首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of plant growth regulators (PGRs) on the accumulation of the alkaloid camptothecin (CPT) and its analogue 10-hydroxycamptothecin (HCPT) in tender leaves of Camptotheca acuminata saplings was studied. In screening experiments for PGRs, 40?mg/L dose of thiourea, triacontanol, and ascorbic acid (VC) had no positive effects on the accumulation of the alkaloids. However, treatments with 40?mg/L of chlormequat chloride (CCC), choline chloride, paclobutrazol (PBZ), and daminozide (B9) induced CPT and HCPT accumulation in both pre-harvest and postharvest stages. On that basis, five levels of PGRs at 0, 20, 40, 60, 80?mg/L were sprayed on tender leaves of C. acuminata saplings at pre-harvest and postharvest stages. Treatment by 40?mg/L CCC dramatically enhanced HCPT production by 308?% in pre-harvest, treatment by 60?mg/L CCC enhanced HCPT production by 100?% in postharvest. Spraying the leaves with 60?mg/L choline chloride resulted in 94?% increase of CPT and spraying with 40?mg/L of the PGRs reached 167?% increase of HCPT in the pre-harvest treatment, respectively; treatments with 60?mg/L choline chloride resulted in 64?% increase of CPT and 525?% increase of HCPT in postharvest, respectively. 52?% increase of CPT and 86?% increase of HCPT in pre-harvest, 22?% increase of CPT and 33?% increase of HCPT in postharvest were obtained by spraying leaves with 60?mg/L PBZ. Treatments with 40?mg/L B9 had the highest impact on CPT (12?% increase in pre-harvest, 11?% increase in postharvest) and HCPT (167?% increase in pre-harvest, 173?% increase in postharvest) accumulation. The optimal PGR for obtaining the highest levels of CPT and HCPT was treatment with 60?mg/L choline chloride. In most case, the pre-harvest treatment was better than the postharvest one. These preliminary results suggest that the application of PGRs may be a useful and feasible method to increase CPT and HCPT levels in C. acuminata.  相似文献   

2.
The Camptotheca acuminata cell suspension cultures were established to produce the well-known antitumor monoterpene indole alkaloid camptothecin (CAM). Most CAM was present in the broth of the C. acuminata cell suspension cultures. The CAM production was evidenced to be attenuated when the C. acuminata cell suspension cultures were continuously subcultured and grown under identical axenic conditions. A practical cryopreservation and recovery procedure was established to maintain the C. acuminata cell suspension cultures. Biotic and abiotic elicitors were administrated to the C. acuminata cell suspension cultures to restore and enhance CAM production. Of them, sorbitol, a well-known hyperosmotic stressor, was proven to be the most effective elicitor that stimulates a ~500-fold increase of CAM production. The committed biosynthetic precursors of CAM, tryptamine and secologanin, were feed to the C. acuminata cell suspension cultures and the CAM production is not remarkably increased. However, N 1-acetylkynuramine (NAK), an important metabolite of kynuramine pathway, was isolated and identified from the cell suspension cultures feeding with tryptamine. The present work provides an efficient method to produce CAM and NAK using the C. acuminata cell suspension cultures. The biotransformation of tryptamine to NAK sheds lights on the biosynthetic formation of the pyrroloquinoline moiety of CAM.  相似文献   

3.

Background  

Camptotheca acuminata is a major natural source of the terpenoid indole alkaloid camptothecin (CPT). At present, little is known about the cellular distribution of the biosynthesis of CPT, which would be useful knowledge for developing new strategies and technologies for improving alkaloid production.  相似文献   

4.
Production of camptothecin (CPT) from callus cultures ofCamptotheca acuminata Decne was affected by light and culture conditions. Among the culture media tested, modified B5 medium containing 3% (w/v) sucrose, 2 mg/L 2,4-D, 2 times of MS medium vitamins, 500 mg/L casein hydrolysate, 250 mg/L myo-inositol, 0.05% (w/v) activated charcoal, and 0.15% (w/v) gelite was used for callus induction. The highest cell growth and CPT production were obtained in dark and green light condition, respectively. Photoperiod has no effect on cell growth and CPT production. Both cell growth and CPT production were also influenced by combination ratio of red and blue light. Cell growth and CPT production were the highest in the ratio of red and blue light 90∶10.  相似文献   

5.
Levels of camptothecin (CPT) and 10-hydroxycamptothecin (HCPT) were determined in different cultures of Camptotheca acuminata grown either in a Temporary Immersion System (TIS) or on solid medium. CPT was also detected in liquid culture medium. HPLC analysis showed significant differences in CPT contents in all tissues analysed and the highest CPT contents were found in shoots grown on solid medium and in TIS with a mean of 2.2 and 2.5 mg g−1 DW, respectively. The highest content of CPT detected in seedlings was 1.96 mg g−1 DW; while that of somatic embryos at cotyledonary stage and regenerated plants were 0.87 and 1.23 mg g−1 DW, respectively. It was also shown that shoots cultured in TIS secreted substantial amount of CPT into the liquid medium. After 4 weeks in culture a mean of 6, 05 and 12, 6 μg g−1 FW were determined at 4 and 8 immersion cycles daily (IC d−1), respectively. This aspect opens new possibilities regarding the isolation of CTP using TIS culture systems.  相似文献   

6.
Lu H  Gorman E  McKnight TD 《Planta》2005,221(3):352-360
The potent anticancer and antiviral compound camptothecin (CPT) is a monoterpene indole alkaloid produced by Camptotheca acuminata. In order to investigate the biosynthetic pathway of CPT, we studied the early indole pathway, a junction between primary and secondary metabolism, which generates tryptophan for both protein synthesis and indole alkaloid production. We cloned and characterized the alpha subunit of anthranilate synthase (ASA) from Camptotheca (designated CaASA), catalyzing the first committed reaction of the indole pathway. CaASA is encoded by a highly conserved gene family in Camptotheca. The two CaASA genes are differentially regulated. The level of CaASA2 is constitutively low in Camptotheca and was found mainly in the reproductive tissues in transgenic tobacco plants carrying the CaASA2 promoter and -glucuronidase gene fusion. CaASA1 was detected to varying degrees in all Camptotheca organs examined and transiently induced to a higher level during seedling development. The spatial and developmental regulation of CaASA1 paralleled that of the previously characterized Camptotheca gene encoding the beta subunit of tryptophan synthase as well as the accumulation of CPT. These data suggest that CaASA1, rather than CaASA2, is responsible for synthesizing precursors for CPT biosynthesis in Camptotheca and that the early indole pathway and CPT biosynthesis are coordinately regulated.  相似文献   

7.
Camptotheca acuminata is a Chinese tree that produces the anti-cancer monoterpenoid indole alkaloid camptothecin (CPT). 3-Hydroxy-3-methylglutaryl coenzyme A synthase (HMGS) catalyzes the condensation of acetyl CoA and acetoacetyl CoA to form 3-hydroxy-3-methylglutaryl-CoA as an early step in the CPT biosynthetic pathway. A full-length cDNA encoding HMGS (designated as CaHMGS, GenBank accession no. EU677841) was successfully isolated from young leaves of C. acuminata by rapid amplification of cDNA ends (RACE). The full-length cDNA of CaHMGS was 1801 bp long and contained a 1413-bp open reading frame encoding a polypeptide of 471 amino acids. Comparative and bioinformatic analyses revealed that CaHMGS showed extensive homology with HMGSs from other plant species. Southern hybridization analysis showed that there were at least two HMGS gene members in the C. acuminata genome. CPT content was found to be much higher in cotyledons and hypocotyls as compared to roots. RT-PCR analysis revealed strong expression in hypocotyls and cotyledons, but no expression in roots, indicating good correlation between CaHMGS expression and CPT content in the tested tissues. The expression of CaHMGS could be regulated by exogenous elicitors, including salicylic acid and methyl jasmonate, suggesting that CaHMGS was elicitor-responsive. This work is a first step to acquire a better understanding on the role of HMGS in CPT biosynthesis.  相似文献   

8.
A new 10-hydroxycamptothecin (HCPT)-producing fungus was isolated from Camptotheca acuminata. The strain was classified as a Xylaria sp. based on the internal transcribed spacer and 18S rDNA gene analysis. All elicitors tested, except methyl jasmonate, increased HCPT production in submerged culture. The maximum yield was 5.4 mg HCPT/l−1, when salicylic acid was added at 0.1 mM to the culture medium  相似文献   

9.
Transformed organ cultures formed following transformation of plant tissues with Agrobacterium species owe their phenotypes to alterations in hormone metabolism. Exogenously supplied hormones have been used to probe the relationship between the growth and morphology of transformed root cultures of a number of species and their ability to accumulate secondary products. Auxins in the presence of low levels of kinetin induce the rapid disorganisation of transformed roots of Nicotiana rustica ultimately toform suspension cultures of transformed cells and this process is associated with a decrease in nicotine content of the cells. This is related to cells in the culture losing competence in alkaloid biosynthesis. In contrast, exogenously supplied GA3 enhanced branching in two transformed root clones of the tropane-alkaloid producing species, Brugmansia candida and so enhanced their typical hairy root phenotype. This growth substance had the effect of reducing the overall alkaloid accumulation but in one case significantly altered the relative concentrations of different tropine esters.In transformed roots of Cucumis sativus, the phenotype of the roots is influenced by the expression of auxin synthesis genes on TR-DNA resulting in roots with two distinct morphologies. The pattern of expression of the enzyme ascorbate oxidase in populations of control roots of different morphologies is described. The significance of these phenotypic variations on the utility of transformed root cultures for the study of secondary metabolic pathways will be discussed.Abbreviations AO ascorbate oxidase - DW dry weight - FW fresh weight - GA3 gibberellic acid  相似文献   

10.
California poppy (Eschscholzia californica Cham.) root cultures produce a variety of benzophenanthridine alkaloids, such as sanguinarine, chelirubine and macarpine, with potent biological activity. Sense and antisense constructs of genes encoding the berberine bridge enzyme (BBE) were introduced into California poppy root cultures. Transgenic roots expressing BBE from opium poppy (Papaver somniferum L.) displayed higher levels of BBE mRNA, protein and enzyme activity, and increased accumulation of benzophenanthridine alkaloids compared to control roots transformed with a -glucuronidase gene. In contrast, roots transformed with an antisense-BBE construct from California poppy had lower levels of BBE mRNA and enzyme activity, and reduced benzophenanthridine alkaloid accumulation, relative to controls. Pathway intermediates were not detected in any transgenic root lines. Suppression of benzophenanthridine alkaloid biosynthesis using antisense-BBE also reduced the growth rate of the root cultures. Two-dimensional 1H-NMR spectroscopy showed no difference in the abundance of carbohydrate metabolites in the various transgenic roots lines. However, transformed roots with low levels of benzophenanthridine alkaloids contained larger cellular pools of certain amino acids compared to controls. In contrast, cellular pools of several amino acids were reduced in transgenic roots with elevated benzophenanthridine alkaloid levels relative to controls. The relative abundance of tyrosine, from which benzophenanthridine alkaloids are derived, was only marginally altered in all transgenic root lines; thus, altering metabolic flux through benzophenanthridine alkaloid pathways can affect cellular pools of specific amino acids. Consideration of such interactions is important for the design of metabolic engineering strategies that target benzophenanthridine alkaloid biosynthesis.  相似文献   

11.
Camptothecin (CPT) is mainly produced and extracted from Camptotheca acuminata and Nothapodytes foetida for pharmaceutical use, i.e., the starting material for chemical conversion to the clinical CPT-type drugs. As the third largest plant anticancer drug, the heavy demand on CPT from global market leads to many research efforts to identify new sources for CPT production. Herein we report the isolation and characterization of a CPT-producing endophytic bacterium Paenibacillus polymyxa LY214 from Camptotheca acuminata. A 10.7 μg l?1 of CPT was presented in the fermentation broth of P. polymyxa LY214. Its CPT production decreased sharply when the strain of the 2nd generation of P. polymyxa LY214 was cultured and fermented. However, the CPT production remained relatively constant from 2.8 μg l?1 of the 2nd generation to 0.8 μg l?1 of the 8th generation of P. polymyxa LY214 under optimized fermentation conditions. A 15- to 30-fold increase of CPT yield was observed when the optimized fermentation conditions, together with the addition of putative biosynthetic precursors of CPT and adsorbent resin XAD16, were applied to ferment the strains of the 7th and 8th generation of P. polymyxa LY214. Bioinformatics analysis of the relative species of P. polymyxa LY214 indicates its potential to produce CPT, which will be helpful to decipher the mysteries of CPT biosynthesis.  相似文献   

12.
Camptothecin (CPT), a plant alkaloid originally isolated from the native Chinese tree, Camptotheca acuminate, exerts the toxic effect by targeting eukaryotic DNA topoisomerase 1 (DNA Topo1). Besides as potent anti-cancer agents, CPT and its derivatives are now being explored as potential pesticides for insect control. In this study, we assessed their toxicity to an insect homolog, the Topo1 protein from beet armyworms (Spodoptera exigua Hübner), a worldwide pest of many important crops. The S. exigua Topo1 gene contains an ORF of 2790 base pairs that is predicted to encode a polypeptide of 930 amino acids. The deduced polypeptide exhibits polymorphism at residue sites V420, L530, A653 and T729 (numbered according to human Topo1) among insect species, which are predicted to confer sensitivity to CPT. The DNA relaxation activity of this protein was subsequently examined using a truncated form that contained the residues 337–930 and was expressed in bacteria BL21 cells. The purified protein retained the ability to relax double-stranded DNA and was susceptible to CPT and its derivative hydroxy-camptothecin (HCPT) in a dose-dependent manner. The same inhibitory effect was also found on the native Topo1 extracted from IOZCAS-Spex-II cells, a cell line established from beet armyworms. Additionally, CPT and HCPT treatment reduced the steady accumulation of Topo1 protein despite the increased mRNA expression in response to the treatment. Our studies provide information of the S. exigua Topo1 gene and its amino acid polymorphism in insects and uncover some clues about potential mechanisms of CPT toxicity against insect pests. These results also are useful for development of more effective Topo1-targeted CPT insecticides in the future.  相似文献   

13.
14.
Hairy root cultures of Atropa belladonna L. were established by infection either with Agrobacterium rhizogenes ATCC 15834 or MAFF 03-01724, and transgenic plants were obtained from both hairy root cultures. Doubly transformed roots were induced by re-infection of the leaf segments of transgenic Atropa belladonna plants (A. rhizogenes 15834) with MAFF 03-01724. Shoots and viviparous leaves were regenerated from the doubly transformed roots. The genetic transformation was determined by the opine assay (agropine, mannopine and/or mikimopine) and polymerase chain reaction. Physiological changes and tropane alkaloid biosynthesis in the hairy roots (singly and doubly transformed) were investigated. The alkaloid content in the doubly transformed root strain was intermediate as compared to the root strains which were singly transformed. On the other hand endogenous IAA levels in doubly transformed roots were significantly decreased compared to both singly transformed roots.Abbreviations BA benzyladenine - IAA indoleacetic acid - NAA naphthaleneacetic acid - PCR polymerase chain reaction - t-ZR trans-zeatin  相似文献   

15.
Summary Tropane alkaloid production was studied in different root cultures ofDatura stramonium. Cultured roots were obtained with 10−6 M of indolbutyric acid. Their doubling times were from 6 to 19 days. Hyoscyamine content varied from 0.17 to 0.62% dry weight, and scopolamine content from 0.08 to 0.33% dry weight, depending on the lines. A comparison of the bioproductivity of these compounds in the pot-grown plant roots showed that it was two to three orders lower than cultured roots, and it increased one order of magnitude considering the productivity on the whole plant. Bioproductivity, growth capacity and alkaloid production stability during subsequent transfers (more than 2 yr) are reported. Only one root line (N5) showed excretion of the alkaloids to the culture medium. Characterization of three selected lines (N1, N5, and N9) showed that the highest alkaloid production is reached at the stationary phase of growth, with the exception of line N9.  相似文献   

16.
S. S. Radwan  C. K. Kokate 《Planta》1980,147(4):340-344
Callus cultures of Trigonella foenum-graecum contained 3 to 4 times more trigonelline than the seeds of this plant and 12 to 13 times more than the roots and shoots. Even higher levels of this alkaloid were produced by suspension cultures. This high productivity was maintained during successive subculturing of calli and cell suspensions for eight months. Thus, trigonelline is to be added to the group of the few metabolites whose synthesis in cell cultures exceeds its production in the differentiated plants. Media that had supported the growth of suspension cultures contained one third or more of the total alkaloid, whereas media of callus cultures contained about one tenth of this substance. Trigonelline accumulated in callus and suspension cultures with aging. Raising the level of nicotinic acid in the nutrient medium resulted in some increase of trigonelline production by the culture.Abbreviations 2.4 D 2.4-dichlorophenoxyacetic acid - IAA indoleacetic acid - IPA indolepropionic acid - NAA -naphthaleneacetic acid - GA Gibberellic acid - K kinetin  相似文献   

17.
Camptothecin derivatives are used clinically as anti-tumor alkaloids. Camptothecin and its related compounds are at present obtained by extraction from intact plants, but transformed plant cell cultures may be an alternative source of production. We have established a hairy root culture of Ophiorriza pumila (Rubiaceae) transformed by Agrobacterium rhizogenes strain 15834. This hairy root culture grew well, increasing by 16-fold during 5 weeks in liquid culture, and it produced camptothecin as a main alkaloid up to 0.1% per dry weight of the cells. Interestingly, not only the hairy root cells contained camptothecin, but the culture medium also accumulated substantial amounts. Camptothecin content in the medium was increased by the presence of a polystyrene resin (Diaion HP-20) that absorbed camptothecin. Camptothecin was easily recovered from the resin. Our method is the most feasible and commercially applicable way to produce camptothecin by in vitro cell culture.  相似文献   

18.
19.
Camptothecin, over four decades of surprising findings   总被引:18,自引:0,他引:18  
Lorence A  Nessler CL 《Phytochemistry》2004,65(20):2735-2749
Camptothecin (CPT) is a modified monoterpene indole alkaloid produced by Camptotheca acuminata (Nyssaceae), Nothapodytes foetida, Pyrenacantha klaineana, Merrilliodendron megacarpum (Icacinaceae), Ophiorrhiza pumila (Rubiaceae), Ervatamia heyneana (Apocynaceae) and Mostuea brunonis (Gelsemiaceae), species belonging to unrelated orders of angiosperms. From the distribution of CPT and other secondary metabolites, it has been postulated that the genes encoding enzymes involved in their biosynthesis evolved early during evolution. These genes were presumably not lost during evolution but might have been "switched off" during a certain period of time and "switched on" again at some later point. The CPT derivatives, irinotecan and topotecan, are used throughout the world for the treatment of various cancers, and over a dozen more CPT analogues are currently at various stages of clinical development. The worldwide market size of irinotecan/topotecan in 2002 was estimated at about $750 million and at $1 billion by 2003. In spite of the rapid growth of the market, CPT is still harvested by extraction from bark and seeds of C. acuminata and N. foetida. All parts of C. acuminata contain some CPT, although the highest level is found in young leaves (approximately 4-5 mg g(-1) dry weight), approximately 50% higher than in seeds and 250% higher than in bark. The development of hairy root cultures of O. pumila and C. acuminata, and the cloning and characterization of genes encoding key enzymes of the pathway leading to CPT formation in plants has opened new possibilities to propose alternative and more sustainable production systems for this important alkaloid.  相似文献   

20.
为了揭示喜树碱(camptothecin, CPT)和10-羟基喜树碱(10-hydroxycamptothecin, HCPT)在喜树(Camptotheca acuminata Decaisne)体内代谢的生理调控机制及这两种类似物之间的关系和作用,运用高效液相色谱技术对种子形成、成熟、萌发和幼苗生长过程中喜树碱和10-羟基喜树碱的代谢动态进行了全面的研究.结果表明,喜树碱相对稳定地存在于成熟和幼嫩的组织中;10-羟基喜树碱特异性地积累在乳熟期的种子、种芽的子叶、幼嫩的真叶等幼嫩组织中,随着组织的进一步发育和成熟,其含量快速减少,成熟组织中积累极少,并且这两种生物碱的代谢在时间和数量上都呈现出相互消长的特点,由此推断,这两种生物碱不同程度地受生长发育调控的特点可能与喜树的化学防御策略密切相关,并且,它们之间可以相互转化以充分利用有限的氮素资源.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号