. This mechanism is not available to a planktonic population. A mathematical model is presented to illustrate. Results indicate that, for a sufficiently thick biofilm, cells in the biofilm implement adaptive responses more effectively than do freely suspended cells. Effective disinfection requires applied biocide concentration that increases quadratically or exponentially with biofilm thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号