首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sindbis virus-infected baby hamster kidney cells were analyzed by thin section fracture-label. Specific immunolabel with antiviral glycoprotein antibodies or with conventional lectin label (wheat germ agglutinin) were used in conjunction with colloidal gold-conjugated protein A or ovomucoid, respectively. In addition, intact infected cells were analyzed with both labeling procedures. Experiments with Sindbis infected-chick embryo fibroblast cells were carried out as controls. Viral transmembrane glycoproteins appeared present in freeze-fractured inner and outer nuclear membrane, endoplasmic reticulum, Golgi stacks and vesicles, and plasma membranes; a clear preferential partition with the exoplasmic faces of all intracellular membranes was observed. By contrast, at the plasma membrane level, Sindbis glycoproteins were found to partition preferentially with the protoplasmic face. It seems likely that this protoplasmic partition is related to the binding with the nucleocapsid that takes place during the budding of the virus. At the cell surface, viral glycoproteins always appeared clustered and were predominantly associated with budding figures: moreover, large portions of the plasma membrane were devoid of both glycoproteins and budding viruses.  相似文献   

2.
Epstein-Barr virus-producing cells were used as a model to analyze, with a fracture-immunolabel technique, the distribution, behavior on fracture, and extent of glycosylation of viral transmembrane glycoproteins at the inner nuclear membrane. Surface and fracture immunolabeling with two monoclonal antibodies directed against the carbohydrate or polypeptide portions of the major viral envelope glycoproteins gp350/220 showed the following. (i) The glycoproteins present on the inner and outer nuclear membranes were labeled only with the monoclonal antibody directed against the polypeptide chain, whereas over the surface of virus-producing cells and on mature virions the labeling was dense and uniformly distributed with both monoclonal antibodies. (ii) The glycoproteins were nonuniformly distributed only over the inner nuclear membranes; at the sites of viral budding, the glycoproteins showed a preferential partition with the protoplasmic face. Since fully glycosylated glycoproteins were not present on the nuclear membranes, our observations support the proposed model of herpesvirus maturation. The peculiar distribution and partition on fracture of the envelope glycoproteins on the inner nuclear membrane are similar to those of Sindbis virus envelope glycoproteins on the plasma membrane of infected cells. Therefore, our results suggest that inner nuclear membranes may behave like plasma membranes during viral assembly.  相似文献   

3.
Sindbis virus-infected baby hamster kidney (BHK) cells were analyzed by thin section fracture-label. Specific immunolabel with antiviral glycoprotein antibodies was used in conjunction with colloidal gold-conjugated protein A. As we previously reported (Torrisi, M. R., and S. Bonatti, 1985, J. Cell Biol., 101:1300-1306), Sindbis transmembrane glycoproteins are present in the inner nuclear membrane as well as in the outer nuclear membrane, endoplasmic reticulum, Golgi stacks and vesicles, and plasma membranes. Viral glycoproteins located on the inner nuclear membrane resemble those present on the outer membrane in terms of amount, distribution, and preferential partition after fracture. We show in this paper that Sindbis glycoproteins after treatment with cycloheximide are removed from the inner nuclear membrane with the same kinetics as their counterparts present on the outer membrane. This finding strongly suggests that newly synthesized transmembrane glycoproteins may freely diffuse to and from the inner nuclear membrane before entering into the intracellular transport pathway to the plasma membrane.  相似文献   

4.
Polycaryocyte formation mediated by Sindbis virus glycoproteins.   总被引:13,自引:10,他引:3       下载免费PDF全文
E Mann  J Edwards    D T Brown 《Journal of virology》1983,45(3):1083-1089
The process of cell fusion mediated by Sindbis virus membrane proteins synthesized after infection was examined. At the times after infection at which virus proteins were detectable on the cell surface, Sindbis virus-infected BHK-21 cells were found to express a fusion function after brief treatment at acid pH. In studies employing wild-type virus and temperature-sensitive mutants and testing drug or protease inhibition of virus production, we made the following observations on Sindbis virus-mediated fusion from within. (i) Fusion requires the synthesis of virus glycoproteins and their transport to the cell surface. (ii) Modification of the cell plasma membrane by polypeptides PE2 and E1 alone is not sufficient for expression of the fusion function. (iii) The proteolytic conversion of plasma membrane-associated PE2 to E2 is not essential for fusion. (iv) Glycosylation of virus plasma membrane proteins is essential for fusion. (v) The lesions of Sindbis virus temperature-sensitive mutants do not affect their ability to fuse cells.  相似文献   

5.
Freeze-etch electron microscope studies of the morphogenesis and morphology of Sindbis virus confirmed results obtained by other workers employing thin-sectioning techniques. The 68-nm virion was found to have a nucleocapsid 36 nm in diameter surrounded by a double-layered, unit membrane. The membranous envelope is acquired as the capsid buds through the plasma membrane of the infected cell. The freeze-etch technique also provided the following new information. (i) At any one time, budding occurs in patches rather than evenly over the cell surface. (ii) The nucleocapsid is composed of capsomers 7 nm in diameter. (iii) The capsid interacts strongly with the membrane, both prior to budding and after maturation. (iv) The 7- to 10-nm particles characteristic of the internal faces of plasma membranes, which presumably represent host membrane proteins, are present in early stages of budding but disappear as morphogenesis progresses. (v) Fusion of the cell membrane at the base of the budding virion is a two-step process; the inner leaflet fuses into a sphere before the outer one. (vi) The outer surface of the viral envelope is covered with 4-nm subunits with a center-to-center spacing of 6 nm.  相似文献   

6.
Infection of BHK cells by Sindbis virus leads to rapid inhibition of host cell protein synthesis and cytopathic effects (CPE). We have been studying these events to determine whether the expression of a specific viral gene is required and, in the present study, have focused our attention on the role of the structural proteins--the capsid protein and the two membrane glycoproteins. We tested a variety of Sindbis viruses and Sindbis virus replicons (virus particles containing an RNA that is self-replicating but with some or all of the viral structural protein genes deleted) for their abilities to inhibit host cell protein synthesis and cause CPE in infected BHK cells. Our results show that shutoff of host cell protein synthesis occurred in infected BHK cells when no viral structural proteins were synthesized and also under conditions in which the level of the viral subgenomic RNA was too low to be detected. These results support the conclusion that the early steps in viral gene expression are the ones required for the inhibition of host cell protein synthesis in BHK cells. In contrast, the Sindbis viruses and Sindbis virus replicons were clearly distinguished by the time at which CPE became evident. Viruses that synthesized high levels of the two membrane glycoproteins on the surface of the infected cells caused a rapid (12 to 16 h postinfection) appearance of CPE, and those that did not synthesize the glycoprotein spikes showed delayed (30 to 40 h) CPE.  相似文献   

7.
Efficient assembly of enveloped viruses at the plasma membranes of virus-infected cells requires coordination between cytosolic viral components and viral integral membrane glycoproteins. As viral glycoprotein cytoplasmic domains may play a role in this coordination, we have investigated the importance of the hemagglutinin-neuraminidase (HN) protein cytoplasmic domain in the assembly of the nonsegmented negative-strand RNA paramyxovirus simian virus 5 (SV5). By using reverse genetics, recombinant viruses which contain HN with truncated cytoplasmic tails were generated. These viruses were shown to be replication impaired, as judged by small plaque size, reduced replication rate, and low maximum titers when compared to those features of wild-type (wt) SV5. Release of progeny virus particles from cells infected with HN cytoplasmic-tail-truncated viruses was inefficient compared to that of wt virus, but syncytium formation was enhanced. Furthermore, accumulation of viral proteins at presumptive budding sites on the plasma membranes of infected cells was prevented by HN cytoplasmic tail truncations. We interpret these data to indicate that formation of budding complexes, from which efficient release of SV5 particles can occur, depends on the presence of an HN cytoplasmic tail.  相似文献   

8.
Alphaviruses, including several emerging human pathogens, are a large family of mosquito-borne viruses with Sindbis virus being a prototypical member of the genus. The host factor requirements and receptors for entry of this class of viruses remain obscure. Using a Drosophila system, we identified the divalent metal ion transporter natural resistance-associated macrophage protein (NRAMP) as a host cell surface molecule required for Sindbis virus binding and entry into Drosophila cells. Consequently, flies mutant for dNRAMP were protected from virus infection. NRAMP2, the ubiquitously expressed vertebrate homolog, mediated binding and infection of Sindbis virus into mammalian cells, and murine cells deficient for NRAMP2 were nonpermissive to infection. Alphavirus glycoprotein chimeras demonstrated that the requirement for NRAMP2 is at the level of Sindbis virus entry. Given the conserved structure of alphavirus glycoproteins, and the widespread use of transporters for viral entry, other alphaviruses may use conserved multipass membrane proteins for infection.  相似文献   

9.
Enveloped viruses are excellent tools for the study of the biogenesis of epithelial polarity, because they bud asymmetrically from confluent monolayers of epithelial cells and because polarized budding is preceded by the accumulation of envelope proteins exclusively in the plasma membrane regions from which the viruses bud. In this work, three different experimental approaches showed that the carbohydrate moieties do not determine the final surface localization of either influenza (WSN strain) or vesicular stomatitis virus (VSV) envelope proteins in infected Madin-Darby Canine Kidney (MDCK) cells, as determined by immunofluorescence and immunoelectron microscopy, using ferritin as a marker. Infected concanavalin A- and ricin 1-resistant mutants of MDCK cells, with alterations in glycosylation, exhibited surface distributions of viral glycoproteins identical to those of the parental cell line, i.e., influenza envelope proteins were exclusively found in the apical surface, whereas VSV G protein was localized only in the basolateral region. MDCK cells treated with tunicamycin, which abolishes the glycosylation of viral glycoproteins, exhibited the same distribution of envelope proteins as control cells, after infection with VSF or influenza. A temperature-sensitive mutant of influenza WSN, ts3, which, when grown at the nonpermissive temperature of 39.5 degrees C, retains the sialic acid residues in the envelope glycoproteins, showed, at both 32 degrees C (permissive temperature) and 39.5 degrees C, budding polarity and viral glycoprotein distribution identical to those of the parental WSN strain, when grown in MDCK cells. These results demonstrate that carbohydrate moieties are not components of the addressing signals that determine the polarized distribution of viral envelope proteins, and possibly of the intrinsic cellular plasma membrane proteins, in the surface of epithelial cells.  相似文献   

10.
11.
Members of the herpesvirus family mature at inner nuclear membranes, although a fraction of the viral glycoproteins is expressed on the cell surface. In this study, we investigated the localization of herpes simplex virus type 2 (HSV-2) glycoproteins in virus-infected epithelial cells by using a panel of monoclonal antibodies directed against each of the major viral glycoproteins. All of the HSV-2 glycoproteins were localized exclusively on the basolateral membranes of Vero C1008, Madin-Darby bovine kidney, and mouse mammary epithelial cells. Using a monoclonal antibody to HSV-2 gD which cross-reacts with HSV-1 strains, we could also localize HSV-1 gD on the basolateral membranes of Madin-Darby bovine kidney cells. These results indicate that these molecules contain putative sorting signals that direct them to basolateral membrane domains.  相似文献   

12.
Maturation Defects in Temperature-sensitive Mutants of Sindbis Virus   总被引:18,自引:16,他引:2       下载免费PDF全文
Temperature-sensitive mutants of Sindbis virus, which synthesize viral ribonucleic acid (RNA) but not mature virus at the nonpermissible temperature, were selected for the study of viral maturation. Of these, three mutants which complement each other genetically were used. Two major proteins, the nucleocapsid and membrane proteins, located, respectively, in the viral nucleoid and membrane, were found in intact virions. In cells infected with wild-type Sindbis virus, four distinct types of viral RNA with sedimentation coefficients of 40S, 26S, 20S, and 15S were detected in constant distribution. The 20S RNA was ribonuclease-resistant, whereas the other types were ribonuclease-sensitive. The 40S RNA, identical to that obtained from the virion, was found associated with nucleocapsid protein as a subviral particle, which was assumed to be the nucleoid. Viral materials from cells infected with the mutants under nonpermissive conditions were compared with those from cells infected with wild-type virus, in terms of (i) the distribution of the different types of RNA, (ii) the association of infectious viral RNA into subviral particles, and (iii) the ability of infected cells to hemadsorb goose erythrocytes. According to these criteria, each of the three mutants demonstrated different maturation defects. Defective nucleocapsid proteins and membrane proteins may each account for one of the above mutants. The thrid mutant may have defects in a minor structural protein or possibly a maturation protein which is involved in the assembly of Sindbis virus.  相似文献   

13.
The surface distribution of the envelope glycoproteins of influenza, Sendai and Vesicular Stomatitis viruses was studied by immunofluorescence and immunoelectromicroscopy in infected epithelial cell monolayers, from which these viruses bud in a polarized fashion. It was found that before the onset of viral budding, the envelope proteins are exclusively localized into the same plasma membrane domains of the epithelial cells from which the virions ultimately bud: the glycoproteins of influenza and Sendai were detected at the apical surface, while the G protein of Vesicular Stomatitis virus was concentrated at the basolateral region. On the other hand, Sendai virus nucleocapsids, which can be easily identified in the cytoplasm before viral assembly, could be observed throughout the cell, not showing any preferential localization near the surface that the virions utilize for budding. These results are consistent with a model in which the asymmetric distribution of viral envelope proteins, rather than a polarized delivery of nucleocapsids, directs the polarity of viral budding. Furthermore, the asymmetric surface localization of viral glycoproteins suggests that these proteins share with intrinsic surface proteins of epithelial cells common biogenetic mechanisms and informational features or "sorting out" signals that determine their compartmentalization in the plasma membrane.  相似文献   

14.
Sindbis virus-infected baby hamster kidney (BHK) cells were analysed in surface replicas or conventional thin sections after specific immunolabelling with antiviral glycoprotein antibodies in conjunction with colloidal gold-conjugated protein A. Newly synthesized viral glycoproteins were detected, beginning 1 1/2 h after infection, while the virus maturation started 3 h after infection. The glycoproteins appeared to be inserted on the plasma membrane in large spots located mainly in the central area of the cells: no clustering of the labelling was detected. Later, the glycoproteins appeared to arrange linearly in regions in the medial portion of the cells. No labelling was found in the peripheral area or on the cell edges. A drastic change in the surface labelling was detected following the commencement of virus maturation: gold particles were organized mostly in small clusters, each labelling a budding virus. Very few glycoproteins appeared not to be involved in budding figures. The maturation of the virus was clearly regionalized, but during this time it also involved the peripheral area and the cell edges; preferential budding in narrow cellular processes was often observed. It appeared thus that either isolated glycoproteins soon after infection, or clustered glycoproteins at later times, are strictly regionalized on the plasma membrane: however, the early post-infection distribution is clearly different from that seen later during virus maturation. Our experiments support the concept of discrete plasma membrane domains even in cells that do not display distinct specialization of their surface.  相似文献   

15.
The association of Sindbis virus proteins with cellular membranes during virus maturation was examined by utilizing a technique for fractionating the membranes of BHK-21 cells into three subcellular classes, which were enriched for rough endoplasmic reticulum, smooth endoplasmic reticulum, and plasma membrane. Pulse-chase experiments with wild-type (strain SVHR) virus-infected cells showed that virus envelope proteins were incorporated initially into membranes of the rough endoplasmic reticulum and subsequently migrated to the smooth and plasma membrane fractions. Large amounts of capsid protein were associated with the plasma membrane fraction even at the earliest times postpulse, and relatively little was found associated with the other membranes, suggesting a rapid and preferential association of nucleocapsids with the plasma membrane. We also examined the intracellular processing of the proteins of two temperature-sensitive Sindbis virus mutants in pulse-chase experiments at the nonpermissive temperature. Labeled virus proteins of mutant ts-20 (complementation group E) first appeared in the rough endoplasmic reticulum and were then transported to the smooth and plasma membrane fractions, as in wild-type (strain SVHR) virus-infected cells. In cells infected with ts-23 (complementation group D), the pulse-labeled virus proteins appeared initially in the rough membrane fraction and were transported to the smooth membrane fraction, but only limited amounts reached the plasma membrane. Thus, in ts-23-infected cells, the transport of the virus-encoded proteins from the smooth membranes seemed to be defective. In both ts-20- and ts-23-infected cells the envelope precursor polypeptide PE2 was not processed to E2, and no label was incorporated into free virus at the nonpermissive temperature.  相似文献   

16.
The major structural proteins of Newcastle disease virus and Sendai virus were localized in infected BHK-21 and MDBK cells by ultrastructural immunoperoxidase cytochemistry using antibodies against the individual viral protein antigens. The intracellular glycoproteins were strictly membrane bound, being localized in the rough endoplasmic reticulum (RER), perinuclear spaces, smooth membrane vesicles, and presumed Golgi apparatus. The nucleocapsid proteins were detected exclusively in membrane free cytosol and accumulated there, forming inclusions. The membrane (M) protein was found both in cytosol and on RER. The viral proteins on RER exhibited a distinct site specificity; the glycoproteins were facing the lumen of RER whereas M protein was present at the outer cytoplasmic surface. All the viral proteins were detectable at the plasma membrane where virus assembly takes place. However, their modes of distribution differed remarkably. The glycoproteins were spread widely over the entire cell surface including the areas of virus budding and those of normal morphology, whereas M protein was localized in restricted areas of the membrane, frequently forming a patch of virus specific membrane. The presence of nucleocapsids was confined to the virus particles budding from the plasma membrane. These results complement and extend the earlier morphological and biochemical data on the assembly or morphogenesis of paramyxoviruses.  相似文献   

17.
Purified plasma membranes attached to polycationic polyacrylamide beads by their external surface were isolated from BHK cells infected with Sendai virus. Each of the viral proteins could be identified in the membranes of infected cells. Proteolysis with trypsin, which digests only the cytoplasmic surface of these membranes (because the external surface is protected by its attachment to beads), revealed that the internal proteins, L, P, NP, and M, were present on the cytoplasmic surface of the membrane and that small segments of the viral envelope glycoproteins, HN and F0, were partially exposed on the cytoplasmic surface. Since the major portions of HN and F0 are known to be present on the external membrane surface, these glycoproteins are transmembrane proteins before Sendai virus budding in infected cells.  相似文献   

18.
We studied the maturation of Uukuniemi virus and the localization of the viral surface glycoproteins and nucleocapsid protein in infected cells by electron microscopy, indirect immunofluorescence, and immunoelectron microscopy with specific antisera prepared in rabbits against the two glycoproteins G1 and G2 and the nucleocapsid protein N. Electron microscopy of thin sections from infected cells showed virus particles maturing at smooth-surfaced membranes close to the nucleus. Localization of the G1/G2 and N proteins by indirect immunofluorescence at different stages after infection showed the antigens to be present throughout the cell interior but concentrated in the juxtanuclear region. The G1/G2 antiserum also appeared to stain the nuclear and plasma membranes. Double staining with tetramethylrhodamine isothiocyanate-conjugated wheat germ agglutinin, which preferentially stains the Golgi complex, and fluorescein isothiocyanate-conjugated anti-rabbit immunoglobulin G, which stained the G1/G2 or N proteins, showed that the staining of the juxtanuclear region coincided. Similarly, double staining for thiamine pyrophosphatase, an enzyme activity specific for the Golgi complex, showed the fluorescence and the cytochemical stain to coincide in the juxtanuclear region. Immunoperoxidase electron microscopy of cells permeabilized with saponin revealed that the viral glycoproteins were present in the rough endoplasmic reticulum and the nuclear and Golgi membranes; the latter was heavily stained. With this method, the N protein was localized to the cytoplasm, especially around smooth-surfaced vesicles in the Golgi region. Taken together, the results indicate that Uukuniemi virus and its structural proteins accumulate in the Golgi complex, supporting the idea that this compartment rather than the plasma membrane is the site of virus maturation. This raises the interesting possibility that deficient transport of the glycoproteins to the plasma membrane and hence their accumulation in the Golgi complex determines the site of virus maturation.  相似文献   

19.
《The Journal of cell biology》1983,97(5):1356-1364
We used fracture-label and surface labeling techniques to characterize the distribution and topology of wheat germ agglutinin (WGA) receptors in the plasma membrane of boar sperm heads. We show that freeze- fracture results in preferential, but not exclusive, partition of WGA- binding sites with the outer (exoplasmic) half of the plasma membrane. Labeling of the inner (protoplasmic) half of the membrane is significant, and is denser over the areas that overlie the acrosome. Exoplasmic membrane halves are uniformly labeled. Analysis of freeze- fracture replicas revealed that the distribution of intramembrane particles over protoplasmic faces parallels that of WGA-binding sites as observed by fracture-label. Coating of intact spermatozoa with cationized ferritin results in drastic reduction of the labeling of both protoplasmic and exoplasmic membrane halves. Labeling of sperm cells lysed by short hypotonic shock fails to reveal the presence of WGA-binding sites at the inner surface of the plasma membrane. We conclude that: (a) all WGA-binding glycoconjugates are exposed at the outer surface of the membrane; (b) some of these glycoconjugates correspond to transmembrane glycoproteins that, on fracture, partition with the inner half of the membrane; (c) these transmembrane proteins are accumulated in the region of the plasma membrane that overlies the acrosome; and (d) parallel distribution of intramembrane particles and WGA-binding glycoproteins provides renewed support for the view of particles as the morphological counterpart of integral membrane proteins.  相似文献   

20.
Lipids as modulators of membrane fusion mediated by viral fusion proteins   总被引:1,自引:0,他引:1  
Enveloped viruses infect host cells by fusion of viral and target membranes. This fusion event is triggered by specific glycoproteins in the viral envelope. Fusion glycoproteins belong to either class I, class II or the newly described third class, depending upon their arrangement at the surface of the virion, their tri-dimensional structure and the location within the protein of a short stretch of hydrophobic amino acids called the fusion peptide, which is able to induce the initial lipid destabilization at the onset of fusion. Viral fusion occurs either with the plasma membrane for pH-independent viruses, or with the endosomal membranes for pH-dependent viruses. Although, viral fusion proteins are parted in three classes and the subcellular localization of fusion might vary, these proteins have to act, in common, on lipid assemblies. Lipids contribute to fusion through their physical, mechanical and/or chemical properties. Lipids can thus play a role as chemically defined entities, or through their preferential partitioning into membrane microdomains called "rafts", or by modulating the curvature of the membranes involved in the fusion process. The purpose of this review is to make a state of the art on recent findings on the contribution of cholesterol, sphingolipids and glycolipids in cell entry and membrane fusion of a number of viral families, whose members bear either class I or class II fusion proteins, or fusion proteins of the recently discovered third class.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号