首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antagonistic activity of 4 strains of bifidobacteria (B. adolescentis 2 F1, B. longum Z4, B. breve R2 and B. bifidum G1), isolated from the vagina of healthy females of the reproductive age, with respect to Escherichia coli, Klebsiella ozaenae, Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa and Gardnerella vaginalis were studied in vitro and in vivo. The in vitro experiments revealed that all above-mentioned bifidobacteria were capable of inhibiting the growth of all indicator bacterial strains. Still of all the bifidobacteria under study had different levels of activity. B. adolescentis strain 2 F1 exhibited the highest inhibiting activity in vitro. In contrast to in vitro experiments, in vivo experiments with B. breve R2 demonstrated its high antagonistic activity with respect to E. coli. The data thus obtained indicate that in the study of antagonistic activity the use of the in vivo model as also expedient, for it is mainly in vivo that probiotic preparations show their activity.  相似文献   

2.
In order to clarify the distribution of bifidobacterial species in the human intestinal tract, a 16S rRNA-gene-targeted species-specific PCR technique was developed and used with DNAs extracted from fecal samples obtained from 48 healthy adults and 27 breast-fed infants. To cover all of the bifidobacterial species that have been isolated from and identified in the human intestinal tract, species-specific primers for Bifidobacterium longum, B. infantis, B. dentium, and B. gallicum were developed and used with primers for B. adolescentis, B. angulatum, B. bifidum, B. breve, and the B. catenulatum group (B. catenulatum and B. pseudocatenulatum) that were developed in a previous study (T. Matsuki, K. Watanabe, R. Tanaka, and H. Oyaizu, FEMS Microbiol. Lett. 167:113-121, 1998). The specificity of the nine primers was confirmed by PCR, and the species-specific PCR method was found to be a useful means for identifying Bifidobacterium strains isolated from human feces. The results of an examination of bifidobacterial species distribution showed that the B. catenulatum group was the most commonly found taxon (detected in 44 of 48 samples [92%]), followed by B. longum and B. adolescentis, in the adult intestinal bifidobacterial flora and that B. breve, B. infantis, and B. longum were frequently found in the intestinal tracts of infants. The present study demonstrated that qualitative detection of the bifidobacterial species present in human feces can be accomplished rapidly and accurately.  相似文献   

3.
Portions of the 16S rRNA from closely related species of the genus Bifidobacterium that are found in the human intestinal microflora were sequenced in order to design species-specific oligonucleotide probes. Five oligonucleotide probes ranging from 16 to 19 bases in length and complementary to 16S rRNA sequences from Bifidobacterium adolescentis, B. bifidum, B. breve, B. infantis, and B. longum were synthesized. With crude high-molecular-weight RNA preparations as targets, these probes showed the desired species specificity, even down to a 1-nucleotide difference. For the practical evaluation of these probes, their specificity and sensitivity were tested against seven strains of the same species and 54 strains of heterologous bacteria with fixed whole cells as targets. The probes for B. adolescentis, B. breve, and B. longum showed efficient and specific hybridization. Although the probes for B. bifidum and B. infantis cross-reacted with a few bacterial strains not isolated from humans, these probes showed species specificity for human intestinal bacteria. These 16S rRNA probes should prove valuable for the identification and detection of human intestinal Bifidobacterium species.  相似文献   

4.
T Yamamoto  M Morotomi    R Tanaka 《Applied microbiology》1992,58(12):4076-4079
Portions of the 16S rRNA from closely related species of the genus Bifidobacterium that are found in the human intestinal microflora were sequenced in order to design species-specific oligonucleotide probes. Five oligonucleotide probes ranging from 16 to 19 bases in length and complementary to 16S rRNA sequences from Bifidobacterium adolescentis, B. bifidum, B. breve, B. infantis, and B. longum were synthesized. With crude high-molecular-weight RNA preparations as targets, these probes showed the desired species specificity, even down to a 1-nucleotide difference. For the practical evaluation of these probes, their specificity and sensitivity were tested against seven strains of the same species and 54 strains of heterologous bacteria with fixed whole cells as targets. The probes for B. adolescentis, B. breve, and B. longum showed efficient and specific hybridization. Although the probes for B. bifidum and B. infantis cross-reacted with a few bacterial strains not isolated from humans, these probes showed species specificity for human intestinal bacteria. These 16S rRNA probes should prove valuable for the identification and detection of human intestinal Bifidobacterium species.  相似文献   

5.
We investigated the effects of lactoferrin on the growth of L. acidophilus CH-2, Bifidobacterium breve ATCC 15700, B. longum ATCC 15707, B. infantis ATCC 15697, and B. bifidum ATCC 15696. The growth of L. acidophilus was stimulated by bovine holo-lactoferrin but not by apo-lactoferrin. With bifidobacteria, bovine lactoferrin stimulated growth of three strains: B. breve, B. infantis and B. bifidum under certain conditions. Both apoprotein and holoprotein had similar effects. However, B. longum growth was not affected by lactoferrin. Thus, the mechanism of stimulating growth of bifidobacteria may be different from that of L. acidophilus. By far-western blotting using biotinylated lactoferrin and horseradish peroxidase-conjugated streptavidin, lactoferrin-binding proteins were detected in the membrane protein fraction of L. acidophilus, B. bifidum, B. infantis and B. breve. The molecular weights of lactoferrin-binding proteins of L. acidophilus were estimated from SDS-polyacrylamide gel electrophoresis to be 27, 41 and 67 kDa, and those of the three bifidobacterial strains were estimated to be 67-69 kDa. However, no such lactoferrin-binding components were detected in the membrane fraction of B. longum. It is interesting that the appearance of lactoferrin-binding proteins in the membrane fraction of these species corresponds to their growth stimulation by lactoferrin.  相似文献   

6.
Three multiplex polymerase chain reactions (PCRs) targeted on Bifidobacterium and related species were designed to identify human species. The selected primers yielded amplified products of various sizes, each specific for a species. Three to four pairs were gathered in one PCR reaction and their specificity under multiplex conditions was confirmed using DNA from 26 reference strains. Using this technique on unidentified faecal strains, B. bifidum, B. longum and B. breve species were commonly recovered in infants while B. adolescentis, B. catenulatum/B. pseudocatenulatum continuum and B. longum species were predominant in adults. Thus, a single PCR can provide the assignment of a strain to one these species, reducing the number of PCR reactions and hands-on time for the identification of human isolates of bifidobacteria. Moreover, this technique is also applicable for the in situ detection of bifidobacteria in DNA extracts from human stools.  相似文献   

7.
The consumption of probiotic-based products has risen greatly in recent decades. Due to their probiotic characteristics, microorganisms such as lactobacilli and bifidobacteria are in daily use in the production of food supplements. In the present study, three bifidobacterial strains (Bifidobacterium breve M-16 V, Bifidobacterium longum subsp. infantis M-63 and Bifidobacterium longum subsp. longum BB536) were tested for growth compatibility, resistance to antimicrobial agents, antibacterial activity against pathogens, resistance to gastric acidity, bile salt hydrolysis and adhesion to the human intestinal epithelial cell line HT29. All of these strains were resistant to gentamycin, but none showed in vitro growth incompatibility or the presence of known resistance determinants. B. breve M-16 V had the best probiotic characteristics and, indeed, was the only strain possessing antibacterial activity against Escherichia coli and Klebsiella pneumoniae. All strains were resistant to simulated gastric juice, while only B. longum subsp. longum BB536 and B. breve M-16 V showed a bile salt hydrolytic activity. Interestingly, a strong adhesion to HT29 cells was observed in all Bifidobacterium strains. In conclusion, B. breve M-16 V, B. longum subsp. longum BB536 and B. longum subsp. infantis M-63 showed several promising characteristics as probiotic strains.  相似文献   

8.
AIMS: The aim of the present study was to compare several molecular methods for the identification and genotyping of bifidobacteria, and further to investigate genetic heterogeneity and functional properties of bifidobacterial isolates from intestinal samples of Finnish adult subjects. METHODS AND RESULTS: A total of 153 intestinal bifidobacterial isolates were included in initial screening and 34 isolates were further characterized. Identification results obtained with PCR-ELISA and ribotyping were well in accordance with each other, while randomly amplified polymorphic DNA (RAPD) gave tentative identification only to Bifidobacterium bifidum and to 65% of the B. longum isolates. The most commonly detected species were B. longum biotype longum followed by B. adolescentis and B. bifidum. In addition, B. animalis (lactis), B. angulatum and B. pseudocatenulatum were found. Ribotyping and pulsed-field gel electrophoresis (PFGE) proved to be discriminatory methods for bifidobacteria, but also RAPD revealed intraspecies heterogeneity. Besides two B. animalis (lactis) isolates with very close similarity to a commercially available probiotic strain, none of the intestinal isolates showed optimal survival in all tolerance (acid, bile and oxygen) or growth performance tests. CONCLUSIONS: Several species/strains of bifidobacteria simultaneously colonize the gastrointestinal tract of healthy Finnish adults and intestinal Bifidobacterium isolates were genetically heterogeneous. Functional properties of bifidobacteria were strain-dependent. SIGNIFICANCE AND IMPACT OF THE STUDY: Applicability of ribotyping with the automated RiboPrinter System for identification and genotyping of bifidobacteria was shown in the present study.  相似文献   

9.
A survey of infant fecal Bifidobacterium isolates for plasmid DNA revealed that a significant portion of the strains, 17.6%, carry small plasmids. The majority of plasmid-harboring strains belonged to the Bifidobacterium longum/infantis group. Most of the plasmids could be assigned into two groups based on their sizes and the restriction profiles. Three plasmids, pB44 (3.6 kb) from B. longum, pB80 (4.9 kb) from Bifidobacterium bifidum, and pB21a (5.2kb) from Bifidobacterium breve were sequenced. While the former two plasmids were found to be highly similar to previously characterized rolling-circle replicating pKJ36 and pKJ56, respectively, the third plasmid, pB21a, does not share significant nucleotide homology with known plasmids. However, it might be placed into the pCIBb1-like group of bifidobacterial rolling-plasmids based on the homology of its Rep protein and the overall molecular organization. Two sets of Escherichia coli-Bifidobacterium shuttle vectors constructed based on pB44 and pB80 replicons were capable of transforming B. bifidum and B. breve strains with efficiency up to 3x10(4)cfu/microg DNA. Additionally, an attempt was made to employ a broad host range conjugation element, RP4, in developing of E. coli-Bifidobacterium gene transfer system.  相似文献   

10.
The immunological study of aqueous buffer extracts obtained from 45 strains of bifidobacteria belonging to the species B. bifidum, B. longum, B. adducens, B. breve, B. infantis and B. parvulorum was made. This study revealed 3 levels of the immunological specificity of soluble bifidobacterial proteins: common to the genus Bifidobacterium, common to a limited number of strains belonging to one or several species of bifidobacteria and strain-specific.  相似文献   

11.
Faecal and serum samples were collected over a period of 6 months from 55 institutionalized elderly subjects, who were enrolled in a double-blind placebo-controlled study. Participants were randomized in one of the three treatment groups: intervention (two probiotic Bifidobacterium longum strains: 2C and 46), placebo and commercial control (Bifidobacterium lactis Bb-12). The faecal Bifidobacterium microbiota was characterized by genus and species-specific PCR. Serum levels of the cytokines IL-10, tumor necrosis factor (TNF)-alpha and transforming growth factor (TGF)-beta1 were determined by enzyme-linked immunosorbent assay. Each participant harboured on average approximately three different bifidobacterial species. The most frequently detected species were B. longum, Bifidobacterium adolescentis and Bifidobacterium bifidum. Depending on the treatment, the intervention resulted in specific changes in the levels of certain Bifidobacterium species, and positive correlations were found between the different species. Negative correlations were observed between the levels of Bifidobacterium species and the pro-inflammatory cytokine TNF-alpha and the regulatory cytokine IL-10. The presence of faecal B. longum and Bifidobacterium animalis correlated with reduced serum IL-10. The anti-inflammatory TGF-beta1 levels were increased over time in all three groups, and the presence of Bifidobacterium breve correlated with higher serum TGF-beta1 levels. This indicates that modulation of the faecal Bifidobacterium microbiota may provide a means of influencing inflammatory responses.  相似文献   

12.
Twenty-four Bifidobacterium strains were examined for their ability to bind to immobilized human and bovine intestinal mucus glycoproteins. Each of the tested bacteria exhibited its characteristic adhesion to human and bovine fecal mucus. No significant differences were found among the taxonomic species. Among the tested bacteria, B. adolescentis, B. angulatum, B. bifidum, B. breve, B. catenulatum, B. infantis, B. longum and B. pseudocatenulatum adhered to human fecal mucus better than bovine fecal mucus, while the binding of B. animalis and B. lactis was not preferential. These results suggest that the mucosal adhesive properties of bifidobacteria may be a strain dependent feature, and the mucosal binding of the human bifidobacteria may be more host specific.  相似文献   

13.
Quantitative real-time PCR assays targeting the groEL gene for the specific enumeration of 12 human fecal Bifidobacterium species were developed. The housekeeping gene groEL (HSP60 in eukaryotes) was used as a discriminative marker for the differentiation of Bifidobacterium adolescentis, B. angulatum, B. animalis, B. bifidum, B. breve, B. catenulatum, B. dentium, B. gallicum, B. longum, B. pseudocatenulatum, B. pseudolongum, and B. thermophilum. The bifidobacterial chromosome contains a single copy of the groEL gene, allowing the determination of the cell number by quantification of the groEL copy number. Real-time PCR assays were validated by comparing fecal samples spiked with known numbers of a given Bifidobacterium species. Independent of the Bifidobacterium species tested, the proportion of groEL copies recovered from fecal samples spiked with 5 to 9 log(10) cells/g feces was approximately 50%. The quantification limit was 5 to 6 log(10) groEL copies/g feces. The interassay variability was less than 10%, and variability between different DNA extractions was less than 23%. The method developed was applied to fecal samples from healthy adults and full-term breast-fed infants. Bifidobacterial diversity in both adults and infants was low, with mostly ≤3 Bifidobacterium species and B. longum frequently detected. The predominant species in infant and adult fecal samples were B. breve and B. adolescentis, respectively. It was possible to distinguish B. catenulatum and B. pseudocatenulatum. We conclude that the groEL gene is a suitable molecular marker for the specific and accurate quantification of human fecal Bifidobacterium species by real-time PCR.  相似文献   

14.
To characterize the ability of bifidobacteria to affect the production of macrophage-derived cytokines, a murine macrophage-like cell line, J774.1, was cultured in the presence of 27 strains of heat-inactivated bifidobacteria. Bifidobacterium adolescentis and B. longum, known as adult-type bifidobacteria, induced significantly more pro-inflammatory cytokine secretion, IL-12 and TNF-alpha, by J774.1 cells, than did the infant-type bifidobacteria, B. bifidum, B. breve, and B. infantis (P<0.01). In contrast, B. adolescentis did not stimulate the production of anti-inflammatory IL-10 from J774.1 cells as the other tested bacteria did. The results suggest that the adult-type bifidobacteria, especially B. adolescentis, may be more potent to amplify but less able to down-regulate the inflammatory response.  相似文献   

15.
This study aimed at developing a novel multiplex polymerase chain reaction (PCR) primer set for identification of the potentially probiotic Bifidobacterium species B. adolescentis, B. animalis subsp. animalis (B. animalis), B. bifidum, B. breve, B. longum biovar infantis (B. infantis), B. animalis subsp. lactis B. lactis, B. longum biovar longum (B. longum) and B. pseudolongum. The primer set comprised specific and conserved primers and was derived from the integrated sequences of 16S and 23S rRNA genes and the rRNA intergenic spacer region (ISR) of each species. It could detect and identify type strains and isolates from pharmaceuticals or dairy products corresponding to the eight Bifidobacterium species with high specificity. It was also useful for screening of the related strains from natural sources such as the gastro-intestinal tract and feces. We suggest that the assay system from this study is an efficient tool for simple, rapid and reliable identification of Bifidobacterium species for which probiotic strains are known.  相似文献   

16.
The abilities of seven bifidobacterial isolates ( Bifidobacterium adolescentis , B. bifidum (two strains), B. catenulatum , B. infantis , B. longum , B. pseudolongum ) to utilize 15 different carbohydrate sources (eight oligosaccharide products, and a variety of monosaccharides and disaccharides) were studied, with regard to maximum specific growth rates and production of bacterial cell mass. Results showed that substrate utilization was highly variable and that considerable interspecies and interstrain differences existed. Galactooligosaccharides and oligofructose, with a low degree of polymerization, supported best growth of the test micro-organisms. In contrast, xylooligosaccharides and pyrodextrins were almost invariably poor bifidobacterial substrates. In many species, maximum specific growth rates and bacterial cell yields were higher on oligosaccharides compared to their monosaccharide constituents, particularly with respect to fructooligosaccharides. Bifidobacterium pseudolongum , B. longum and B. catenulatum were the most nutritionally versatile isolates studied in relation to the range of oligosaccharide products utilized, and the extent to which bacteria could grow on these substrates.  相似文献   

17.
16SrDNA-targeted genus- and species-specific PCR primers have been developed and used for the identification and detection of bifidobacteria. These primers cover all of the described species that inhabit the human gut, or occur in dairy products. Identification of cultured bifidobacteria using PCR primer pairs is rapid and accurate, being based on nucleic acid sequences. Detection of bifidobacteria can be achieved using DNA extracted from human faeces as template in PCR reactions. We have found that, in adult faeces, the Bifidobacterium catenulatum group was the most commonly detected species, followed by Bifidobacterium longum, Bifidobacterium adolescentis, and Bifidobacterium bifidum. In breastfed infants, Bifidobacterium breve was the most frequently detected species, followed by Bifidobacterium infantis, B. longum and B. bifidum. It was notable that the B. catenulatum group was detected with the highest frequency in adults, although it has often been reported that B. adolescentis is the most common species. Real-time, quantitative PCR using primers targeting 16S rDNA shows promise in the enumeration of bifidobacteria in faecal samples. The approach to detect the target bacteria with quantitative PCR described in this review will contribute to future studies of the composition and dynamics of the intestinal microflora.  相似文献   

18.
AIM: To develop real-time quantitative PCR methods, based on the use of probes labelled with a stable fluorescent lanthanide chelate, for the quantification of different human faecal bifidobacterial populations. METHODS AND RESULTS: The designed quantitative PCR assays were found to be specific for the corresponding Bifidobacterium species or groups (Bifidobacterium longum group, Bifidobacterium catenulatum group, Bifidobacterium adolescentis, Bifidobacterium breve, Bifidobacterium angulatum, Bifidobacterium bifidum and Bifidobacterium dentium). The detection limits of the methodologies used ranged between 2 x 10(5) and 9 x 10(3) cells g(-1) of faeces. The applicability of the developed assays was tested by analysing 20 human faecal samples. Bif. longum group was found to be the qualitatively and quantitatively predominant bifidobacterial group. CONCLUSIONS: The real-time PCR procedures developed here are specific, accurate, rapid and easy methods for the quantification of Bifidobacterium groups or species in human faecal samples. SIGNIFICANCE AND IMPACT OF THE STUDY: The developed procedures will facilitate rapid and objective counting of large numbers of samples increasing our knowledge on the role of gut bifidobacterial microbiota in health and disease. This will contribute to the efficient use of intestinal bacterial assays in research, food and pharmaceutical development as well as in the assessment of dietary management of diseases.  相似文献   

19.
The possibility of the formation of exoenzymes, such as DNAase, RNAase and hemolysin, by bifidobacteria was studied in comparison with their acid-forming and adhesive activity. Bifidobacterium reference strains, originally isolated from healthy adults and children, were studied. The study involved altogether 73 strains of bifidobacteria, including 24 B. bifidum strains, 13 B. adolescentis strains, 7 B. infantis strains, 10 B. breve strains and 19 B. longum strains. The bifidobacteria under study were shown to differ not only in the presence and activity of properties useful for macroorganisms, but also in the presence of enzymes having depolymerizing activity (DNAase, hemolysin). Thus, out of 73 strains under study 9 proved to be DNAase-positive and 6, hemolysin positive. At the same time a specific feature of bifidobacteria was their high acid-forming activity with the complete absence of RNAase activity and insignificant DNAase- and hemolysin-forming activity.  相似文献   

20.
Thirty-three fully breast-fed infants aged between 1 and 12 weeks were screened for bifidobacteria in feces. Bifidobacteria counts in most fecal samples determined both by TPY agar and FISH procedure ranged from 10(8) to 10(11) CFU/g. Three infants did not contain any bifidobacteria in their fecal samples. One child was delivered by caesarean section and the other two by normal vaginal delivery. All bifidobacteria-free infants possessed Gram-positive regular rods as a major group of their fecal flora. These bacteria were identified as clostridia using genus-specific FISH probe. In bifidobacteria-positive samples, B. longum (57.9% of the samples) was the most frequently found species, followed by B. adolescentis (31.6%), B. bifidum (21.0%), B. breve (10.5%), B. pseudocatenulatum (5.3%), and B. dentium (5.3%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号