首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Abstract— In this study we demonstrate that a 51-kDa phosphoprotein, previously identified as morphine regulated and showing different basal levels among rat strains, is glial fibrillary acidic protein (GFAP). Chronic morphine increased levels of GFAP immunoreactivity by >70% in the ventral tegmental area (VTA) of outbred Sprague-Dawley rats. This increase in GFAP content was not observed in rats that were treated concomitantly with morphine and naltrexone, an opiate receptor antagonist, and did not occur in response to a single acute injection with morphine. No alterations in GFAP levels were observed in response to chronic morphine in several other regions of the CNS studied, including the substantia nigra, locus coeruleus, cerebral cortex, and spinal cord. There were also inherent differences in levels of GFAP immunoreactivity in the VTA of drug-naive Fischer 344 and Lewis rats, two inbred rat strains that differ in their relative preference for morphine and other drugs of abuse. The VTA of drug-naive Lewis rats contained more than twofold higher levels of GFAP compared with drug-naive Fischer rats. This strain difference was also apparent in the locus coeruleus but not in several other brain regions or in spinal cord. Because the mesolimbic dopamine system is thought to play a critical role in mediating the reinforcing properties of opiates and other drugs of abuse, it is possible that the opiate induction of GFAP and inherent Lewis versus Fischer strain differences in GFAP levels in the VTA may be related to the reinforcing and/or addictive properties of opiates mediated by this brain region, as well as to genetic differences in drug preference.  相似文献   

2.
Fischer rat airway smooth muscle (ASM) models two potential risk factors for asthma: hyperresponsiveness to contractile agonists and to growth stimuli. The aim of this study was to identify the mechanisms responsible for enhanced ASM mitogenic response in Fischer rats compared with the control Lewis strain. The enhanced Fischer ASM cell growth response to fetal bovine serum (FBS) could not be accounted for by phospholipase C, mitogen-activated protein kinases, or tyrosine kinase activities as assessed by pharmacological inhibition and Western blotting. In contrast, depletion of phorbol ester-sensitive isoforms of the serine/threonine kinase protein kinase C (PKC) removed the difference in growth response between the rat strains. Additionally, FBS selectively induced serine/threonine phosphorylation of a 115-kDa protein in Fischer ASM cells. Enhanced activation of PKC-betaI and decreased activation of PKC-delta in Fischer compared with Lewis cells following FBS stimulation were suggested by Western blotting of membrane and cytosolic fractions. The data are consistent with a role for PKC in the enhanced ASM cell growth of hyperresponsive rats.  相似文献   

3.
Studies have shown a greater preference for the self-administration of drugs such as nicotine and cocaine in the Lewis rat strain than in the Fischer 344 strain. We examined some factors that could contribute to such a difference. The baseline level of extracellular dopamine in nucleus accumbens shell was about 3-times higher in Fischer rats than in Lewis rats (3.18 ± 0.26 vs. 1.09 ± 0.14 pg/sample). Nicotine (50-100 g/kg)-induced release of dopamine, expressed in absolute terms, was similar in the two strains. Dopamine release expressed in relative terms (as percent of baseline), however, was significantly greater in Lewis rats than in Fischer rats at 30 min after the first nicotine injection. We suggest that the relative increase is of more influence than the absolute level for determining preference; a lower physiological extracellular dopamine level thus represent a risk factor for increased preference. Amphetamine-induced dopamine release expressed in relative terms was not greater in the Lewis strain. In the initial time period of the microdialysis experiments, a sharper peak in nicotine-induced accumbal dopamine release in Lewis and a less but more sustained release in Fischer rats was observed. This release pattern paralleled the faster clearance of nicotine from blood of Lewis compared to Fischer rats. In tissue slices the electrically induced dopamine release was highest in the nucleus accumbens and lowest in the ventral tegmentum. A significant effect of nicotine was lowering the electrically induced release of dopamine in frontal cortex slices from Fischer brain and increasing this dopamine release in the ventral tegmentum of Lewis brain slices indicating that the ventral tegmentum, an area controlling dopamine release in the accumbens, is more responsive to nicotine in the Lewis rat. Nicotine levels tended to be more sustained in Fischer rats in different brain regions, although the difference in nicotine levels between the strains was not significant at any time period. Several factors contribute to nicotine preference, including the endogenous dopamine level, and the sensitivity of ventral tegmentum neurons to nicotine-induced dopamine release. Strain differences in pharmacokinetics of nicotine may also play a role.  相似文献   

4.
Social buffering is a phenomenon in which stress in an animal is ameliorated when the subject is accompanied by a conspecific animal(s) during exposure to distressing stimuli. We previously reported that in male Wistar rats, the presence of another Wistar rat mitigates conditioned fear responses to an auditory conditioned stimulus (CS). Subsequent analyses revealed several characteristics of this social buffering of conditioned fear responses. However, information regarding the specificity of accompanying conspecifics is still limited. In the present study, we assessed whether rats of other strains could induce social buffering in Wistar rats. When a fear-conditioned Wistar subject was re-exposed to the CS alone, we observed increased freezing and decreased investigation and walking, as well as elevated corticosterone levels. The presence of a Wistar, Sprague–Dawley, or Long–Evans rat blocked these responses, suggesting that social buffering was induced by these strains of rats. In contrast, a Fischer 344 rat did not induce social buffering in the Wistar subject. We further found that an inbred Lewis rat induced social buffering whereas a Brown Norway rat, a strain that has been established independently from Wistar rats, did not. These results suggest that the difference in origin, rather than the inbred or outbred status of the associate rat, seemed to account for the lack of social buffering induced by the F344 rats. Based on these findings, we conclude that strains of an accompanying conspecific can affect the efficacy of social buffering in rats.  相似文献   

5.
Mitochondrial inclusion bodies are often described in skeletal muscle of patients suffering diseases termed mitochondrial myopathies. A major component of these structures was discovered as being creatine kinase. Similar creatine kinase enriched inclusion bodies in the mitochondria of creatine depleted adult rat cardiomyocytes have been demonstrated. Structurally similar inclusion bodies are observed in mitochondria of ischemic and creatine depleted rat skeletal muscle. This paper describes the various methods for inducing mitochondrial inclusion bodies in rodent skeletal muscle, and compares their effects on muscle metabolism to the metabolic defects of mitochondrial myopathy muscle. We fed rats with a creatine analogue guanidino propionic acid and checked their soled for mitochondrial inclusion bodies, with the electron microscope. The activity of creatine kinase was analysed by measuring creatine stimulated oxidative phosphorylation in soleus skinned fibres using an oxygen electrode . The guanidino propionic acid-rat soleus mitochondria displayed no creatine stimulation, whereas control soleus did, even though the GPA soled had a five fold increase in creatine kinase protein per mitochondrial protein. The significance of these results in light of their relevance to human mitochondrial myopathies and the importance of altered muscle metabolism in the formation of these crystalline structures are discussed. (Mol Cell Biochem 174: 283–289, 1997)  相似文献   

6.
Cardiovascular disease (CVD) is the leading cause of mortality worldwide. Moreover, sex and age are considered major risk factors in the development of CVDs. Mitochondria are vital for normal cardiac function, and regulation of mitochondrial structure and function may impact susceptibility to CVD. To identify potential role of mitochondria in sex-related differences in susceptibility to CVD, we analyzed the basal expression levels of mitochondria-related genes in the hearts of male and female rats. Whole genome expression profiling was performed in the hearts of young (8-week), adult (21-week), and old (78-week) male and female Fischer 344 rats and the expression of 670 unique genes related to various mitochondrial functions was analyzed. A significant (p<0.05) sexual dimorphism in expression levels of 46, 114, and 41 genes was observed in young, adult and old rats, respectively. Gene Ontology analysis revealed the influence of sex on various biological pathways related to cardiac energy metabolism at different ages. The expression of genes involved in fatty acid metabolism was significantly different between the sexes in young and adult rat hearts. Adult male rats also showed higher expression of genes associated with the pyruvate dehydrogenase complex compared to females. In young and adult hearts, sexual dimorphism was not noted in genes encoding oxidative phosphorylation. In old rats, however, a majority of genes involved in oxidative phosphorylation had higher expression in females compared to males. Such basal differences between the sexes in cardiac expression of genes associated with energy metabolism may indicate a likely involvement of mitochondria in susceptibility to CVDs. In addition, female rats showed lower expression levels of apoptotic genes in hearts compared to males at all ages, which may have implications for better preservation of cardiac mass in females than in males.  相似文献   

7.
Circulating plasma ACTH and corticosterone levels were measured in spontaneously hypertensive rats (SHR) and the corresponding, normotensive Wistar-Kyoto (WKY) strain at 10 and 20 days of age. In addition, stored levels of ACTH were measured in the pituitary glands of these animals. Circulating corticosterone levels were significantly lower, in both strains, at 10 days than at 20 days. Although the glucocorticoid was undetectable in WKY animals at 10 days, significant levels were observed in age-matched SHR. No difference in corticosterone concentrations was observed between the two strains at 20 days. Circulating ACTH levels did not reflect the values for circulating glucocorticoids. There were no significant differences in the levels of ACTH between strains or between age groups. Moreover, pituitary stores of ACTH between animals of different strains and ages were not found to be significantly different among any of the groups tested. These results demonstrate that there is a difference in circulating corticosterone levels between spontaneously hypertensive and Wistar-Kyoto rats at 10 days postnatally which is not evident just prior to weaning (20 days). This difference is not due to variations in stored or circulating ACTH. Indeed, ACTH levels are high at a time (10 days) when corticosterone is low - thus suggesting that the difference may reside within the responsiveness of the adrenal cortex.  相似文献   

8.
目的:观察一次性力竭运动后大鼠脑、心、骨骼肌组织和线粒体中PHB1含量的变化及对大鼠线粒体功能的影响,探寻PHB1与线粒体功能和能量代谢的关系。方法:健康雄性SD大鼠40只,随机分为2组(n=20):对照组和一次性力竭运动组,大鼠进行一次性急性跑台运动建立力竭运动模型。收集各组大鼠的心、脑和骨骼肌组织样品并提取线粒体,检测其呼吸功能和ROS的变化。用Western blot方法检测组织和线粒体中PHB1蛋白表达水平;用分光光度计检测各器官中ATP含量以及线粒体中复合体V活性(ATP合酶活性)。结果:①一次性力竭运动后脑、心肌、骨骼肌中ATP含量显著性降低;②一次性力竭运动后脑、心肌、骨骼肌线粒体中复合体V活性、RCR、ROS显著性降低,ST4均显著性升高,ST3无显著性差异。③一次性力竭运动后心、脑、骨骼肌线粒体中PHB1的表达显著性减少。④通过相关性分析得出:一次性力竭运动后心、脑、骨骼肌中ATP含量与心、脑、骨骼肌中复合体V活性呈正相关;心、脑、骨骼肌中ATP含量和心、脑骨骼肌中PHB1的表达呈正相关。结论:一次性力竭运动后,降低线粒体氧化磷酸化功能,使大鼠脑、骨骼肌线粒体内ROS生成增加,PHB1的表达、ATP含量和复合体V活性均下降。一次性力竭运动使得大鼠线粒体内PHB1表达降低,线粒体功能减弱,机体能量代谢降低。  相似文献   

9.
During the aging process, an accumulation of non-heme iron disrupts cellular homeostasis and contributes to the mitochondrial dysfunction typical of various neuromuscular degenerative diseases. Few studies have investigated the effects of iron accumulation on mitochondrial integrity and function in skeletal muscle and liver tissue. Thus, we isolated liver mitochondria (LM), as well as quadriceps-derived subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM), from male Fischer 344 x Brown Norway rats at 8, 18, 29 and 37 months of age. Non-heme iron content in SSM, IFM and LM was significantly higher with age, reaching a maximum at 37 months of age. The mitochondrial permeability transition pore (mPTP) was more susceptible to the opening in aged mitochondria containing high levels of iron (i.e. SSM and LM) compared to IFM. Furthermore, mitochondrial RNA oxidation increased significantly with age in SSM and LM, but not in IFM. Levels of mitochondrial RNA oxidation in SSM and LM correlated positively with levels of mitochondrial iron, whereas a significant negative correlation was observed between the maximum Ca(2+) amounts needed to induce mPTP opening and iron contents in SSM, IFM and LM. Overall, our data suggest that age-dependent accumulation of mitochondrial iron may increase mitochondrial dysfunction and oxidative damage,thereby enhancing the susceptibility to apoptosis.  相似文献   

10.
We have previously demonstrated that susceptibility of the Lewis rat to inflammatory disease, compared with the relatively resistant Fischer F344/N rat, is related to a hyporesponsive hypothalamopituitary-adrenal axis to inflammatory and other stress mediators. Because serotonin (5-HT) and the 5-HT1A receptor are important stimulators of this axis, we have investigated the levels of 8-[3H]-hydroxy-2,3-(di-n-propylamino)tetralin binding sites, 5-HT1A mRNA, 5-HT, and 5-hydroxyindoleacetic acid in various brain regions of Lewis, outbred Harlan Sprague Dawley, and Fischer F344/N rats. Lewis rats expressed significantly fewer hippocampal and frontal cortical 8-[3H]-hydroxy-2,3-(di-n-propylamino)tetralin binding sites and less 5-HT1A mRNA than Harlan Sprague Dawley and Fischer F344/N rats. Adrenalectomy increased the number of 8-[3H]hydroxy-2,3-(di-n-propylamino)tetralin binding sites and 5-HT1A mRNA expression in the hippocampus of all three strains. Levels of hippocampal 5-HT in Fischer F344/N rats were significantly greater than levels detected in the same regions from Lewis and Harlan Sprague Dawley rats. Hypothalamic 5-HT and 5-hydroxyindoleacetic acid levels in Harlan Sprague Dawley rats were higher than the same area from the other two strains. Adrenalectomy increased the levels of 5-hydroxyindoleacetic acid in the hypothalamus of all three strains. We conclude that hippocampal 5-HT1A receptor densities and 5-HT levels in the rat parallel the activity and responsiveness of the hypothalamopituitary-adrenal axis.  相似文献   

11.
The goal of the present study was to discern the cellular mechanism(s) that contributes to the age-associated decrease in skeletal muscle aerobic capacity. Skeletal muscle mitochondrial content, a parameter of oxidative capacity, was significantly lower (25 and 20% calculated on the basis of citrate synthase and succinate dehydrogenase activities, respectively) in 24-mo-old Fischer 344 rats compared with 6-mo-old adult rats. Mitochondria isolated from skeletal muscle of both age groups had identical state 3 (ADP-stimulated) and ADP-stimulated maximal respiratory rates and phosphorylation potential (ADP-to-O ratios) with both nonlipid and lipid substrates. In contrast, mitochondria from 24-mo-old rats displayed significantly lower state 4 (ADP-limited) respiratory rates and, consequently, higher respiratory control ratios. Consistent with the tighter coupling, there was a 68% reduction in uncoupling protein-3 (UCP-3) abundance in mitochondria from elderly compared with adult rats. Congruent with the respiratory studies, there was no age-associated decrease in carnitine palmitoyltransferase I and carnitine palmitoyltransferase II activities in isolated skeletal muscle mitochondria. However, there was a small, significant decrease in tissue total carnitine content. It is concluded that the in vivo observed decrease in skeletal muscle aerobic capacity with advanced age is a consequence of the decreased mitochondrial density. On the basis of the dramatic reduction of UCP-3 content associated with decreased state 4 respiration of skeletal muscle mitochondria from elderly rats, we propose that an increased free radical production might contribute to the metabolic compromise in aging.  相似文献   

12.
Acute effects of free fatty acids (FFA) were investigated on: (1) glucose oxidation, and UCP-2 and -3 mRNA and protein levels in 1 h incubated rat soleus and extensor digitorium longus (EDL) muscles, (2) mitochondrial membrane potential in cultured skeletal muscle cells, (3) respiratory activity and transmembrane electrical potential in mitochondria isolated from rat skeletal muscle, and (4) oxygen consumption by anesthetized rats. Long-chain FFA increased both basal and insulin-stimulated glucose oxidation in incubated rat soleus and EDL muscles and reduced mitochondrial membrane potential in C2C12 myotubes and rat skeletal muscle cells. Caprylic, palmitic, oleic, and linoleic acid increased O(2) consumption and decreased electrical membrane potential in isolated mitochondria from rat skeletal muscles. FFA did not alter UCP-2 and -3 mRNA and protein levels in rat soleus and EDL muscles. Palmitic acid increased oxygen consumption by anesthetized rats. These results suggest that long-chain FFA acutely lead to mitochondrial uncoupling in skeletal muscle.  相似文献   

13.
1. The aim of this study was to compare the effects of acute amphetamine (AMPH) treatment and restraint stress on plasma level of prolactin (PRL) and PRL mRNA expression in the adenohypophysis in Sprague–Dawley and Lewis male rats, the latter known to have a deficient hypothalamo–pituitary-adrenal (HPA) axis.2. Both restraint stress and AMPH treatment (i.p. in a dose of 8 mg/kg of b.w.) were applied 15 or 30 min before termination of the experiment. Plasma PRL and corticosterone (CORT) were determined by radioimmunoassay. PRL mRNA expression was estimated by a dot-blot hybridization.3. Restraint stress and AMPH treatment induced a significant increase in theCORT plasma level, as an indicator of stress response. Compared to Sprague–Dawley rats, the magnitude of CORT increase after both stimuli was significantly lower in Lewis rats.4. Although restraint stress significantly increased the PRL plasma levels in both rat strains, AMPH treatment reduced the PRL levels in both rat strains. However, the changes of PRL plasma levels had another pattern in Lewis rats than in Sprague–Dawley rats. Control plasma PRL levels were significantly higher in Lewis rats, and in this rat strain AMPH treatment for 30 min increased the PRL levels as compared to the values obtained after AMPH treatment for 15 min.5. Expression of PRL mRNA in adenohypophysis by restraint stress and AMPH treatment had a similar pattern. After a 15-min lasting restraint stress, the expression of PRL mRNA was decreased insignificantly in both rat strains. AMPH treatment induced in Sprague–Dawley rats a significant decrease of PRL mRNA after a 15-min interval while after 30 min there was a significant increase. However, in Lewis rats AMPH failed to significantly change PRL mRNA.6. The results from the present study indicate that the mechanisms mediatingthe effects of acute restraint stress and acute AMPH treatment differ in PRL response in Sprague–Dawley and Lewis male rat strains. Differences in the observed responses in Lewis rats could be related to the deficient activity of HPA axis in this rat strain.  相似文献   

14.
Acute effects of free fatty acids (FFA) were investigated on: (1) glucose oxidation, and UCP-2 and -3 mRNA and protein levels in 1 h incubated rat soleus and extensor digitorium longus (EDL) muscles, (2) mitochondrial membrane potential in cultured skeletal muscle cells, (3) respiratory activity and transmembrane electrical potential in mitochondria isolated from rat skeletal muscle, and (4) oxygen consumption by anesthetized rats. Long-chain FFA increased both basal and insulin-stimulated glucose oxidation in incubated rat soleus and EDL muscles and reduced mitochondrial membrane potential in C2C12 myotubes and rat skeletal muscle cells. Caprylic, palmitic, oleic, and linoleic acid increased O2 consumption and decreased electrical membrane potential in isolated mitochondria from rat skeletal muscles. FFA did not alter UCP-2 and -3 mRNA and protein levels in rat soleus and EDL muscles. Palmitic acid increased oxygen consumption by anesthetized rats. These results suggest that long-chain FFA acutely lead to mitochondrial uncoupling in skeletal muscle.  相似文献   

15.
Aversive stressful experiences are typically associated with increased anxiety and a predisposition to develop mood disorders. Negative stress also suppresses adult neurogenesis and restricts dendritic architecture in the hippocampus, a brain region associated with anxiety regulation. The effects of aversive stress on hippocampal structure and function have been linked to stress-induced elevations in glucocorticoids. Normalizing corticosterone levels prevents some of the deleterious consequences of stress, including increased anxiety and suppressed structural plasticity in the hippocampus. Here we examined whether a rewarding stressor, namely sexual experience, also adversely affects hippocampal structure and function in adult rats. Adult male rats were exposed to a sexually-receptive female once (acute) or once daily for 14 consecutive days (chronic) and levels of circulating glucocorticoids were measured. Separate cohorts of sexually experienced rats were injected with the thymidine analog bromodeoxyuridine in order to measure cell proliferation and neurogenesis in the hippocampus. In addition, brains were processed using Golgi impregnation to assess the effects of sexual experience on dendritic spines and dendritic complexity in the hippocampus. Finally, to evaluate whether sexual experience alters hippocampal function, rats were tested on two tests of anxiety-like behavior: novelty suppressed feeding and the elevated plus maze. We found that acute sexual experience increased circulating corticosterone levels and the number of new neurons in the hippocampus. Chronic sexual experience no longer produced an increase in corticosterone levels but continued to promote adult neurogenesis and stimulate the growth of dendritic spines and dendritic architecture. Chronic sexual experience also reduced anxiety-like behavior. These findings suggest that a rewarding experience not only buffers against the deleterious actions of early elevated glucocorticoids but actually promotes neuronal growth and reduces anxiety.  相似文献   

16.
The most studied comparison of aging and maximum lifespan potential (MLSP) among endotherms involves the 7-fold longevity difference between rats (MLSP 5y) and pigeons (MLSP 35y). A widely accepted theory explaining MLSP differences between species is the oxidative stress theory, which purports that reactive oxygen species (ROS) produced during mitochondrial respiration damage bio-molecules and eventually lead to the breakdown of regulatory systems and consequent death. Previous rat-pigeon studies compared only aspects of the oxidative stress theory and most concluded that the lower mitochondrial superoxide production of pigeons compared to rats was responsible for their much greater longevity. This conclusion is based mainly on data from one tissue (the heart) using one mitochondrial substrate (succinate). Studies on heart mitochondria using pyruvate as a mitochondrial substrate gave contradictory results. We believe the conclusion that birds produce less mitochondrial superoxide than mammals is unwarranted. We have revisited the rat-pigeon comparison in the most comprehensive manner to date. We have measured superoxide production (by heart, skeletal muscle and liver mitochondria), five different antioxidants in plasma, three tissues and mitochondria, membrane fatty acid composition (in seven tissues and three mitochondria), and biomarkers of oxidative damage. The only substantial and consistent difference that we have observed between rats and pigeons is their membrane fatty acid composition, with rats having membranes that are more susceptible to damage. This suggests that, although there was no difference in superoxide production, there is likely a much greater production of lipid-based ROS in the rat. We conclude that the differences in superoxide production reported previously were due to the arbitrary selection of heart muscle to source mitochondria and the provision of succinate. Had mitochondria been harvested from other tissues or other relevant mitochondrial metabolic substrates been used, then very different conclusions regarding differences in oxidative stress would have been reached.  相似文献   

17.
The muscle anabolic/anti-catabolic activity of the androgenic steroids testosterone and trenbolone was studied in rats to investigate whether such steroids act as agonists via muscle androgen receptors, or as antagonists that oppose the catabolic effects of endogenous glucocorticoids via their interaction with muscle glucocorticoid receptors. For comparison, the effects of the potent glucocorticoid antagonist RU486 were also examined. The parameters measured included growth rate, muscle weight, serum growth hormone and corticosterone levels, and receptor binding parameters in muscle cytosol. Females responded better than males to anabolic treatment with the androgenic steroids. Ovariectomy or adrenalectomy abolished this response. Neither the sex difference nor the requirement for ovaries or adrenals could be explained in terms of muscle receptor parameters or serum growth hormone levels. The muscle anabolic activity of androgenic steroids was restored when castrated males were treated with oestradiol and when adrenalectomized females were treated with corticosterone. RU486 also prevented the catabolic/anti-anabolic activity of exogenous corticosterone in adrenalectomized rats. Testosterone and RU486 behaved as anti-glucocorticoids in vivo since they inhibited glucocorticoid-induced liver tyrosine aminotransferase activity. The results suggest that anabolic steroids can act via muscle glucocorticoid receptors, thereby antagonizing the catabolic activity of endogenous glucocorticoids, rather than via muscle androgen receptors.  相似文献   

18.
Bauco P  Rompré PP 《Peptides》2003,24(8):1189-1194
Neurotensin (NT) produces behavioral and physiological effects, including analgesia and hypotheria, when administered into the CNS. Fischer and Lewis rats exhibit differential behavioral responses to central NT receptor activation. To further characterize these differences, we assessed central NT-induced analgesia and hypothermia in independent groups of rats from each strain. Fischer and Lewis rats showed a similar dose-orderly analgesic response in a hot-plate test. Such an isosensitivity was not observed for NT-induced hypothermia. Although NT produced a dose-orderly decrease in mean rectal temperature in both strains, the magnitude of the hypothermic response was significantly smaller in Fischer than in Lewis rats. These findings provide further evidence of genetic differences in central neurotensinergeric neurotransmission in these two strains.  相似文献   

19.
A novel peptide antibody to UCP 3 is characterized which is sensitive and discriminatory for UCP 3 over UCP 2, UCP 1 and other mitochondrial transporters. The peptide antibody detects UCP 3 expression in E. coli, COS cells and yeast expression systems. The peptide antibody detects a single ∼33 kDa protein band in mitochondria from isolated rat skeletal muscle, mouse and rat brown adipose tissue, and in whole muscle groups (soleus and extensor digitorum longus) from mice. No 33 kDa band is detectable in isolated mitochondria from liver, heart, brain, kidney and lungs of rats, or gastrocnemius mitochondria from UCP 3 knock-out mice. From our data, we conclude that the peptide antibody is detecting UCP 3 in skeletal muscle, skeletal muscle mitochondria and brown adipose tissue mitochondria. It is also noteworthy that the peptide antibody can detect human, mouse and rat forms of UCP 3. Using the UCP 3 peptide antibody, we confirm and quantify the increased (2.8-fold) UCP 3 expression observed in skeletal muscle mitochondria isolated from 48-h-starved rats. We show that UCP 3 expression is increased (1.6-fold) in skeletal muscle of rats acclimated over 8 weeks to 8 °C and that UCP 3 expression is decreased (1.4-fold) in rats acclimated to 30 °C. Furthermore, UCP 3 expression is increased (2.3-fold) in skeletal muscle from hyperthyroid rats compared to euthyroid controls. In addition, we show that UCP 3 expression is only coincident with the mitochondrial fraction of skeletal muscle homogenates and not peroxisomal, nuclear or cytosolic and microsomal fractions.  相似文献   

20.
Variable durations of food restriction (FR; lasting weeks to years) and variable FR intensities are applied to animals in life span-prolonging studies. A reduction in mitochondrial proton leak is suggested as a putative mechanism linking such diet interventions and aging retardation. Early mechanisms of mitochondrial metabolic adaptation induced by FR remain unclear. We investigated the influence of different degrees of FR over 3 days on mitochondrial proton leak and mitochondrial energy metabolism in rat hindlimb skeletal muscle. Animals underwent 25, 50, and 75% and total FR compared with control rats. Proton leak kinetics and mitochondrial functions were investigated in two mitochondrial subpopulations, intermyofibrillar (IMF) and subsarcolemmal (SSM) mitochondria. Regardless of the degree of restriction, skeletal muscle mass was not affected by 3 days of FR. Mitochondrial basal proton conductance was significantly decreased in 50% restricted rats in both mitochondrial subpopulations (46 and 40% for IMF and SSM, respectively) but was unaffected in other groups compared with controls. State 3 and uncoupled state 3 respiration rates were decreased in SSM mitochondria only for 50% restricted rats when pyruvate + malate was used as substrate (-34.5 and -38.9% compared with controls, P < 0.05). IMF mitochondria respiratory rates remained unchanged. Three days of FR, particularly at 50% FR, were sufficient to lower mitochondria energetic metabolism in both mitochondrial populations. Our study highlights an early step in mitochondrial adaptation to FR and the influence of the severity of restriction on this adaptation. This step may be involved in an aging-retardation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号