首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface protein mutants of the invasive Salmonella species, S. choleraesuis, were generated using the transposon TnphoA. 626 alkaline phosphatase (PhoA+) fusion mutants were identified and screened for their ability to pass through (transcytose) polarized epithelial monolayers of Madin Darby canine kidney (MDCK) cells grown on membrane filters. Forty two mutants were unable to pass through this barrier. All of these transcytosis mutants were unable to adhere to or invade MDCK monolayers, yet these mutations were not in the genes encoding type 1 pili or mannose-resistant haemagglutination (MRHA). These transcytosis mutants could be grouped into six classes. Class 1 mutants had altered lipopolysaccharide (LPS) O side-chain structures while Class 2 mutants had defects in their LPS core. Mutants belonging to Classes 5 and 6 did not decrease the transepithelial electrical resistance of polarized MDCK cell monolayers, in contrast to the parental strain and the other mutants (Classes 1, 2, 3 and 4). Mutants belonging to Class 1 were less virulent in mice, while Class 2 (defective core) and Classes 4 and 5 (normal LPS) mutant strains were avirulent in mice. Mutants from Classes 3 and 6 were as virulent in mice as S. choleraesuis. These results suggest that the ability to pass through epithelial barriers may be an important virulence characteristic of Salmonella. These data indicate that bacterial adherence, internalization and monolayer transcytosis are closely linked events. It was also demonstrated that a mutant with decreased rates of intracellular replication still passed through the monolayer at rates similar to wild-type S. choleraesuis.  相似文献   

2.
A mutant of Salmonella choleraesuis was identified that could invade (enter) and penetrate through polarized monolayers of Caco-2 and MDCK epithelial cells at normal levels but was defective for intracellular multiplication within these cells. It was also able to survive inside cultured J774 macrophage cells. These bacteria remained inside membrane-bound vacuoles, which coalesced at later times in the perinuclear region of the epithelial cell. This mutant exhibited slightly slower growth rates in rich or minimal media than the parental strain but was normal for iron usage, phosphate usage, and anaerobic growth and was a prototroph. The mutant was completely avirulent when administered orally or intravenously to susceptible mice. These results suggest that the ability to multiply within eukaryotic cells may contribute to S. choleraesuis virulence.  相似文献   

3.
The development of surface polarity has been studied in the epithelial Madin-Darby canine kidney (MDCK) cell line by examining two basolateral markers: a monoclonal antibody against a 58-kd protein and [35S]methionine uptake. The surface distribution of these markers was followed after plating the cells on coverslips or nitrocellulose filters. In subconfluent monolayers the apical surface of many cells was stained with the anti-58-kd antibody. Clearing of the apical surface occurred first after confluency had been reached in cells grown on coverslips. Similarly, in cells grown on filters the basolateral 58-kd protein disappeared from the apical surface concomitantly with the development of a measurable electrical resistance over the cell monolayer. The uptake of [35S]methionine was measured from both sides of filter-grown cells and began to polarize early after seeding, reaching a value of greater than 98% basolateral in the fully polarized monolayer. These results emphasize that the development of surface polarity in MDCK cells is a gradual process, and that extensive cell-cell contacts seem to be required for complete surface polarization.  相似文献   

4.
《The Journal of cell biology》1984,98(5):1777-1787
We examined epithelial cell surface polarity in subconfluent and confluent Madin-Darby canine kidney (MDCK) cells with monoclonal antibodies directed against plasma membrane glycoproteins of 35,000, 50,000, and 60,000 mol wt. The cell surface distribution of these glycoproteins was studied by immunofluorescence and immunoelectron microscopy. At the ultrastructural level, the electron-dense reaction product localizing all three glycoproteins was determined to be uniformly distributed over the apical and basal cell surfaces of subconfluent MDCK cells as well as on the lateral surfaces between contacted cells; however, after formation of a confluent monolayer, these glycoproteins could only be localized on the basal-lateral plasma membrane. The development of cell surface polarity was followed by assessing glycoprotein distribution with immunofluorescence microscopy at selected time intervals during growth of MDCK cells to form a confluent monolayer. These results were correlated with transepithelial electrical resistance measurements of tight junction permeability and it was determined by immunofluorescence that polarized distributions of cell surface glycoproteins were established just after electrical resistance could be detected, but before the development of maximal resistance. Our observations provide evidence that intact tight junctions are required for the establishment of the apical and basal- lateral plasma membrane domains and that development of epithelial cell surface polarity is a continuous process.  相似文献   

5.
In human intestinal disease induced by Salmonella typhimurium, transepithelial migration of neutrophils (PMN) rapidly follows attachment of the bacteria to the epithelial apical membrane. In this report, we model those interactions in vitro, using polarized monolayers of the human intestinal epithelial cell, T84, isolated human PMN, and S. typhimurium. We show that Salmonella attachment to T84 cell apical membranes did not alter monolayer integrity as assessed by transepithelial resistance and measurements of ion transport. However, when human neutrophils were subsequently placed on the basolateral surface of monolayers apically colonized by Salmonella, physiologically directed transepithelial PMN migration ensued. In contrast, attachment of a non-pathogenic Escherichia coli strain to the apical membrane of epithelial cells at comparable densities failed to stimulate a directed PMN transepithelial migration. Use of the n-formyl-peptide receptor antagonist N-t-BOC-1-methionyl-1-leucyl-1- phenylalanine (tBOC-MLP) indicated that the Salmonella-induced PMN transepithelial migration response was not attributable to the classical pathway by which bacteria induce directed migration of PMN. Moreover, the PMN transmigration response required Salmonella adhesion to the epithelial apical membrane and subsequent reciprocal protein synthesis in both bacteria and epithelial cells. Among the events stimulated by this interaction was the epithelial synthesis and polarized release of the potent PMN chemotactic peptide interleukin-8 (IL-8). However, IL-8 neutralization, transfer, and induction experiments indicated that this cytokine was not responsible for the elicited PMN transmigration. These data indicate that a novel transcellular pathway exists in which subepithelial PMN respond to lumenal pathogens across a functionally intact epithelium. Based on the known unique characteristics of the intestinal mucosa, we speculate that IL-8 may act in concert with an as yet unidentified transcellular chemotactic factor(s) (TCF) which directs PMN migration across the intestinal epithelium.  相似文献   

6.
In human disease induced by Salmonella enterica serovar Typhimurium (S. Typhimurium), transepithelial migration of neutrophils rapidly follows attachment of the bacteria to the epithelial apical membrane. We have previously shown that during S. Typhimurium infection the multidrug resistance-associated protein 2 (MRP2) is highly expressed at the apical surface of the intestinal epithelia, and that it functions as an efflux pump for the potent neutrophil chemoattractant hepoxilin A(3) . However, the molecular mechanisms regulating its apical localization during active states of inflammation remain unknown. Thus, our objective was to determine the mechanistic basis for the translocation of MRP2 to the apical surface of intestinal epithelial cells during S. Typhimurium infection. We show that suppression of ezrin, through either RNAi or truncation of the C-terminus, results not only in a decrease in S. Typhimurium-induced neutrophil transmigration but also significantly attenuates the apical membrane expression of MRP2 during Salmonella infection. In addition, we determined that S. Typhimurium induces the activation of ezrin via a PKC-α-dependent pathway and that ezrin activation is coupled to apical localization of MRP2. Based on these results we propose that activation of ezrin is required for the apical localization of MRP2 during S. Typhimurium infection.  相似文献   

7.
Antibodies specific to Salmonella enteritidis (S.E.) were obtained from immunized egg yolk, and their protective effects against S.E. were studied by using monolayer-cultured human intestinal epithelial cells, Caco-2 and T84. The Salmonella adherence and entry to the cells were partially inhibited by the antibodies. The antibodies inhibited the decrease in transepithelial electrical resistance (TEER) of the intestinal epithelial monolayers and IL-8 secretion of the cells induced by S.E. invasion. Also, the antibodies blocked the penetration of bacteria through the cell layer although they did not inhibit the growth of bacteria in the cells. Confocal microscopic photographs revealed the bacteria in the infected monolayer cells were bound to antibodies. These results indicate that anti-S.E. antibodies may protect the cells from destruction induced by S.E. invasion in intestinal epithelial cells in addition to the partial inhibition of adhesion and invasion of S.E. at the cell surface. Passive antibodies against invasive bacteria would be useful to prevent the migration of S.E. to blood not only at the cell surface but also inside of intestinal epithelial cells.  相似文献   

8.
Analysis of epithelial cell surface polarity with monoclonal antibodies   总被引:3,自引:0,他引:3  
The hybridoma technique of K?hler and Milstein was utilized to isolate hybrid cell lines secreting monoclonal antibodies against cell surface proteins on the Madin-Darby canine kidney (MDCK) epithelial cell line. These antibodies were employed as high-affinity ligands to study the development and maintenance of epithelial cell polarity in MDCK cells and for the identification of nephron segment-specific proteins. Using standard procedures, we were able to immunoprecipitate glycoproteins with molecular weights of 25,000 ( 25K ), 35,000 ( 35K ), and 50,000 (50K). Immunofluorescence and immunoelectron microscopy of MDCK demonstrated that the 35K and 50K proteins could be localized on both the apical and basolateral membranes of subconfluent cells but primarily on the basolateral membranes of confluent cells. By determining the cell surface distribution of the 35K and 50K proteins on MDCK cells during growth into a confluent monolayer, and after the experimental disruption of tight junctions, evidence was obtained that the polarized distribution of these cell surface glycoproteins required the presence of tight junctions. We propose that confluent MDCK cells have a mechanism that is responsible for the establishment and maintenance of epithelial apical and basolateral membranes as distinct cell surface domains. These monoclonal antibodies were also used to localize the 25K and 35K glycoproteins in the kidney. The distribution of these proteins was mapped by immunofluorescence and immunoelectron microscopy and was determined to be on the basolateral membranes of epithelial cells in only certain tubular segments of the nephron. The possible functional implications of these distributions are discussed.  相似文献   

9.
Respiratory syncytial (RS) virus infects the epithelium of the respiratory tract. We examined the replication and maturation of RS virus in two polarized epithelial cell lines, Vero C1008 and MDCK. Electron microscopy of RS virus-infected Vero C1008 cells revealed the presence of pleomorphic viral particles budding exclusively from the apical surface, often in clusters. The predominant type of particle was filamentous, 80 to 100 nm in diameter, and 4 to 8 microns in length, and evidence from filtration studies indicated that the filamentous particles were infectious. Cytopathology produced by RS virus infection of polarized Vero C1008 cells was minimal, and syncytia were not observed, consistent with the maintenance of tight junctions and the exclusively apical maturation of the virus. Infectivity assays with MDCK cells confirmed that in this cell line, RS virus was released into the apical medium but not into the basolateral medium. In addition, the majority of the RS virus transmembrane fusion glycoprotein on the cell surface was localized to the apical surface of the Vero C1008 cells. Taken together, these results demonstrate that RS virus matures at the apical surface of polarized epithelial cell lines.  相似文献   

10.
The effects of viral Kirsten ras oncogene expression on the polarized phenotype of MDCK cells were investigated. Stable transformed MDCK cell lines expressing the v-K-ras oncogene were generated via infection with a helper-independent retroviral vector construct. When grown on plastic substrata, transformed cells formed continuous monolayers with epithelial-like morphology. However, on permeable filter supports where normal cells form highly polarized monolayers, transformed MDCK cells detached from the substratum and developed multilayers. Morphological analysis of the multilayers revealed that oncogene expression perturbed the polarized organization of MDCK cells such that the transformed cells lacked an apical--basal axis around which the cytoplasm is normally organized. Evidence for selective disruption of apical membrane polarity was provided by immunolocalization of membrane proteins; a normally apical 114-kD protein was randomly distributed on the cell surface in the transformed cell line, whereas normally basolateral proteins remained exclusively localized to areas of cell contact and did not appear on the free cell surface. The discrete distribution of the tight junction-associated ZO-1 protein as well as transepithelial resistance and flux measurements suggested that tight junctions were also assembled. These findings indicate that v-K-ras transformation alters cell-substratum and cell-cell interactions in MDCK cells. Furthermore, v-K-ras expression perturbs apical polarization but does not interfere with the development of a basolateral domain, suggesting that apical and basolateral polarity in epithelial cells may be regulated independently.  相似文献   

11.
We have used Madin-Darby canine kidney (MDCK) cells grown on nitrocellulose filters to study the polarity of virus infection and maturation. The cells form epithelia-like monolayers, which display high (>1000 Ω cm2) electrical resistance and a cuboidal morphology. Vesicular stomatitis virus (VSV) was found to infect the monolayer at least 100 times more efficiently when applied through the filter to the basolateral surface than when applied to the apical surface. The avian influenza, fowl plague virus (FPV), infected the monolayer through either the apical or basolateral surface. The polarity of virus budding was evaluated by harvesting virus from the two sides of the monolayer. More than 99% of released influenza hemagglutinin titre was found on the apical side of the filter, while more than 98% of budded VSV was found on the basal side. This polarity of budding was retained through 10 hr of viral infection, as was the polarity of surface expression of viral envelope proteins revealed by immunofluorescence. The strong preference of VSV for basolateral maturation is paralleled by an equally strong preference for infection through the basolateral membrane of this polar epithelial cell.  相似文献   

12.
Lin CK  Tsai HC  Lin PP  Tsen HY  Tsai CC 《Anaerobe》2008,14(5):251-255
The mechanisms for lactic acid bacteria (LAB) to inhibit Salmonella invasion appear to be multifactorial and include the adhesion of LAB to host intestine epithelium, the production of organic acids, or bacteriocin by LAB cells. Previously, we found a strain of Lactobacillus acidophilus isolated from swine, i.e. strain LAP5, was with antagonistic effect against Salmonella typhimurium. This strain LAP5 was also found to meet the requirements for probiotic use. In this study, we evaluate the potential of LAP5 strain to protect the human or swine from infection by Salmonella choleraesuis. We present evidence that the culture of LAP5 was able to inhibit the invasion of S. choleraesuis to human Caco-2 cell line. The LAP5 cell culture showed a higher inhibitory effect on the invasion of S. choleraesuis to Caco-2 cells than the spent culture supernatant (SCS) of LAP5 did. Also, the pH, organic acids or the bacteriocin, which act at low pH conditions, may play the role of antagonistic effect. The addition, adhesion of LAP5 cells to Caco-2 cell line may also play roles to reduce the invasion of S. choleraesuis.  相似文献   

13.
Intestinal epithelial cells are an important site of the host's interaction with enteroinvasive bacteria. Genes in the chromosomally encoded Salmonella pathogenicity island 2 (SPI 2) that encodes a type III secretion system and genes on the virulence plasmid pSDL2 of Salmonella enteritica serovar Dublin (spv genes) are thought to be important for Salmonella dublin survival in host cells. We hypothesized that genes in those loci may be important also for prolonged Salmonella growth and the induction of apoptosis induced by Salmonella in human intestinal epithelial cells. HT-29 human intestinal epithelial cells were infected with wild-type S. dublin or isogenic mutants deficient in the expression of spv genes or with SPI 2 locus mutations. Neither the spv nor the SPI 2 mutations affected bacterial entry into epithelial cells or intracellular proliferation of Salmonella during the initial 8 h after infection. However, at later periods, bacteria with mutations in the SPI 2 locus or in the spv locus compared to wild-type bacteria, manifested a marked decrease in intracellular proliferation and a different distribution pattern of bacteria within infected cells. Epithelial cell apoptosis was markedly increased in response to infection with wild-type, but not the mutant Salmonella. However, apoptosis of epithelial cells infected with wild-type S. dublin was delayed for approximately 28 h after bacterial entry. Apoptosis was preceded by caspase 3 activation, which was also delayed for approximately 24 h after infection. Despite its late onset, the cellular commitment to apoptosis was determined in the early period after infection as inhibition of bacterial protein synthesis during the first 6 h after epithelial cell infection with wild-type S. dublin, but not at later times, inhibited the induction of apoptosis. These studies indicate that genes in the SPI 2 and the spv loci are crucial for prolonged bacterial growth in intestinal epithelial cells. In addition to their influence on intracellular proliferation of Salmonella, genes in those loci determine the ultimate fate of infected epithelial cells with respect to caspase 3 activation and undergoing death by apoptosis.  相似文献   

14.
《The Journal of cell biology》1995,129(5):1241-1250
In polarized epithelial MDCK cells, all known endogenous endocytic receptors are found on the basolateral domain. The influenza virus hemagglutinin (HA) which is normally sorted to the apical plasma membrane, can be converted to a basolateral protein by specific mutations in its short cytoplasmic domain that also create internalization signals. For some of these mutations, sorting to the basolateral surface is incomplete, allowing internalization of two proteins that differ by a single amino acid of the internalization signal to be compared at both the apical and basolateral surfaces of MDCK cells. The rates of internalization of HA-Y543 and HA-Y543,R546 from the basolateral surface of polarized MDCK cells resembled those in nonpolarized cells, whereas their rates of internalization from the apical cell surface were fivefold slower. However, HA-Y543,R546 was internalized approximately threefold faster than HA-Y543 at both membrane domains, indicating that apical endocytic pits in polarized MDCK cells retained the ability to discriminate between different internalization signals. Slower internalization from the apical surface could not be explained by a limiting number of coated pits: apical membrane contained 0.7 as many coated pits per cell cross-section as did basolateral membranes. 10-14% of HA-Y543 at the apical surface of polarized MDCK cells was found in coated pits, a percentage not significantly different from that observed in apical coated pits of nonpolarized MDCK cells, where internalization was fivefold faster. Thus, there was no lack of binding sites for HA-Y543 in apical coated pits of polarized cells. However, at the apical surface many more shallow pits, and fewer deep, mature pits, were observed than were seen at the basolateral. These results suggest that the slower internalization at the apical surface is due to slower maturation of coated pits, and not to a difference in recognition of internalization signals.  相似文献   

15.
Dipeptidyl peptidase IV (DPPIV) is a membrane glycoprotein with type II orientation. It is predominantly localized to the apical surface in epithelial cells. Previous studies (Bantles, J. P., Feracci, H. M., Shinger, B., and Hubbard, A. L. (1987) J. Cell Biol. 105, 1241-1251) using cellular fractionation and immunoprecipitation in rat liver suggest that DPPIV is targeted to the apical surface by an indirect pathway through transient appearance in the basolateral surface followed by specific transcytosis to the apical domain. In transfected Madin-Darby canine kidney (MDCK) cells using domain-selective biotinylation and streptavidin absorption, it was, however, shown that DPPIV is directly sorted to the apical surface (Low, S. H., Wong, S. H., Tang, B. L. Subramaniam, V. N., and Hong, W. (1991) J. Biol. Chem, 266, 13391-13396). These studies suggest that the sorting pathway for DPPIV may be cell type-specific, but it cannot be ruled out that the observed difference in the DPPIV sorting pathway may be due to different methods employed for dissecting the sorting pathway. In this study, we have expressed rat DPPIV, using an expression system driven by the Rous sarcoma virus enhancer and the SV40 early promoter region, in another epithelial cell line, LLC-PK1. As in MDCK cells, DPPIV is preferentially (about 90%) localized to the apical surface. Employing identical methods used previously in MDCK cells, it was found that both direct and transcytotic pathways are involved in the apical surface localization of DPPIV in this epithelial cell type. These observations clearly illustrate that the sorting pathway of rat DPPIV is cell type-specific.  相似文献   

16.
New techniques lead to advances in epithelial cell polarity.   总被引:1,自引:0,他引:1  
We have utilized cell surface biotinylation assays to study protein targeting signals and pathways in polarized epithelial cells. These studies have revealed that in MDCK cells, most proteins are sorted intracellularly and are targeted directly to the surface; in other cell types, protein targeting may be mediated by a selective retrieval event. Studies on both intact and permeabilized cells demonstrate that microtubules facilitate apical but not basolateral delivery. Recent transfection studies in MDCK cells have identified glycosyl phosphatidyl inositol (GPI) as an apical targeting signal; interaction of the GPI moiety with glycolipids preferentially expressed on the apical surface may mediate this process. Several proteinaceous basolateral targeting signals have also been recently described.  相似文献   

17.
Influenza virus and vesicular stomatitis virus (VSV) obtain their lipid envelope by budding through the plasma membrane of infected cells. When monolayers of Madin-Darby canine kidney (MDCK) cells, a polarized epithelial cell line, are infected with fowl plague virus (FPV), an avian influenza virus, or with VSV, new FPV buds through the apical plasma membrane whereas VSV progeny is formed by budding through the basolateral plasma membrane. FPV and VSV were isolated from MDCK host cells prelabeled with [32P]orthophosphate and their phospholipid compositions were compared. Infection was carried out at 31 degrees C to delay cytopathic effects of the virus infection, which lead to depolarization of the cell surface. 32P-labeled FPV was isolated from the culture medium, whereas 32P-labeled VSV was released from below the cell monolayer by scraping the cells from the culture dish 8 h after infection. At this time little VSV was found in the culture medium, indicating that the cells were still polarized. The phospholipid composition of the two viruses was distinctly different. FPV was enriched in phosphatidylethanolamine and phosphatidylserine and VSV in phosphatidylcholine, sphingomyelin, and phosphatidylinositol. When MDCK cells were trypsinized after infection and replated, non-infected control cells attached to reform a confluent monolayer within 4 h, whereas infected cells remained in suspension. FPV and VSV could be isolated from the cells in suspension and under these conditions the phospholipid composition of the two viruses was very similar. We conclude that the two viruses obtain their lipids from the plasma membrane in the same way and that the different phospholipid compositions of the viruses from polarized cells reflect differences in the phospholipid composition of the two plasma membrane domains.  相似文献   

18.
《The Journal of cell biology》1993,121(5):1031-1039
Glycosylphosphatidylinositol (GPI) acts as an apical targeting signal in MDCK cells and other kidney and intestinal cell lines. In striking contrast with these model polarized cell lines, we show here that Fischer rat thyroid (FRT) epithelial cells do not display a preferential apical distribution of GPI-anchored proteins. Six out of nine detectable endogenous GPI-anchored proteins were localized on the basolateral surface, whereas two others were apical and one was not polarized. Transfection of several model GPI proteins, previously shown to be apically targeted in MDCK cells, also led to unexpected results. While the ectodomain of decay accelerating factor (DAF) was apically secreted, 50% of the native, GPI-anchored form, of this protein was basolateral. Addition of a GPI anchor to the ectodomain of Herpes simplex gD-1, secreted without polarity, led to basolateral localization of the fusion protein, gD1-DAF. Targeting experiments demonstrated that gD1-DAF was delivered vectorially from the Golgi apparatus to the basolateral surface. These results indicate that FRT cells have fundamental differences with MDCK cells with regard to the mechanisms for sorting GPI-anchored proteins: GPI is not an apical signal but, rather, it behaves as a basolateral signal. The "mutant" behavior of FRT cells may provide clues to the nature of the mechanisms that sort GPI-anchored proteins in epithelial cells.  相似文献   

19.
We have used a retroviral vector containing both the cDNA for rabbit neutral endopeptidase (EC 3.4.24.11; NEP) and the neomycin resistance gene to promote the expression of NEP in a polarized Madin-Darby canine kidney (MDCK) cell line. Cells resistant to G418 (a neomycin synthetic analog) were analyzed with a fluorescence-activated cell sorter to isolate a homogeneous population of cells which stably expressed NEP at their surface. When cells grown in Petri dishes were labeled with an antibody to NEP coupled to colloidal gold and examined under the electron microscope, a strong labeling of microvilli was observed, whereas very few particles were present on the basolateral domain, suggesting that the polarized distribution of this enzyme typical of proximal tubule cells is maintained in this MDCK cell population. To study more accurately the mechanism by which MDCK cells target NEP to the apical surface, cultures were grown to confluence on Costar Transwell chambers and used for pulse-chase experiments with [35S]methionine. Immunoprecipitation of recombinant NEP was then performed by adding an anti-NEP polyclonal antibody to the apical or basolateral surface of intact monolayers and by analyzing immunoprecipitates by gel electrophoresis and fluorography. Our results suggest that NEP is delivered directly to the apical domain and does not transit through the basolateral domain of the plasma membrane. This NEP-expressing MDCK cell line therefore constitutes a new model for investigating the molecular basis of apical membrane targeting in polarized epithelial cells.  相似文献   

20.
We investigated whether or not polarized renal epithelial cells produce antibacterial factors, which aid in host defense at the cell surface of renal epithelium. A model of polarized Madin-Darby canine kidney (MDCK) epithelial cells grown on filters was used to test for the presence of apically or basolaterally secreted factors on the growth of non-virulent (XL1-Blue) and uropathogenic (J96) strains of Escherichia coli (E. coli). Growth of both XL1-Blue and J96 strains of E. coli in medium on the apical and basolateral surface of MDCK cells was inhibited as compared to bacterial growth in medium not exposed to MDCK cells. The inhibition of bacterial growth was similar in both apical and basolateral surface medium. Pretreatment of MDCK cells with hepatocyte growth factor (HGF) blunted the inhibition of XL1-Blue and J96 growth in apical and basolateral surface medium as compared to growth in medium on the surfaces of untreated MDCK cells. Immunofluorescent analysis demonstrated the presence of beta-defensin isoforms 1-3 in MDCK cells, with isoform 1 being the most prevalent form observed. HGF treatment reduced the amount of immunoreactive beta-defensin-1 in MDCK cells. These data demonstrate that polarized renal epithelium produce antibacterial factors. The renotropic growth factor HGF inhibits these antibacterial factors. beta-defensins may contribute to this antibacterial activity and play an important role in renal epithelial resistance to bacterial infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号