首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The mammalian auditory sensory epithelium (the organ of Corti) contains a number of unique cell types that are arranged in ordered rows. Two of these cell types, inner and outer pillar cells (PCs), are arranged in adjacent rows that form a boundary between a single row of inner hair cells and three rows of outer hair cells (OHCs). PCs are required for auditory function, as mice lacking PCs owing to a mutation in Fgfr3 are deaf. Here, using in vitro and in vivo techniques, we demonstrate that an Fgf8 signal arising from the inner hair cells is the key component in an inductive pathway that regulates the number, position and rate of development of PCs. Deletion of Fgf8 or inhibition of binding between Fgf8 and Fgfr3 leads to defects in PC development, whereas overexpression of Fgf8 or exogenous Fgfr3 activation induces ectopic PC formation and inhibits OHC development. These results suggest that Fgf8-Fgfr3 interactions regulate cellular patterning within the organ of Corti through the induction of one cell fate (PC) and simultaneous inhibition of an alternate fate (OHC) in separate progenitor cells. Some of the effects of both inhibition and overactivation of the Fgf8-Fgfr3 signaling pathway are reversible, suggesting that PC differentiation is dependent upon constant activation of Fgfr3 by Fgf8. These results suggest that PCs might exist in a transient state of differentiation that makes them potential targets for regenerative therapies.  相似文献   

2.
Fibroblast growth factor receptor 3 (FGFR3) is a key regulator of skeletal development and activating mutations in FGFR3 cause skeletal dysplasias, including hypochondroplasia, achondroplasia and thanatophoric dysplasia. The introduction of the Y367C mutation corresponding to the human Y373C thanatophoric dysplasia type I (TDI) mutation into the mouse genome, resulted in dwarfism with a skeletal phenotype remarkably similar to that of human chondrodysplasia. To investigate the role of the activating Fgfr3 Y367C mutation in auditory function, the middle and inner ear of the heterozygous mutant Fgfr3Y367C/+ mice were examined. The mutant Fgfr3Y367C/+ mice exhibit fully penetrant deafness with a significantly elevated auditory brainstem response threshold for all frequencies tested. The inner ear defect is mainly associated with an increased number of pillar cells or modified supporting cells in the organ of Corti. Hearing loss in the Fgfr3Y367C/+ mouse model demonstrates the crucial role of Fgfr3 in the development of the inner ear and provides novel insight on the biological consequences of FGFR3 mutations in chondrodysplasia.  相似文献   

3.
In the adult mammalian auditory epithelium, the organ of Corti, loss of sensory hair cells results in permanent hearing loss. The underlying cause for the lack of regenerative response is the depletion of otic progenitors in the cell pool of the sensory epithelium. Here, we show that an increase in the sequence-specific methylation of the otic Sox2 enhancers NOP1 and NOP2 is correlated with a reduced self-renewal potential in vivo and in vitro; additionally, the degree of methylation of NOP1 and NOP2 is correlated with the dedifferentiation potential of postmitotic supporting cells into otic stem cells. Thus, the stemness the organ of Corti is related to the epigenetic status of the otic Sox2 enhancers. These observations validate the continued exploration of treatment strategies for dedifferentiating or reprogramming of differentiated supporting cells into progenitors to regenerate the damaged organ of Corti.  相似文献   

4.
5.
The auditory sensory cells are sensitive to a variety of influences such as noise, ototoxic drugs and aging. In the cochlea of mammals, the destroyed sensory cells are not replaced by new sensory cells. That leads to cochlear deafness, a frequent disease in human. Unfortunately, such auditory impairment is out of reach of treatment. The development of new therapeutic strategies in this field requires a precise knowledge of the mechanisms involved in auditory sensory cells disappearance and in organ of Corti's degeneration. The aim of our study was to characterize cellular and molecular changes in the cochlea of rats which had been intoxicated with the ototoxic antibiotic amikacin. The animals were sacrificed at different survival times during and after the antibiotic treatment and their cochleas were investigated using transmission and scanning electron microscopy and using confocal microscopy after tissue labellings with different fluorescent probes. The results revealed the existence of three periods. The first one corresponds to the disappearance of the sensory cells which die by apoptosis. During the second period, the organ of Corti undergoes a scarring process; concomitantly, a contingent of nonsensory supporting cells attempts to transdifferentiate directly into sensory cells. This process however fails, and the supporting cells never reach the status of hair cells. A general process of dedifferentiation of all the epithelial cells of the organ of Corti followed by a massive apoptosis of numerous epithelial cells and of most ganglion cells occurs during the third period. After that, the organ of Corti is definitely reduced to a simple monolayered epithelium. On the basis of these data, experimental strategies aimed i) to protect the sensory cells against apoptosis and ii) to promote sensory cell regeneration are now under study. They might have important implications in human therapy.  相似文献   

6.

Background  

During mouse development, the precursor cells that give rise to the auditory sensory organ, the organ of Corti, are specified prior to embryonic day 14.5 (E14.5). Subsequently, the sensory domain is patterned precisely into one row of inner and three rows of outer sensory hair cells interdigitated with supporting cells. Both the restriction of the sensory domain and the patterning of the sensory mosaic of the organ of Corti involve Notch-mediated lateral inhibition and cellular rearrangement characteristic of convergent extension. This study explores the expression and function of a putative Notch target gene.  相似文献   

7.
8.
The auditory sensory epithelium (organ of Corti), where sound waves are converted to electrical signals, comprises a highly ordered array of sensory receptor (hair) cells and nonsensory supporting cells. Here, we report that Sprouty2, which encodes a negative regulator of signaling via receptor tyrosine kinases, is required for normal hearing in mice, and that lack of SPRY2 results in dramatic perturbations in organ of Corti cytoarchitecture: instead of two pillar cells, there are three, resulting in the formation of an ectopic tunnel of Corti. We demonstrate that these effects are due to a postnatal cell fate transformation of a Deiters' cell into a pillar cell. Both this cell fate change and hearing loss can be partially rescued by reducing Fgf8 gene dosage in Spry2 null mutant mice. Our results provide evidence that antagonism of FGF signaling by SPRY2 is essential for establishing the cytoarchitecture of the organ of Corti and for hearing.  相似文献   

9.
In all mammals, the sensory epithelium for audition is located along the spiraling organ of Corti that resides within the conch shaped cochlea of the inner ear (fig 1). Hair cells in the developing cochlea, which are the mechanosensory cells of the auditory system, are aligned in one row of inner hair cells and three (in the base and mid-turns) to four (in the apical turn) rows of outer hair cells that span the length of the organ of Corti. Hair cells transduce sound-induced mechanical vibrations of the basilar membrane into neural impulses that the brain can interpret. Most cases of sensorineural hearing loss are caused by death or dysfunction of cochlear hair cells.An increasingly essential tool in auditory research is the isolation and in vitro culture of the organ explant 1,2,9. Once isolated, the explants may be utilized in several ways to provide information regarding normative, anomalous, or therapeutic physiology. Gene expression, stereocilia motility, cell and molecular biology, as well as biological approaches for hair cell regeneration are examples of experimental applications of organ of Corti explants.This protocol describes a method for the isolation and culture of the organ of Corti from neonatal mice. The accompanying video includes stepwise directions for the isolation of the temporal bone from mouse pups, and subsequent isolation of the cochlea, spiral ligament, and organ of Corti. Once isolated, the sensory epithelium can be plated and cultured in vitro in its entirety, or as a further dissected micro-isolate that lacks the spiral limbus and spiral ganglion neurons. Using this method, primary explants can be maintained for 7-10 days. As an example of the utility of this procedure, organ of Corti explants will be electroporated with an exogenous DsRed reporter gene. This method provides an improvement over other published methods because it provides reproducible, unambiguous, and stepwise directions for the isolation, microdissection, and primary culture of the organ of Corti.  相似文献   

10.
The mammalian organ of Corti is a highly specialized sensory organ of the cochlea with a fine-grained pattern that is essential for auditory function. The sensory epithelium, the organ of Corti consists of a single row of inner hair cells and three rows of outer hair cells that are intercalated by support cells in a mosaic pattern. Previous studies show that the Wnt pathway regulates proliferation, promotes medial compartment formation in the cochlea, differentiation of the mechanosensory hair cells and axon guidance of Type II afferent neurons. WNT ligand expressions are highly dynamic throughout development but are insufficient to explain the roles of the Wnt pathway. We address a potential way for how WNTs specify the medial compartment by characterizing the expression of Porcupine (PORCN), an O-acyltransferase that is required for WNT secretion. We show PORCN expression across embryonic ages (E)12.5 - E14.5, E16.5, and postnatal day (P)1. Our results showed enriched PORCN in the medial domains during early stages of development, indicating that WNTs have a stronger influence on patterning of the medial compartment. PORCN was rapidly downregulated after E14.5, following the onset of sensory cell differentiation; residual expression remained in some hair cells and supporting cells. On E14.5 and E16.5, we also examined the spatial expression of Gsk3β, an inhibitor of canonical Wnt signaling to determine its potential role in radial patterning of the cochlea. Gsk3β was broadly expressed across the radial axis of the epithelium; therefore, unlikely to control WNT-mediated medial specification. In conclusion, the spatial expression of PORCN enriches WNT secretion from the medial domains of the cochlea to influence the specification of cell fates in the medial sensory domain.  相似文献   

11.
Emx2 is a homeodomain protein that plays a critical role in inner ear development. Homozygous null mice die at birth with a range of defects in the CNS, renal system and skeleton. The cochlea is shorter than normal with about 60% fewer auditory hair cells. It appears to lack outer hair cells and some supporting cells are either absent or fail to differentiate. Many of the hair cells differentiate in pairs and although their hair bundles develop normally their planar cell polarity is compromised. Measurements of cell polarity suggest that classic planar cell polarity molecules are not directly influenced by Emx2 and that polarity is compromised by developmental defects in the sensory precursor population or by defects in epithelial cues for cell alignment. Planar cell polarity is normal in the vestibular epithelia although polarity reversal across the striola is absent in both the utricular and saccular maculae. In contrast, cochlear hair cell polarity is disorganized. The expression domain for Bmp4 is expanded and Fgfr1 and Prox1 are expressed in fewer cells in the cochlear sensory epithelium of Emx2 null mice. We conclude that Emx2 regulates early developmental events that balance cell proliferation and differentiation in the sensory precursor population.  相似文献   

12.
Fibroblast growth factor receptors (FGFRs) play major roles in skeletogenesis, and activating mutations of the human FGFR1, FGFR2 and FGFR3 genes cause premature fusion of the skull bones (craniosynostosis). We have investigated the patterns of expression of Fgfr1, Fgfr2 and Fgfr3 in the fetal mouse head, with specific reference to their relationship to cell proliferation and differentiation in the frontal and parietal bones and in the coronal suture. Fgfr2 is expressed only in proliferating osteoprogenitor cells; the onset of differentiation is preceded by down-regulation of Fgfr2 and up-regulation of Fgfr1. Following up-regulation of the differentiation marker osteopontin, Fgfr1, osteonectin and alkaline phosphatase are down-regulated, suggesting that they are involved in the osteogenic differentiation process but not in maintaining the differentiated state. Fgfr3 is expressed in the cranial cartilage, including a plate of cartilage underlying the coronal suture, as well as in osteogenic cells, suggesting a dual role in skull development. Subcutaneous insertion of FGF2-soaked beads onto the coronal suture on E15 resulted in up-regulation of osteopontin and Fgfr1 in the sutural mesenchyme, down-regulation of Fgfr2, and inhibition of cell proliferation. This pattern was observed at 6 and 24 hours after bead insertion, corresponding to the timing and duration of FGF2 diffusion from the beads. We suggest (a) that a gradient of FGF ligand, from high levels in the differentiated region to low levels in the environment of the osteogenic stem cells, modulates differential expression of Fgfr1 and Fgfr2, and (b) that signalling through FGFR2 regulates stem cell proliferation whereas signalling through FGFR1 regulates osteogenic differentiation.  相似文献   

13.
During embryonic development of the inner ear, the sensory primordium that gives rise to the organ of Corti from within the cochlear epithelium is patterned into a stereotyped array of inner and outer sensory hair cells separated from each other by non-sensory supporting cells. Math1, a close homolog of the Drosophila proneural gene atonal, has been found to be both necessary and sufficient for the production of hair cells in the mouse inner ear. Our results indicate that Math1 is not required to establish the postmitotic sensory primordium from which the cells of the organ of Corti arise, but instead is limited to a role in the selection and/or differentiation of sensory hair cells from within the established primordium. This is based on the observation that Math1 is only expressed after the appearance of a zone of non-proliferating cells that delineates the sensory primordium within the cochlear anlage. The expression of Math1 is limited to a subpopulation of cells within the sensory primordium that appear to differentiate exclusively into hair cells as the sensory epithelium matures and elongates through a process that probably involves radial intercalation of cells. Furthermore, mutation of Math1 does not affect the establishment of this postmitotic sensory primordium, even though the subsequent generation of hair cells is blocked in these mutants. Finally, in Math1 mutant embryos, a subpopulation of the cells within the sensory epithelium undergo apoptosis in a temporal gradient similar to the basal-to-apical gradient of hair cell differentiation that occurs in the cochlea of wild-type animals.  相似文献   

14.
Tight junctions in the cochlear duct are thought to compartmentalize endolymph and provide structural support for the auditory neuroepithelium. The claudin family of genes is known to express protein components of tight junctions in other tissues. The essential function of one of these claudins in the inner ear was established by identifying mutations in CLDN14 that cause nonsyndromic recessive deafness DFNB29 in two large consanguineous Pakistani families. In situ hybridization and immunofluorescence studies demonstrated mouse claudin-14 expression in the sensory epithelium of the organ of Corti.  相似文献   

15.
Previous studies have implicated fibroblast growth factor receptor 1 (FGFR1) in limb development. However, the precise nature and complexity of its role have not been defined. Here, we dissect Fgfr1 function in mouse limb by conditional inactivation of Fgfr1 using two different Cre recombinase-expressing lines. Use of the T (brachyury)-cre line led to Fgfr1 inactivation in all limb bud mesenchyme (LBM) cells during limb initiation. This mutant reveals FGFR1 function in two phases of limb development. In a nascent limb bud, FGFR1 promotes the length of the proximodistal (PD) axis while restricting the dimensions of the other two axes. It also serves an unexpected role in limiting LBM cell number in this early phase. Later on during limb outgrowth, FGFR1 is essential for the expansion of skeletal precursor population by maintaining cell survival. Use of mice carrying the sonic hedgehog(cre) (Shh(cre)) allele led to Fgfr1 inactivation in posterior LBM cells. This mutant allows us to test the role of Fgfr1 in gene expression regulation without disturbing limb bud growth. Our data show that during autopod patterning, FGFR1 influences digit number and identity, probably through cell-autonomous regulation of Shh expression. Our study of these two Fgfr1 conditional mutants has elucidated the multiple roles of FGFR1 in limb bud establishment, growth and patterning.  相似文献   

16.
17.
Mutations in fibroblast growth factor receptors (Fgfrs) 1-3 cause skeletal disease syndromes in humans. Although these Fgfrs are expressed at various stages of chondrocyte and osteoblast development, their function in specific skeletal cell types is poorly understood. Using conditional inactivation of Fgfr1 in osteo-chondrocyte progenitor cells and in differentiated osteoblasts, we provide evidence that FGFR1 signaling is important for different stages of osteoblast maturation. Examination of osteogenic markers showed that inactivation of FGFR1 in osteo-chondro-progenitor cells delayed osteoblast differentiation, but that inactivation of FGFR1 in differentiated osteoblasts accelerated differentiation. In vitro osteoblast cultures recapitulated the in vivo effect of FGFR1 on stage-specific osteoblast maturation. In immature osteoblasts, FGFR1 deficiency increased proliferation and delayed differentiation and matrix mineralization, whereas in differentiated osteoblasts, FGFR1 deficiency enhanced mineralization. Furthermore, FGFR1 deficiency in differentiated osteoblasts resulted in increased expression of Fgfr3, a molecule that regulates the activity of differentiated osteoblasts. Mice lacking Fgfr1, either in progenitor cells or in differentiated osteoblasts, showed increased bone mass as adults. These data demonstrate that signaling through FGFR1 in osteoblasts is necessary to maintain the balance between bone formation and remodeling through a direct effect on osteoblast maturation.  相似文献   

18.
The mammalian auditory sensory epithelium, the organ of Corti, contains sensory hair cells and nonsensory supporting cells arranged in a highly patterned mosaic. Notch-mediated lateral inhibition is the proposed mechanism for creating this sensory mosaic. Previous work has shown that mice lacking the Notch ligand JAG2 differentiate supernumerary hair cells in the cochlea, consistent with the lateral inhibitory model. However, it was not clear why only relatively modest increases in hair cell production were observed in Jag2 mutant mice. Here, we show that another Notch ligand, DLL1, functions synergistically with JAG2 in regulating hair cell differentiation in the cochlea. We also show by conditional inactivation that these ligands probably signal through the NOTCH1 receptor. Supernumerary hair cells in Dll1/Jag2 double mutants arise primarily through a switch in cell fate, rather than through excess proliferation. Although these results demonstrate an important role for Notch-mediated lateral inhibition during cochlear hair cell patterning, we also detected abnormally prolonged cellular proliferation that preferentially affected supporting cells in the organ of Corti. Our results demonstrate that the Notch pathway plays a dual role in regulating cellular differentiation and patterning in the cochlea, acting both through lateral inhibition and the control of cellular proliferation.  相似文献   

19.
Inner ear mechanosensory hair cells transduce sound and balance information. Auditory hair cells emerge from a Sox2-positive sensory patch in the inner ear epithelium, which is progressively restricted during development. This restriction depends on the action of signaling molecules. Fibroblast growth factor (FGF) signalling is important during sensory specification: attenuation of Fgfr1 disrupts cochlear hair cell formation; however, the underlying mechanisms remain unknown. Here we report that in the absence of FGFR1 signaling, the expression of Sox2 within the sensory patch is not maintained. Despite the down-regulation of the prosensory domain markers, p27Kip1, Hey2, and Hes5, progenitors can still exit the cell cycle to form the zone of non-proliferating cells (ZNPC), however the number of cells that form sensory cells is reduced. Analysis of a mutant Fgfr1 allele, unable to bind to the adaptor protein, Frs2/3, indicates that Sox2 maintenance can be regulated by MAP kinase. We suggest that FGF signaling, through the activation of MAP kinase, is necessary for the maintenance of sensory progenitors and commits precursors to sensory cell differentiation in the mammalian cochlea.  相似文献   

20.
Fibroblast growth factor 10 (FGF10) is involved in numerous different aspects of embryonic development and especially in active epithelial-mesenchymal interactions during morphogenesis of many organs as a mesenchymal regulator by activating its receptors (FGFR1b and FGFR2b) expressed in the epithelial tissue. FGFR2b is also activated by FGF7 although FGF7 does not bind to FGFR1b. To provide basic data to analyze function of FGFs in the developing gut, here we cloned Fgf7 and studied expression patterns of Fgf7, Fgf10 and Fgfr1-4 during the development of chicken stomach (glandular stomach; proventriculus and muscular stomach; gizzard). Fgf10 is expressed both in the proventricular and gizzard mesenchyme while Fgf7 is expressed only in gizzard mesenchyme. Fgfr1-4 are expressed both in the epithelium and mesenchyme with a different spatial expression patterns. Furthermore, RT-PCR analysis reveals that Fgfr1b and Fgfr2b are expressed only in epithelia of both organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号