首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resistance to azole antifungal drugs in clinical isolates of the human fungal pathogen Candida albicans is often caused by constitutive overexpression of the CDR1 gene, which encodes a multidrug efflux pump of the ABC transporter superfamily. To understand the relevance of a recently identified negative regulatory element (NRE) in the CDR1 promoter for the control of CDR1 expression in the clinical scenario, we investigated the effect of mutation or deletion of the NRE on CDR1 expression in two matched pairs of azole-sensitive and resistant clinical isolates of C. albicans. Expression of GFP or lacZ reporter genes from the wild type CDR1 promoter was much higher in the azole-resistant C. albicans isolates than in the azole-susceptible isolates, reflecting the known differences in CDR1 expression in these strains. Deletion or mutation of the NRE resulted in enhanced reporter gene expression in azole-sensitive strains, but did not further increase the already high CDR1 promoter activity in the azole-resistant strains. In agreement with these findings, electrophoretic mobility shift assays showed a reduced binding to the NRE of nuclear extracts from the resistant C. albicans isolates as compared with extracts from the sensitive isolates. These results demonstrate that the NRE is involved in maintaining CDR1 expression at basal levels and that this repression is overcome in azole-resistant clinical C. albicans isolates, resulting in constitutive CDR1 overexpression and concomitant drug resistance.  相似文献   

2.
The genetic basis of fluconazole resistance development in Candida albicans   总被引:13,自引:0,他引:13  
Infections by the opportunistic fungal pathogen Candida albicans are widely treated with the antifungal agent fluconazole that inhibits the biosynthesis of ergosterol, the major sterol in the fungal plasma membrane. The emergence of fluconazole-resistant C. albicans strains is a significant problem after long-term treatment of recurrent oropharyngeal candidiasis (OPC) in acquired immunodeficiency syndrome (AIDS) patients. Resistance can be caused by alterations in sterol biosynthesis, by mutations in the drug target enzyme, sterol 14alpha-demethylase (14DM), which lower its affinity for fluconazole, by increased expression of the ERG11 gene encoding 14DM, or by overexpression of genes coding for membrane transport proteins of the ABC transporter (CDR1/CDR2) or the major facilitator (MDR1) superfamilies. Different mechanisms are frequently combined to result in a stepwise development of fluconazole resistance over time. The MDR1 gene is not or barely transcribed during growth in vitro in fluconazole-susceptible C. albicans strains, but overexpressed in many fluconazole-resistant clinical isolates, resulting in reduced intracellular fluconazole accumulation. The activation of the gene in resistant isolates is caused by mutations in as yet unknown trans-regulatory factors, and the resulting constitutive high level of MDR1 expression causes resistance to other toxic compounds in addition to fluconazole. Disruption of both alleles of the MDR1 gene in resistant C. albicans isolates abolishes their resistance to these drugs, providing genetic evidence that MDR1 mediates multidrug resistance in C. albicans.  相似文献   

3.
4.
Several mechanisms may be associated with Candida albicans resistance to azoles. Ibuprofen was described as being able to revert resistance related to efflux activity in Candida . The aim of this study was to uncover the molecular base of antifungal resistance in C. albicans clinical strains that could be reverted by ibuprofen. Sixty-two clinical isolates and five control strains of C. albicans were studied: the azole susceptibility phenotype was determined according to the Clinical Laboratory for Standards Institute, M27-A2 protocol and minimal inhibitory concentration values were recalculated with ibuprofen (100 μg mL−1); synergistic studies between fluconazole and FK506, a Cdr1p inhibitor, were performed using an agar disk diffusion assay and were compared with ibuprofen results. Gene expression was quantified by real-time PCR, with and without ibuprofen, regarding CDR1 , CDR2 , MDR1 , encoding for efflux pumps, and ERG11 , encoding for azole target protein. A correlation between susceptibility phenotype and resistance gene expression profiles was determined. Ibuprofen and FK506 showed a clear synergistic effect when combined with fluconazole. Resistant isolates reverting to susceptible after incubation with ibuprofen showed CDR1 and CDR2 overexpression especially of the latter. Conversely, strains that did not revert displayed a remarkable increase in ERG11 expression along with CDR genes. Ibuprofen did not alter resistance gene expression significantly ( P >0.05), probably acting as a Cdrp blocker.  相似文献   

5.
Resistance of the pathogenic yeast Candida albicans to the antifungal agent fluconazole is often caused by the overexpression of genes that encode multidrug efflux pumps (CDR1, CDR2, or MDR1). We have undertaken a proteomic approach to gain further insight into the regulatory network controlling efflux pump expression and drug resistance in C. albicans. Three pairs of matched fluconazole-susceptible and resistant clinical C. albicans isolates, in which drug resistance correlated with stable activation of MDR1 or CDR1/2, were analyzed for differences in their protein expression profiles. In two independent, MDR1-overexpressing, strains, additional up-regulated proteins were identified, which are encoded by the YPR127 gene and several members of the IFD (YPL088) gene family. All are putative aldo-keto reductases of unknown function. These proteins were not up-regulated in a fluconazole-resistant strain that overexpressed CDR1 and CDR2 but not MDR1, indicating that expression of the various efflux pumps of C. albicans is controlled by different regulatory networks. To investigate the possible role of YPR127 in the resistance phenotype of the clinical isolates, we constitutively overexpressed the gene in a C. albicans laboratory strain. In addition, the gene was deleted in a C. albicans laboratory strain and in one of the drug-resistant clinical isolates in which it was overexpressed. Neither forced overexpression nor deletion of YPR127 affected the susceptibility of the strains to drugs and other toxic substances, suggesting that the regulatory networks which control the expression of efflux pumps in C. albicans also control genes involved in cellular functions not related to drug resistance.Communicated by D. Y. Thomas  相似文献   

6.
7.
A PCR-based method in combination with a simple, reliable and inexpensive DNA extraction procedure for rapid detection of Candida albicans clinical isolates is described here. The extraction protocol is based on a combination of chemical (NaOH and detergents) and physical (boiling) treatments, thus avoiding many of the problems inherent in the currently available DNA extraction protocols (basically the use of expensive and/or toxic chemical reagents), and may be useful for daily clinical routine. The PCR-based system described here uses a single pair of primers (SC1F and SC1R) deduced from the C. albicans-specific KER1 gene sequence. These primers amplify a 670-bp fragment of the KER1 gene. All the clinical C. albicans isolates generated the expected 670-bp amplicon. Other non-albicans Candida species, including the azole-resistant C. krusei and C. glabrata, and the very closely related C. dubliniensis, failed to amplify any DNA fragment. The PCR results reported here suggest that amplification with SC1F and SC1R primers is species specific and, consequently, may be useful for specifically identifying C. albicans strains.  相似文献   

8.
9.
目的探讨穿心莲内酯联合氟康唑抗耐药白假丝酵母菌作用及其机制。方法采用微量稀释法检测穿心莲内酯(AG)及联合氟康唑(FLC)对耐药白假丝酵母菌的MIC;采用罗丹明6G(Rh6G)检测AG对耐药白假丝酵母菌CDR外排功能的影响;利用罗丹明123评估AG对耐药白假丝酵母菌MDR外排功能的影响:采用二氢罗丹明检测AG单用及联合FLC对耐药白假丝酵母菌活性氧(ROS)的影响;采用实时荧光定量PCR(qRT—PCR)检测AG联合FLC对耐药白假丝酵母菌外排泵相关基因CDR1、CDR2和MDR1表达的影响。结果AG联合FLC抗耐药白假丝酵母菌呈相加作用;AG对CDR外排功能无影响;AG可抑制MDR外排功能;AG联合FLC能显著提高耐药白假丝酵母菌细胞ROS水平;AG与FLC联合作用于耐药白假丝酵母菌可下调CDR1和MDR1的表达量,上调CDR2的表达量。结论AG联合FLC抗耐药白假丝酵母菌具有相加作用,其机制可能与抑制外排泵及相关基因表达,提高胞内ROS水平有关。  相似文献   

10.
Upregulation of the ATP-binding cassette (ABC) transporter genes CDR1 and CDR2 (Candida drug resistance 1 and 2) is a common mechanism observed in Candida albicans clinical isolates developing resistance to the class of azole antifungals. In this work, the regulatory elements of both genes were delimited using a reporter system in an azole-susceptible strain exposed to oestradiol, which allows transient induction of these genes. We found two regulatory elements in the CDR1 promoter: one responsible for basal expression (basal expression element; BEE) and the other required for oestradiol responsiveness (drug-responsive element I; DREI). In the CDR2 promoter, a single regulatory element responsible for oestradiol responsiveness (DREII) was detected. Both DREs shared a consensus of 21 bp with the sequence 5'-CGGA(A/T)ATCGGATATTTTTTTT-3' having no equivalent to known eukaryotic regulatory sequence. Consistent with this finding, two other C. albicans genes identified by a search for the presence of DRE in the C. albicans genome sequence database were responsive to oestradiol. Finally, the regulatory elements found in CDR1 and CDR2 were also functional in an azole-resistant strain with constitutive high expression of both transporters. These results suggest that, although CDR1 and CDR2 upregulation can be obtained by transient drug-induced and constitutive upregulation, these two processes converge to the same regulatory elements and probably mobilize the same trans-acting factors.  相似文献   

11.
目的:了解对氟康唑耐药的白假丝酵母菌主动外排系统及主动外排基因CDR1的表达水平。方法:检测氟康唑敏感性和耐药性白假丝酵母菌对罗丹明6G主动外排情况,筛选出主动外排系统功能增强的菌株;采用Northern blot技术检测主动外排系统功能增强的菌株的CDR1基因的表达。结果:在由葡萄糖提供能量的体系中,5株耐药菌株外排罗丹明6G较敏感菌株明显增加,Northern blot发现其中4株CDR1基因表达水平升高。结论:耐氟康唑白假丝酵母菌主动外排基因CDR1表达升高。  相似文献   

12.
13.
Aspergillus fumigatus is the most frequent causative agent of invasive aspergillosis. Itraconazole became available in 1990 to treat invasive aspergillosis, but instances of resistance have now been described. Drug efflux was a proposed mechanism in one itraconazole resistant clinical isolate (AF72) which accumulates low levels of the drug. Drug efflux in fungi can be mediated by ATP-binding cassette transporter (ABCT) genes, such as CDR1 in Candida albicans. Using a probe derived from CDR1, a gene, atrF, was cloned from A. fumigatus. The atrF gene product (AtrF) is 1547 amino acids long and has characteristic multidrug resistance motifs. Dot blot analysis revealed that AF72 has approximately 5-fold higher levels of atrF mRNA than susceptible isolates AF10 and H06-03 in cultures with sub-minimum inhibitory concentration (sub-MIC) levels of itraconazole. atrF is the first ABCT gene cloned from A. fumigatus, whose overexpression is correlated with itraconazole resistance.  相似文献   

14.
Most screening approaches produce compounds that target survival genes and are likely to generate resistance over time. Simply having more drugs does not address the potential emergence of resistance caused by target mutation, drug efflux pumps over-expression, and so on. There is a great need to explore new strategies to treat fungal infections caused by drug-resistant pathogens. In this study, we found that azole-resistant Candida albicans with CaCDR1 and CaCDR2 over-expression is hypersensitive against amphotericin B (AmB) by our high throughput synergy screening (HTSS). In contrast, Δcdr1 and Δcdr2 knockout strains were resistant to AmB. Moreover, clinical isolates with increased expression of CaCDR1 and CaCDR2 demonstrated susceptibility to AmB, which can also synergize with the efflux pumps inducer fluphenazine (FPZ). Finally, the increased drug susceptibility to AmB in azole-resistant C. albicans with drug efflux pumps over-expression was consistent with the elevated expression of CaERG11 and its associated ergosterols in clinical isolates. Our data implies that the level of ergosterol contents determines the susceptibility to azoles and AmB in C. albicans. Deep understanding of the above mechanisms would offer new hope to treat drug-resistant C. albicans.  相似文献   

15.
The many drugs that are available at present to treat fungal infections can be divided into four broad groups on the basis of their mechanism of action. These antifungal agents either inhibit macromolecule synthesis (flucytosine), impair membrane barrier function (polyenes), inhibit ergosterol synthesis (allylamines, thiocarbamates, azole derivatives, morpholines), or interact with microtubules (griseofulvin). Drug resistance has been identified as the major cause of treatment failure among patients treated with flucytosine. A lesion in the UMP-pyrophosphorylase is the most frequent clinical determinant of resistance to 5FC in Candida albicans. Despite extensive use of polyene antibiotics for more than 30 years, emergence of acquired resistance seems not be a significant clinical problem. Polyene-resistant Candida isolates have a marked decrease in their ergosterol content. Acquired resistance to allylamines has not been reported from human pathogens, but, resistant phenotypes have been reported for variants of Saccharomyces cerevisiae and of Ustilago maydis. Tolerance to morpholines is seldom found. Intrinsic resistance to griseofulvin is due to the absence of a prolonged energy-dependent transport system for this antibiotic. Resistance to azole antifungal agents is known to be exceptional, although it does now appear to be increasing in importance in some groups of patients infected with e.g. Candida spp., Histoplasma capsulatum or Cryptococcus neoformans. For example, resistance to fluconazole is emerging in C. albicans, the major agent of oro-pharyngeal candidosis in AIDS patients, after long-term suppressive therapy. In the majority of cases, primary and secondary resistance to fluconazole and cross-resistance to other azole antifungal agents seems to originate from decreased intracellular accumulation of the azoles, which may result from reduced uptake or increased efflux of the molecules. In most C. albicans isolates the decreased intracellular levels can be correlated with enhanced azole efflux, a phenomenon linked to an increase in the amounts of mRNA of a C. albicans ABC transporter gene CDR1 and of a gene (BEN(r) or CaMDR) coding for a transporter belonging to the class of major facilitator multidrug efflux transporters. Not only fluconazole, ketoconazole and itraconazole are substrates for CDR1, terbinafine and amorolfine have also been established as substrates, BEN(r) overexpression only accounts for fluconazole resistance. Other sources of resistance: changes in membrane sterols and phospholipids, altered or overproduced target enzyme(s) and compensatory mutations in the Delta5,6-desaturase.  相似文献   

16.
Resistance of Candida albicans against the widely used antifungal agent fluconazole is often due to active drug efflux from the cells. In many fluconazole-resistant C. albicans isolates the reduced intracellular drug accumulation correlates with constitutive strong expression of the MDR1 gene, encoding a membrane transport protein of the major facilitator superfamily that is not detectably expressed in vitro in fluconazole-susceptible isolates. To elucidate the molecular changes responsible for MDR1 activation, two pairs of matched fluconazole-susceptible and resistant isolates in which drug resistance coincided with stable MDR1 activation were analyzed. Sequence analysis of the MDR1 regulatory region did not reveal any promoter mutations in the resistant isolates that might account for the altered expression of the gene. To test for a possible involvement of trans-regulatory factors, a GFP reporter gene was placed under the control of the MDR1 promoter from the fluconazole-susceptible C. albicans strain CAI4, which does not express the MDR1 gene in vitro. This MDR1P-GFP fusion was integrated into the genome of the clinical C. albicans isolates with the help of the dominant selection marker MPA(R) developed for the transformation of C. albicans wild-type strains. Integration was targeted to an ectopic locus such that no recombination between the heterologous and resident MDR1 promoters occurred. The transformants of the two resistant isolates exhibited a fluorescent phenotype, whereas transformants of the corresponding susceptible isolates did not express the GFP gene. These results demonstrate that the MDR1 promoter was activated by a trans-regulatory factor that was mutated in fluconazole-resistant isolates, resulting in deregulated, constitutive MDR1 expression.  相似文献   

17.
18.
19.
New 1-[2-azido-2-(2,4-dichlorophenyl)ethyl]-1H/-imidazole were synthesized by nucleophilic substitution of various tertiary alcohols with azide anion in presence of boron trifluoride-diethyl etherate. Their antifungal activity was evaluated against Candida albicans, Candida glabrata, Aspergillus fumigatus and an azole-resistant petite mutant of C. glabrata. Preliminary SAR results are discussed.  相似文献   

20.
Resistance of the pathogenic yeast Candida albicans to the antifungal agent fluconazole is often caused by active drug efflux out of the cells. In clinical C. albicans strains, fluconazole resistance frequently correlates with constitutive activation of the MDR1 gene, encoding a membrane transport protein of the major facilitator superfamily that is not expressed detectably in fluconazole-susceptible isolates. However, the molecular changes causing MDR1 activation have not yet been elucidated, and direct proof for MDR1 expression being the cause of drug resistance in clinical C. albicans strains is lacking as a result of difficulties in the genetic manipulation of C. albicans wild-type strains. We have developed a new strategy for sequential gene disruption in C. albicans wild-type strains that is based on the repeated use of a dominant selection marker conferring resistance against mycophenolic acid upon transformants and its subsequent excision from the genome by FLP-mediated, site-specific recombination (MPAR-flipping). This mutagenesis strategy was used to generate homozygous mdr1/mdr1 mutants from two fluconazole-resistant clinical C. albicans isolates in which drug resistance correlated with stable, constitutive MDR1 activation. In both cases, disruption of the MDR1 gene resulted in enhanced susceptibility of the mutants against fluconazole, providing the first direct genetic proof that MDR1 mediates fluconazole resistance in clinical C. albicans strains. The new gene disruption strategy allows the generation of specific knock-out mutations in any C. albicans wild-type strain and therefore opens completely novel approaches for studying this most important human pathogenic fungus at the molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号