首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Electron transport in theParacoccus denitrificans respiratory chain system is considerably more rapid when it includes the membrane-bound cytochromec 552 than with either solubleParacoccus c 550 or bovine cytochromec; a pool function for cytochromec is not necessary. Low concentrations ofParacoccus or bovine cytochromec stimulate the oxidase activity. This observation could explain the multiphasic Scatchard plots which are obtained. A negatively charged area on the back side ofParacoccus c which is not present in mitochondrialc could be a control mechanism forParacoccus reactions.Paracoccus oxidase and reductase reactions with bovinec show the same properties as mammalian systems; and this is true ofParacoccus oxidase reactions with its own soluble cytochromec if added polycation masks the negatively charged area. Evidence for different oxidase and reductase reaction sites on cytochromec include: (1) stimulation of the oxidase but not reductase by a polycation; (2) differences in the inhibition of the oxidase and reductases by monoclonal antibodies toParacoccus cytochromec; and (3) reaction of another bacterial cytochromec withParacoccus reductases but not oxidase. Rapid electron transport occurs in cytochromec-less mutants ofParacoccus, suggesting that the reactions result from collision of diffusing complexes.  相似文献   

2.
Phospholipids and Emasol activate cytochrome oxidase by increasing its affinity for its substrate, cytochromec. Cardiolipin was most effective in activating cytochrome oxidase among phospholipids tested. Prior formation of a cytochromec-cytochrome oxidase complex changes the effect of phospholipids. In addition to their structural role in the last segment of the electron transport system, phospholipids can protect the enzyme from heat treatment and mercurial inhibition. They facilitate the interaction between cytochrome oxidase and cytochromec, as well as the cytochromec analogue, protamine.  相似文献   

3.
Whole cells of the methylotrophic bacteriumMethylophilus methylotrophus cultured under methanol-limited conditions contain approximately equal amounts of two majorc-type cytochromes,c H andc L. Virtually all of the cytochromec H, and over one-third of the cytochromec L, are loosely attached to the periplasmic surface of the respiratory membrane whence they can be released by sonication or by washing cells in ethylenediaminetetraacetate (EDTA). The latter causes inhibition of methanol oxidase activity and stimulation of ascorbate-N,N,N,N-tetramethyl-p-phenylenediamine (TMPD) oxidase activity, neither of which effects are reversible by divalent metal ions. Kinetic analyses indicate that ascorbate-TMPD is oxidised via two routes, viz. a slow low-affinity pathway involving loosely membrane-boundc-type cytochromes plus cytochrome oxidaseaa 3, and a faster higher-affinity pathway involving the firmly membrane-bound cytochrome oxidasec L o complex; the former route predominates in the presence of divalent metal ions, and the latter route after exposure to EDTA. These and other results are discussed in terms of the spatial organisation of the terminal respiratory chain, and of the role ofc-type cytochromes in the oxidation of methanol and ascorbate-TMPD.Abbreviations EDTA Enthylenediaminetetraacetate - PMS Phenazinemethosulphate - TMPD N,N,N,N-tetramethyl-p-phenylenediamine - SDS Sodium dodecylsulphate - I50 Concentration of inhibitor required to give 50% inhibition of enzyme activity - PQQ Pyrroloquinoline quinone  相似文献   

4.
Summary The plasma membrane (PM) of higher plants contains a major ascorbate-reducible, high-potentialb-type cytochrome, named cytochromeb 561 (cytb 561). In this paper a rapid purification protocol for the cytb 561 of bean hypocotyls PM is described. An almost 200-fold increase of cytb 561 specific concentration was achieved with respect to the PM fraction, which contained about 0.2 nmol of ascorbate-reducible heme per mg protein. The procedure can be performed in one day starting from purified PMs obtained by the phase-partitioning procedure. However, cytb 561 proved to be unstable during chromatographic purification and the amount of protein finally recovered was low. Purified cytb 561 eluted as a 130,000 Da protein-detergent complex from gel-filtration columns. It was completely reduced by ascorbate and reduced-minus-oxidized spectra showed -, - and -bands at 561, 530, and 429 nm respectively, not unlike the spectra of whole PMs. This work represents an initial approach to the biochemical characterization of the cytb 561 of higher plants, formerly suggested to be related to cytb 561 of animal chromaffin granules.Abbreviations cytb 561 cytochromeb 561 - PM plasma membrane - UPV upper-phase vesicles - GSII glucan synthase II - CCR NADH-dependent cytochromec reductase - CCO cytochromec oxidase - TX-100R reduced Triton X-100  相似文献   

5.
Cytochromec oxidase was purified from mitochondria ofEuglena gracilis and separated into 15 different polypeptide subunits by polyacrylamide gel electrophoresis. All 15 subunits copurify through various purification procedures, and the subunit composition of the isolated enzyme is identical to that of the immunoprecipitated one. Therefore, the 15 protein subunits represent integral components of theEuglena oxidase. In anin vitro protein-synthesizing system using isolated mitochondria, polypeptides 1–3 were radioactive labeled in the presence of [35S]methionine. This further identifies these polypeptides with the three largest subunits of cytochromec oxidse encoded by mitochondrial DNA in other eukaryotic organisms. By subtraction, the other 12 subunits can be assigned to nuclear genes. The isolatedEuglena oxidase was highly active withEuglena cytochromec 558 and has monophasic kinetics. Using horse cytochromec 550 as a substrate, activity of the isolated oxidase was rather low. These findings correlate with the oxidase activity of mitochondrial membranes. Again, reactivity was low with cytochromec 550 and 35-fold higher with theEuglena cytochromec 558. The data show that the cytochromec oxidase of the protistEuglena is different from other eukaryotic cytochromec oxidases in number and size of subunits, and also with regard to kinetic properties and substrate specificity.Abbreviations kDa kilodalton - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate - TN turnover number  相似文献   

6.
Yeast and mammalian cytochromec oxidase activity is inhibited by thiophosphate. This inhibition was observed when using either whole mitochondria or the isolated or reconstituted enzyme. The kinetics of the reduction reaction enabled us to demonstrate that thiophosphate acted on th electrons transfer between hemesa anda 3. With whole mitochondria, phosphate alone stimulated respiration. The inhibition induced by thiophosphate was suppressed by phosphate only in mitochondria, but not when the isolated enzyme was used. The possibility of a kinetic regulation is discussed.Abbreviations CCCP p-carbonylcyanidem-chlorophenylhydrazone - TMPD N,N,N,N-tetramethylp-phenylenediamine - SPi thiophosphate  相似文献   

7.
The reduction of cyctochromesc +c 1 by durohydroquinone and ferrocyanide in electron transport particles (ETP) and intact cytochromec-depleted beef heart mitochondria has been studied. At least 94% of the ETP are in an inverted orientation. Durohydroquinone reduces 80% ofc +c 1 in ETP but less than 20% in mitochondria; sonication of mitochondria allows reduction of cytochromesc +c 1 (80%). Addition of ferrocyanide (effective redox potential +245 mV) to electron transport particles results in 30% reduction of cytochromesc +c 1. Addition of ferrocyanide to intact cytochromec-depleted mitochondria does not reduce cytochromec 1; treatment withN,N,N,N-tetramethylphenylenediamine, Triton X-100, or sonic oscillation results in 30% reduction of cytochromesc +c 1. TheK m value of ferrocyanide oxidase for K-ferrocyanide is pH-dependent in ETP only, increasing with increasing pH. The extent of reduction of cytochromec 1 is also pH-dependent in ETP only, the extent of reduction increasing with decreasing pH. On the basis of these data cytochromec 1 is exposed to the matrix face and cytochromec is exposed to the cytoplasmic face. No redox center other than cytochromec in the segment between the antimycin site and cytochromec is exposed on the C-side.Abbreviations Used: MES, 2(N-morpholino)-ethanesulfonic acid; EDTA, ethylenediaminetetraacetic acid; TMPD,N,N,N,N-tetramethylphenylenediamine; ETP, electron transport particles; NAD-NADH, nicotinamide adenine dinucleotide; PMS, phenazine methosulfate.  相似文献   

8.
Bovine cytochromec oxidase usually contains 3–4 mol of tightly bound cardiolipin per cytochromeaa 3 complex. At least two of these cardiolipins are required for full electron transport activity. Without the tightly bound cardiolipin, cytochromec oxidase has only 40–50% of its original activity when assayed in detergents that support activity, e.g., dodecyl maltoside. By measuring the restoration of electron transport activity, functional binding constants for cardiolipin and a number of cardiolipin analogues have been evaluated (K d,app=1 µM for cardiolipin). These binding constants agree reasonably well with direct measurement of the binding using [14C]-acetyl-cardiolipin (K d <0.1 µM) when the enzyme is solubilized with Triton X-100. These data are discussed in relationship to the wealth of data that is known about the association of cardiolipin with cytochromec oxidase and the other mitochrondrial electron transport complexes and transporters.  相似文献   

9.
Cytochromesc andc 1 are essential components of the mitochondrial respiratory chain. In both cytochromes the heme group is covalently linked to the polypeptide chain via thioether bridges. The location of the two cytochromes is in the intermembrane space; cytochromec is loosely attached to the surface of the inner mitochondrial membrane, whereas cytochromec 1 is firmly anchored to the inner membrane. Both cytochromec andc 1 are encoded by nuclear genes, translated on cytoplasmic ribosomes, and are transported into the mitochondria where they become covalently modified and assembled. Despite the many similarities, the import pathways of cytochromec andc 1 are drastically different. Cytochromec 1 is made as a precursor with a complex bipartite presequence. In a first step the precursor is directed across outer and inner membranes to the matrix compartment of the mitochondria where cleavage of the first part of the presequence takes place. In a following step the intermediate-size form is redirected across the inner membrane; heme addition then occurs on the surface of the inner membrane followed by the second processing reaction. The import pathway of cytochromec is exceptional in practically all aspects, in comparison with the general import pathway into mitochondria. Cytochromec is synthesized as apocytochromec without any additional sequence. It is translocated selectively across the outer membrane. Addition of the heme group, catalyzed by cytochromec heme lyase, is a requirement for transport. In summary, cytochromec 1 import appears to follow a conservative pathway reflecting features of cytochromec 1 sorting in prokaryotic cells. In contrast, cytochromec has invented a rather unique pathway which is essentially non-conservative.  相似文献   

10.
An analysis of resonance Raman scattering data from CO-bound cytochromec oxidase and from the photodissociated enzyme indicates that histidine may not be coordinated to the iron atom of cytochromea 3 in the CO-bound form of the enzyme. Instead, the data suggest that either a water molecule or a different amino acid residue occupies the proximal ligand position. From these data, it is postulated that ligand exchange on cytochromea 3 can occur under physiological conditions. Studies of mutant hemoglobins have demonstrated that tyrosinate binds preferentially to histidine in the ferric forms of the proteins. In cytochromec oxidase tyrosine residues are located near the histidine residues recently implicated in coordination to cytochromea 3 (Shapleighet al., 1992; Hosleret al., this volume). Expanding on these concepts, we propose a model for proton translocation at the O2-binding site based on proximal ligand exchange between tyrosine and histidine on cytochromea 3. The pumping steps take place at the level of the peroxy intermediate and at the level of the ferryl intermediate in the catalytic cycle and are thereby consistent with the recent results of Wilkstrom (1989) who found that proton pumping occurs only at these two steps. It is shown that the model may be readily extended to account for the pumping of two protons at each of the steps.  相似文献   

11.
The time course of absorbance changes following flash photolysis of the fully-reduced carboxycytochrome oxidase fromBacillus PS3 in the presence of O2 has been followed at 445, 550, 605, and 830 nm, and the results have been compared with the corresponding changes in bovine cytochrome oxidase. The PS3 enzyme has a covalently bound cytochromec subunit and the fully-reduced species therefore accommodates five electrons instead of four as in the bovine enzyme. In the bovine enzyme, following CO dissociation, four phases were observed with time constants of about 10 s, 30 s, 100 s, and 1 ms at 445 nm. The initial, 10-s absorbance change at 445 nm is similar in the two enzymes. The subsequent phases involving hemea and CuA are not seen in the PS3 enzyme at 445 nm, because these redox centers are re-reduced by the covalently bound cytochromec, as indicated by absorbance changes at 550 nm. A reaction scheme consistent with the experimental observations is presented. In addition, internal electron-transfer reactions in the absence of O2 were studied following flash-induced CO dissociation from the mixed-valence enzyme. Comparisons of the CO recombination rates in the mixed-valence and fully-reduced oxidases indicate that more electrons were transferred from hemea 3 toa in PS3 oxidase compared to the bovine enzyme.  相似文献   

12.
Paracoccus denitrificans is able to grow on the C1 compounds methanol and methylamine. These compounds are oxidized to formaldehyde which is subsequently oxidized via formate to carbon dioxide. Biomass is produced by carbon dioxide fixation via the ribulose biphosphate pathway. The first oxidation reaction is catalyzed by the enzymes methanol dehydrogenase and methylamine dehydrogenase, respectively. Both enzymes contain two different subunits in an 22 configuration. The genes encoding the subunits of methanol dehydrogenase (moxF andmoxI) have been isolated and sequenced. They are located in one operon together with two other genes (moxJ andmoxG) in the gene ordermoxFJGI. The function of themoxJ gene product is not yet known.MoxG codes for a cytochromec 551i , which functions as the electron acceptor of methanol dehydrogenase. Both methanol dehydrogenase and methylamine dehydrogenase contain PQQ as a cofactor. These so-called quinoproteins are able to catalyze redox reactions by one-electron steps. The reaction mechanism of this oxidation will be described. Electrons from the oxidation reaction are donated to the electron transport chain at the level of cytochromec. P. denitrificans is able to synthesize at least 10 differentc-type cytochromes. Five could be detected in the periplasm and five have been found in the cytoplasmic membrane. The membrane-bound cytochromec 1 and cytochromec 552 and the periplasmic-located cytochromec 550 are present under all tested growth conditions. The cytochromesc 551i andc 553i , present in the periplasm, are only induced in cells grown on methanol, methylamine, or choline. The otherc-type cytochromes are mainly detected either under oxygen limited conditions or under anaerobic conditions with nitrate as electron acceptor or under both conditions. An overview including the induction pattern of allP. denitrificans c-type cytochromes will be given. The genes encoding cytochromec 1, cytochromec 550, cytochromec 551i , and cytochromec 553i have been isolated and sequenced. By using site-directed mutagenesis these genes were mutated in the genome. The mutants thus obtained were used to study electron transport during growth on C1 compounds. This electron transport has also been studied by determining electron transfer rates inin vitro experiments. The exact pathways, however, are not yet fully understood. Electrons from methanol dehydrogenase are donated to cytochromec 551i . Further electron transport is either via cytochromec 550 or cytochromec 553i to cytochromeaa 3. However, direct electron transport from cytochromec 551i to the terminal oxidase might be possible as well. Electrons from methylamine dehydrogenase are donated to amicyanin and then via cytochromec 550 to cytochromeaa 3, but other routes are used also.P. denitrificans is studied by several groups by using a genetic approach. Several genes have already been cloned and sequenced and a lot of mutants have been isolated. The development of a host/vector system and several techniques for mutation induction that are used inP. denitrificans genetics will be described.  相似文献   

13.
Photosynthetic bacteria offer excellent experimental opportunities to explore both the structure and function of the ubiquinol-cytochromec oxidoreductase (bc 1 complex). In bothRhodobacter sphaeroides andRhodobacter capsulatus, thebc 1 complex functions in both the aerobic respiratory chain and as an essential component of the photosynthetic electron transport chain. Because thebc 1 complex in these organisms can be functionally coupled to the photosynthetic reaction center, flash photolysis can be used to study electron flow through the enzyme and to examine the effects of various amino acid substitutions. During the past several years, numerous mutations have been generated in the cytochromeb subunit, in the Rieske iron-sulfur subunit, and in the cytochromec 1 subunit. Both site-directed and random mutagenesis procedures have been utilized. Studies of these mutations have identified amino acid residues that are metal ligands, as well as those residues that are at or near either the quinol oxidase (Qo) site or the quinol reductase (Qi) site. The postulate that these two Q-sites are located on opposite sides of the membrane is supported by these studies. Current research is directed at exploring the details of the catalytic mechanism, the nature of the subunit interactions, and the assembly of this enzyme.  相似文献   

14.
A modified procedure is described that was used to solubilize and purify the TMPD-dependent cytochromec 4:o oxidase fromAzotobacter vinelandii. Two functional components (Fractions I and V) were obtained after DEAE-cellulose chromatography. Fraction V contained both cytochromec 4 (3.6 nmol/mg protein) and cytochromeo (1.6 nmol/mg protein). This cytochrome oxidase complex oxidized TMPD at moderate rates. Fraction I, a clear greenish-yellow fraction, contained primarily phosphatidylethanolamine with some phosphatidylglycerol. Fraction I itself could not oxidize TMPD, but when it was preincubated with Fraction V, a 2–4-fold stimulation in TMPD oxidase activity occurred. Other authentic micellar phospholipids also readily activited TMPD oxidase activity in Fraction V. Themaximum activation effect obtained with Fraction I was in essence duplicated with purified phosphatidylethanolamine.Dedicated to the memory of David E. Green, a fine gentleman, an excellent scientist, and a true scholar. He will be missed by many of his former colleagues.  相似文献   

15.
The electronic transitions of the two heme groups of cytochromec oxidase have been resolved by application of second-derivative and cryogenic absorption spectroscopy. Both methods reveal a splitting of the ferrocytochromea Soret transition into two features at 443 and 450 nm. The relative intensity of the 450 nm feature appears to depend on the ligation state of cytochromea 3, the solution pH, and complex formation with cytochromec. The structural origin and mechanistic significance of this second Soret transition of cytochromea are discussed in terms of the electron transfer and proton translocation activities of the enzyme.Dedicated to the memory of James Carl Copeland.  相似文献   

16.
H. Asard  A. Bérczi 《Protoplasma》1998,205(1-4):37-42
Summary Plasma membrane (PM) vesicles were purified in parallel from the roots and shoots of 6-day-old etiolated bean (Phaseolus vulgaris L.) seedlings, grown in water culture at 25 °C, by aqueous polymer two-phase partitioning. The purity of PM fractions was determined by measuring the activity of known marker enzymes (vanadate-sensitive Mg-ATPase, 1,3--glycan synthase, latent ID-Pase, cytochromec oxidase, and antimycin-A-insensitive cytochromec reductase). NADH-(acceptor) oxidoreductase activities were determined with the following electron acceptors: ferricyanide, cytochromec, duroquinone, monodehydroascorbate, Fe3+-EDTA, and oxygen. Cytochromeb content was also determined. In general, results show that redox activities are higher in the root PM than in the shoot PM which follows the glycan synthase II (PM marker) pattern. The relative activities of the distinct redox enzymes measured (activity profile) are remarkably similar in the root and shoot PM preparations. The cytochromeb content and level of ascorbate reduction were also similar in both plant organs. However, the ratio of NADH-(acceptor) oxidoreductase activity to cytochrome content was signifcantly higher in roots when compared to the shoots.Abbreviations CCO cytochromec oxidase - CCR cytochromec reductase - GSII 1,3--glycan synthase - MF microsomal fraction - N-CC-OR NADH-cytochromec oxidoreductase - N-DQ-OR NADH-duroquinone oxidoreductase - N-FC-OR NADH-ferricyanide oxidoreductase - N-FE-OR NADH-Fe3+-EDTA oxidoreductase - N-MDA-OR NADH-monodehydroascorbate oxidoreductase - PM plasma membrane  相似文献   

17.
Cytochromec oxidase fromParacoccus denitrificans was homogenously dispersed in Triton X-100. Using gel exclusion chromatography and sucrose gradient centrifugation analysis a molecular weight of the detergent-protein complex of 155,000 was determined. After subtraction of the bound detergent (111 mol/mol hemeaa 3) a molecular weight of 85,000 resulted, which agreed well with the model of a monomer containing two subunits. This monomer showed high cytochromec oxidase activity when measured spectrophotometrically in the presence of Triton X-100 (V max=85 s–1). The molecular activity, plotted according to Eadie-Hofstee, was monophasic as a function of the cytochromec concentration. AK m of 3.6×10–6 M was evaluated, similar to theK m observed in the presence of dodecyl maltoside [Naeczet al. (1985).Biochim. Biophys. Acta 808, 259–272].  相似文献   

18.
The experimental data currently available suggest that QH2: cytochromec oxidoreductase functions according to a Q-cycle type of mechanism. The molecular weight of the enzyme in a natural or artificial phospholipid bilayer or in solution corresponds to that of a dimer. The pre-steady state kinetics of reduction of the prosthetic groups indicate that the enzyme is functionally dimeric. A double Q cycle is proposed, describing the pathway of electron transfer in the dimeric QH2: cytochromec oxidoreductase. According to this scheme, the two monomeric halves of the enzyme act in a cooperative fashion to complete the catalytic cycle. It is proposed that high-potential cytochromeb-562 and low-potential cytochromeb-562 act cooperatively, viz. as a functional pair, in the antimycin-sensitive reduction of ubiquinone to ubiquinol.  相似文献   

19.
The effect of ATP and other anions on the kinetics of cytochromec oxidation by reconstituted bovine heart cytochromec oxidase was investigated. The following results were obtained: (1) ATP and other polyvalent anions increase theK m for cytochromec and theV max (if assayed by the photometric method). The magnitude of the effect is proportional to the charge of the anion as follows from the series of increasing effectiveness: Piii. (2) The kinetic effects are obtained in the millimolar physiological concentration range. (3) The kinetic changes are not saturated at high concentrations. (4) A specific interaction site for ATP at the cytosolic domain of the enzyme is concluded from the increase ofK m for cytochromec after photolabelling of proteoliposomes with 8-azido-[-32P]-ATP, which is protected by ATP but not by ADP. (5) No specific binding site for ATP could be identified by photolabelling with 8-azido-[-32P]-ATP. The labelling is only partly protected by ATP or ADP.Abbreviations CCP carbonylcyanide-m-chlorophenylhydrazone - TMPD N,N,N,N-tetramethyl-1,4-phenylenediamine dihydrochloride - 8-N3-ATP 8-azido-adenosine-5-triphosphate Dedicated to Professor Dr. Friedhelm Schneider on the occasion of his 60th birthday.  相似文献   

20.
We studied the photosynthetic electron transfer system of membrane-bound and soluble cytochromec inChlorobium tepidum, a thermophilic green sulfur bacterium, using whole cells and membrane preparations. Sulfide and thiosulfate, physiological electron donors, enhanced flash-induced photo-oxidation ofc-type cytochromes in whole cells. In membranes,c-553 cytochromes with two (or three) heme groups served as immediate electron donors for photo-oxidized bacteriochlorophyll (P840) in the reaction center, and appeared to be closely associated with the reaction center complex. The membrane-bound cytochromec-553 had anE m-value of 180 mV. When isolated soluble cytochromec-553, which has an apparent molecular weight of 10 kDa and seems to correspond to the cytochromec-555 inChlorobium limicola andChlorobium vibrioforme, was added to a membrane suspension, rapid photo-oxidation of both soluble and membrane-bound cytochromesc-553 was observed. The oxidation of soluble cytochromec-553 was inhibited by high salt concentrations. In whole cells, photo-oxidation was observed in the absence of exogenous electron donors and re-reduction was inhibited by stigmatellin, an inhibitor of the cytochromebc complex. These results suggest that the role of membrane-bound and soluble cytochromec inC. tepidum is similar to the role of cytochromec in the photosynthetic electron transfer system of purple bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号