首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The role of CD4(+) vs CD8(+) T cells in contact hypersensitivity (CHS) remains controversial. In this study, we used gene knockout (KO) mice deficient in CD4(+) or CD8(+) T cells to directly address this issue. Mice lacking either CD4(+) or CD8(+) T cells demonstrated depressed CHS responses to dinitrofluorobenzene and oxazolone compared with wild-type C57BL/6 mice. The depression of CHS was more significant in CD8 KO mice than in CD4 KO mice. Furthermore, in vivo depletion of either CD8(+) T cells from CD4 KO mice or CD4(+) T cells from CD8 KO mice virtually abolished CHS responses. Lymph node cells (LNCs) from hapten-sensitized CD4 and CD8 KO mice showed a decreased capacity for transferring CHS. In vitro depletion of either CD4(+) T cells from CD8 KO LNCs or CD8(+) T cells from CD4 KO LNCs resulted in a complete loss of CHS transfer. LNCs from CD4 and CD8 KO mice produced significant amounts of IFN-gamma, indicating that both CD4(+) and CD8(+) T cells are able to secrete IFN-gamma. LNCs from CD8, but not CD4, KO mice were able to produce IL-4 and IL-10, suggesting that IL-4 and IL-10 are mainly derived from CD4(+) T cells. Intracellular cytokine staining of LNCs confirmed that IFN-gamma-positive cells consisted of CD4(+) (Th1) and CD8(+) (type 1 cytotoxic T) T cells, whereas IL-10-positive cells were exclusively CD4(+) (Th2) T cells. Collectively, these results suggest that both CD4(+) Th1 and CD8(+) type 1 cytotoxic T cells are crucial effector cells in CHS responses to dinitrofluorobenzene and oxazolone in C57BL/6 mice.  相似文献   

2.
Standard murine models of cutaneous leishmaniasis, involving s.c. inoculation of large numbers of Leishmania major promastigotes, have not supported an essential role for CD8(+) T cells in the control of primary infection. Recently, a L. major model combining two main features of natural transmission, low parasite dose and inoculation into a dermal site, has been established in resistant C57BL/6 mice. In the present studies, C57BL/6 mice with CD8(+) T cell deficiencies, including CD8(-/-) and CD8-depleted mice, failed to control the growth of L. major following inoculation of 100 metacyclic promastigotes into the ear dermis. The resulting dermal pathology was minor and delayed. Lesion formation in wild-type mice was coincident with the killing of parasites in the inoculation site. Both events were associated with the accumulation of CD8(+) T lymphocytes in the skin and with the capacity of CD8(+) T cells recovered from draining lymph nodes or infected dermis to release IFN-gamma following coculture with infected dendritic cells. Reconstitution of resistance to L. major in RAG(-/-) mice using T cells from naive donors was optimal when both CD4(+) and CD8(+) T cells were transferred. Primed CD8(+) T lymphocytes obtained from C57BL/6 mice during the acute stage of infection were able to mediate both pathology and immunity when transferred alone. The low dose, intradermal challenge model reveals that CD8(+) T cells play an essential role in both pathogenesis of and immunity to primary infection with L. major in the skin.  相似文献   

3.
One of the oligopolymorphic MHC class Ib molecules, H2-M3, presents N-formylated peptides derived from bacteria. In this study, we tested the ability of an H2-M3-binding peptide, TB2, to induce protection in C57BL/6 mice against Mycobacterium tuberculosis. Immunization with bone marrow-derived dendritic cell (BMDC) pulsed with TB2 or a MHC class Ia-binding peptide, MPT64(190-198) elicited an expansion of Ag-specific CD8+ T cells in the spleen and the lung. The number of TB2-specific CD8+ T cells reached a peak on day 6, contracted with kinetics similar to MPT64(190-198)-specific CD8+ T cells and was maintained at an appreciable level for at least 60 days. The TB2-specific CD8+ T cells produced less effector cytokines but have stronger cytotoxic activity than MPT64(190-198)-specific CD8+ T cells. Mice immunized with TB2-pulsed BMDC as well as those with MPT64(190-198)-pulsed BMDC showed significant protection against an intratracheal challenge with M. tuberculosis H37Rv. However, histopathology of the lung in mice immunized with TB2-pulsed BMDC was different from mice immunized with MPT64(190-198)-pulsed BMDC. Our results suggest that immunization with BMDC pulsed with MHC class Ib-restricted peptides would be a useful vaccination strategy against M. tuberculosis.  相似文献   

4.
5.
To confirm the primary role of CD4 T cells in pulmonary tuberculosis, mice with a disruption of their CD4 gene (CD4 KO) were exposed to an aerosol of Mycobacterium tuberculosis and survival, cellular responses in the lung and granuloma development followed. CD8 and NK cells from the lungs of infected CD4 KO mice expressed IFN-gamma and were recruited in numbers similar to those seen in the C57BL/6 mice; recruitment correlated with initial control of bacteria. The major defect in mice lacking CD4 was the significant reduction in total cellular recruitment into the lungs. CD4 KO mice did not generate the typical mononuclear granulomatous lesions, instead the cellular influx was macrophage in character and was localized as perivascular cuffing. Early control of M. tuberculosis growth is therefore independent of CD4+ cells but such cells are required to ensure recruitment of mononuclear cells to the lung and thus ensure long-term survival.  相似文献   

6.
Modulating the host-immune response by the use of recombinant vaccines is a potential strategy to improve protection against microbial pathogens. In this study, we sought to determine whether secretion of murine GM-CSF by the bacillus Calmette-Guérin (BCG) vaccine influenced protective immunity against Mycobacterium tuberculosis. BCG-derived GM-CSF stimulated the in vitro generation of functional APCs from murine bone marrow precursors, as demonstrated by the infection-induced secretion of IL-12 by differentiated APCs, and the ability of these cells to present Ag to mycobacterium-specific T cells. Mice vaccinated with BCG secreting [corrected] murine GM-CSF (BCG:GM-CSF) showed increased numbers of CD11c+MHCII+ and CD11c-CD11b+F480+ cells compared with those vaccinated with control BCG, and this effect was most apparent in the draining lymph nodes at 7 and 14 days postvaccination. Vaccination with BCG:GM-CSF also resulted in enhanced expression of costimulatory molecules on migratory dendritic cells in the draining lymph nodes. The increased APC number was associated with an increase in the frequency of anti-mycobacterial IFN-gamma-secreting T cells generated after BCG:GM-CSF vaccination compared with vaccination with control BCG, and this effect was sustained up to 17 wk in the spleens of immunized mice. Vaccination with BCG:GM-CSF resulted in an approximately 10-fold increase in protection against disseminated M. tuberculosis infection compared with control BCG. This study demonstrates the potential of BCG secreting [corrected] immunostimulatory molecules as vaccines to protect against tuberculosis and suggests BCG:GM-CSF merits further appraisal as a candidate to control M. tuberculosis infection in humans.  相似文献   

7.
NK cells represent a potent immune effector cell type that have the ability to recognize and lyse tumors. However, the existence and function of NK cells in the traditionally "immune-privileged" CNS is controversial. Furthermore, the cellular interactions involved in NK cell anti-CNS tumor immunity are even less well understood. We administered non-Ag-loaded, immature dendritic cells (DC) to CD8alpha knockout (KO) mice and studied their anti-CNS tumor immune responses. DC administration induced dramatic antitumor immune protection in CD8alpha KO mice that were challenged with B16 melanoma both s.c. and in the brain. The CNS antitumor immunity was dependent on both CD4+ T cells and NK cells. Administration of non-Ag-loaded, immature DC resulted in significant CD4+ T cell and NK cell expansion in the draining lymph nodes at 6 days postvaccination, which persisted for 2 wk. Finally, DC administration in CD8alpha KO mice was associated with robust infiltration of CD4+ T cells and NK cells into the brain tumor parenchyma. These results represent the first demonstration of a potent innate antitumor immune response against CNS tumors in the absence of toxicity. Thus, non-Ag-loaded, immature DC administration, in the setting of CD8 genetically deficient mice, can induce dramatic antitumor immune responses within the CNS that surpass the effects observed in wild-type mice. Our results suggest that a better understanding of the cross-talk between DC and innate immune cells may provide improved methods to vaccinate patients with tumors located both systemically and within the CNS.  相似文献   

8.
The down-regulation of CD62L that accompanies T lymphocyte activation is thought to redirect cells away from lymph nodes to sites of infection. In this study, CD62L was maintained on Ag-activated T cells and their distribution, and ability to clear pathogen from peripheral sites determined. CD62L was down-regulated on Ag-specific CD8 T cells in lungs of C57BL/6 mice but maintained in CD62L transgenic mice at day 8 after influenza infection. However, the numbers of influenza-specific CD8 T cells recruited were similar in CD62L transgenic and C57BL/6 mice. Memory CD8 T cell numbers in the lungs and noninvolved organs 100 days after primary infection were similar in CD62L transgenic and C57BL/6 mice, despite differing CD62L expression. Transgenic mice expressing wild-type CD62L cleared a recombinant vaccinia virus expressing an influenza-derived CD8 T cell epitope as efficiently as C57BL/6 mice. However, transgenic mice expressing a protease resistant mutant of CD62L showed significantly delayed viral clearance, despite normal CTL generation and the presence of CD107a and IFN-gamma expressing influenza-specific CD8 T cells. These results demonstrate that CD62L down-regulation is not required for CD8 memory cells to home to sites of infection. However, their ability to clear virus is significantly compromised if CD62L shedding is abrogated.  相似文献   

9.
Systemic lupus erythematosus is characterized by production of autoantibodies and glomerulonephritis. The murine chronic graft-vs-host (cGVH) model of systemic lupus erythematosus is induced by allorecognition of foreign MHC class II determinants. Previous studies have shown that cGVH could not be induced in CD4 knockout (CD4KO) mice. We have further explored the role of host CD4 T cells in this model. Our studies now show that B cells in CD4KO mice have intrinsic defects that prevent them from responding to allohelp. In addition, B cells in CD4KO mice showed phenotypic differences compared with congeneic C57BL/6 B cells, indicating some degree of in vivo activation and increased numbers of cells bearing a marginal zone B cell phenotype. The transfer of syngeneic CD4 T cells at the time of initiation of cGVH did not correct these B cell abnormalities; however, if CD4 T cells were transferred during the development and maturation of B cells, then the B cells from CD4KO mice acquire the ability to respond in cGVH. These studies clearly indicate that B cells need to coexist with CD4 T cells early in their development to develop full susceptibility to alloactivation signals.  相似文献   

10.
Protective immunity against Leishmania major generated by DNA encoding the LACK (Leishmania homologue of receptor for activated C kinase) Ag has been shown to be more durable than vaccination with LACK protein plus IL-12. One mechanism to account for this may be the selective ability of DNA vaccination to induce CD8+ IFN-gamma-producing T cells. In this regard, we previously reported that depletion of CD8+ T cells in LACK DNA-vaccinated mice abrogated protection when infectious challenge was done 2 wk postvaccination. In this study, we extend these findings to study the mechanism by which CD8+ T cells induced by LACK DNA vaccination mediate both short- and long-term protective immunity against L. major. Mice vaccinated with LACK DNA and depleted of CD8+ T cells at the time of vaccination or infection were unable to control infection when challenge was done 2 or 12 wk postvaccination. Remarkably, it was noted that depletion of CD8+ T cells in LACK DNA-vaccinated mice was associated with a striking decrease in the frequency of LACK-specific CD4+ IFN-gamma-producing T cells both before and after infection. Moreover, data are presented to suggest a mechanism by which CD8+ T cells exert this regulatory role. Taken together, these data provide additional insight into how Th1 cells are generated and sustained in vivo and suggest a potentially novel immunoregulatory role for CD8+ T cells following DNA vaccination.  相似文献   

11.
Plasmodium infections are responsible for millions of cases of malaria and ~1 million deaths annually. Recently, we showed that sterile protection (95%) in BALB/c mice required Plasmodium berghei circumsporozoite protein (CS(252-260))-specific memory CD8 T cells exceeding a threshold of 1% of all PBLs. Importantly, it is not known if Plasmodium species affect the threshold of CS-specific memory CD8 T cells required for protection. Furthermore, C57BL/6 mice immunized with radiation-attenuated parasites are more difficult to protect against Plasmodium sporozoite challenge than similarly immunized BALB/c mice; however, it is not known whether this is the result of different CD8 T cell specificity, functional attributes of CD8 T cells, or mouse strain-specific factors expressed in nonhematopoietic cells. In this article, we show that more CS-specific memory CD8 T cells are required for protection against P. yoelii sporozoite challenge than for protection against P. berghei sporozoite challenge. Furthermore, P. berghei CS(252)-specific CD8 T cells exhibit reduced protection against P. berghei sporozoite challenge in the context of C57BL/6 and C57BL/10 non-MHC-linked genes in CB6F1 and B10.D2 mice, respectively. Generation and immunization of reciprocal chimeric mice between BALB/c and B10.D2 strains revealed that B10 background factors expressed by nonhematopoietic cells increased the threshold required for protection through a CD8 T cell-extrinsic mechanism. Finally, reduced CS-specific memory CD8 T cell protection in P. yoelii-infected BALB/c or P. berghei-infected B10.D2 mice correlated with increased rates of Plasmodium amplification in the liver. Thus, both Plasmodium species and strain-specific background genes in nonhematopoietic cells determine the threshold of memory CD8 T cells required for protection.  相似文献   

12.
DNA- and protein- based vaccines against cutaneous leishmaniasis due to Leishmania major were evaluated using a challenge model that more closely reproduces the pathology and immunity associated with sand fly-transmitted infection. C57BL/6 mice were vaccinated s.c. with a mixture of plasmid DNAs encoding the Leishmania Ags LACK, LmSTI1, and TSA (AgDNA), or with autoclaved L. major promastigotes (ALM) plus rIL-12, and the mice were challenged by inoculation of 100 metacyclic promastigotes in the ear dermis. When challenged at 2 wk postvaccination, mice receiving AgDNA or ALM/rIL-12 were completely protected against the development of dermal lesions, and both groups had a 100-fold reduction in peak dermal parasite loads compared with controls. When challenged at 12 wk, mice vaccinated with ALM/rIL-12 maintained partial protection against dermal lesions and their parasite loads were no longer significantly reduced, whereas the mice vaccinated with AgDNA remained completely protected and had a 1000-fold reduction in dermal parasite loads. Mice vaccinated with AgDNA also harbored few, if any, parasites in the skin during the chronic phase, and their ability to transmit L. major to vector sand flies was completely abrogated. The durable protection in mice vaccinated with AgDNA was associated with the recruitment of both CD8(+) and CD4(+) T cells to the site of intradermal challenge and with IFN-gamma production by CD8(+) T cells in lymph nodes draining the challenge site. These data suggest that under conditions of natural challenge, DNA vaccination has the capacity to confer complete protection against cutaneous leishmaniasis and to prevent the establishment of infection reservoirs.  相似文献   

13.
CD154, one of the most extensively studied T cell costimulation molecules, represents a promising therapeutic target in organ transplantation. However, the immunological mechanisms of CD154 blockade that result in allograft protection, particularly in the context of alloreactive CD4/CD8 T cell activation, remain to be elucidated. We now report on the profound inhibition of alloreactive CD8(+) T cells by CD154 blockade via both CD4-dependent and CD4-independent activation pathways. Using CD154 KO recipients that are defective in alloreactive CD8(+) T cell activation and unable to reject cardiac allografts, we were able to restore CD8 activation and graft rejection by adoptively transferring CD4(+) or CD8(+) T cells from wild-type syngeneic donor mice. CD4-independent activation of alloreactive CD8(+) T cells was confirmed following treatment of wild-type recipients with CD4-depleting mAb, and by using CD4 KO mice. Comparable levels of alloreactive CD8(+) T cell activation was induced by allogenic skin engraftment in both animal groups. CD154 blockade inhibited CD4-independent alloreactive CD8(+) T cell activation. Furthermore, we analyzed whether disruption of CD154 signaling affects cardiac allograft survival in skin-sensitized CD4 KO and CD8 KO recipients. A better survival rate was observed consistently in CD4 KO, as compared with CD8 KO recipients. Our results document CD4-dependent and CD4-independent activation pathways for alloreactive CD8(+) T cells that are both sensitive to CD154 blockade. Indeed, CD154 blockade was effective in preventing CD8(+) T cell-mediated cardiac allograft rejection.  相似文献   

14.
A rapid induction of effector functions in memory T cells provides rapid and intensified protection against reinfection. To determine potential roles of IL-15 in early expansion and activation of memory CD8+ T cells in secondary immune response, we examined the cell division and cytotoxicity of memory CD8+ T cells expressing OVA(257-264)/Kb-specific TCR that were transferred into IL-15-transgenic (Tg) mice, IL-15 knockout (KO) mice, or control C57BL/6 mice followed by challenge with recombinant Listeria monocytogenes expressing OVA (rLM-OVA). In vivo CTL activities and expression of granzyme B of the transferred CD8+ T cells were significantly higher in the IL-15 Tg mice but lower in the IL-15 KO mice than those in control mice at the early stage after challenge with rLM-OVA. In contrast, there was no difference in the cell division in IL-15 Tg mice and IL-15 KO mice compared with those in control mice. In vivo administration of rIL-15 conferred robust protection against reinfection via induction of granzyme B in the memory CD8+ T cells. These results suggest that IL-15 plays an important role in early activation of memory CD8+ T cells.  相似文献   

15.
Limiting dilution analysis was used to estimate the frequency of clonogenic Ag-specific CD4+ T lymphocytes in draining lymph nodes of mice over the course of infection with Leishmania major, and to measure the production of IL-2, IL-3, IL-4, IFN-gamma, and TNF by the resultant clones. Infection of both genetically susceptible BALB/c ("non-healer") and resistant C57BL/6 ("healer") mice resulted in at least a fourfold increase in the frequency (to about 0.3%) and at least a 10-fold increase in the total number of lymph node CD4+ cells that formed clones when cultured with L. major Ag in vitro. At 1 wk after infection, the majority of clones from BALB/c mice secreted IL-4 (precursor frequency 0.15%) and fewer secreted IFN-gamma (0.05%); this pattern remained constant for at least 8 wk after infection. In C57BL/6 mice, however, a high precursor frequency of IL-4-secreting clones was measured in the first 1 to 2 wk when the mice had lesions, but resolution of infection was associated with a decrease in the frequency of IL-4-secreting clones (from 0.13% at 2 wk to 0.03% at 4 wk) and an increase in the frequency of IFN-gamma-secreting clones (from 0.08% to 0.22%). At all stages of infection, most clones from either mouse strain secreted IL-3 and very few secreted TNF. Analysis of PCR-amplified cDNA from draining lymph nodes of infected mice also revealed that IL-4 and IFN-gamma mRNA were expressed in both mouse strains early in infection. IL-4 mRNA was the major species at 2 and 6 wk after infection in BALB/c mice, but declined relative to IFN-gamma mRNA over this time in C57BL/6 lymph nodes. Precursor frequency estimates of lymphokine-secreting CD4+ cells in draining lymph nodes therefore correlated with lymphokine expression patterns in vivo. Analysis of a panel of individual short term clones derived from mice 1 wk after infection revealed marked heterogeneity in lymphokine production patterns. In BALB/c mice, 49% secreted IL-4 without IFN-gamma, 18% secreted IFN-gamma without IL-4, and 14% secreted both IL-4 and IFN-gamma. Similarly in C57BL/6 mice, 39% secreted IL-4, 20% secreted IFN-gamma, and 17% secreted both lymphokines. Many of the clones also produced IL-3 and/or IL-2. Together the data suggest that both IL-4 and IFN-gamma are synthesized early in infection of susceptible and resistant mice as assessed by mRNA and precursor frequency analyses.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Previous studies suggested that depending on their maturation state, dendritic cells (DC) could either induce T cell tolerance (immature and semimature DC) or T cell activation (mature DC). Pretreatment of C57BL/6 mice with encephalitogenic myelin oligodendrocyte glycoprotein (MOG)(35-55) peptide-loaded semimature DC protected from MOG-induced autoimmune encephalomyelitis. This protection was mediated by IL-10-producing CD4 T cells specific for the self Ag. Here we show that semimature DC loaded with the MHC class II-restricted nonself peptide Ag (OVA) induce an identical regulatory T cell cytokine pattern. However, semimature DC loaded simultaneously with MHC class II- and MHC class I-restricted peptides, could efficiently initiate CD8 T cell responses leading to autoimmune diabetes in a TCR-transgenic adoptive transfer model. Double-peptide-loaded semimature DC also induced simultaneously in the same animal partially activated CD8 T cells with cytolytic function as well as protection from MOG-induced autoimmune encephalomyelitis. Our study suggests that the decision between tolerance and immunity not only depends on the DC, but also on the type and activation requirements of the responding T cell.  相似文献   

17.
CD1d-deficient mice have normal numbers of T lymphocytes and natural killer cells but lack Valpha14(+) natural killer T cells. Respiratory syncytial virus (RSV) immunopathogenesis was evaluated in 129xC57BL/6, C57BL/6, and BALB/c CD1d(-/-) mice. CD8(+) T lymphocytes were reduced in CD1d(-/-) mice of all strains, as shown by cell surface staining and major histocompatibility complex class I tetramer analysis, and resulted in strain-specific alterations in illness, viral clearance, and gamma interferon (IFN-gamma) production. Transient activation of NK T cells in CD1d(+/+) mice by alpha-GalCer resulted in reduced illness and delayed viral clearance. These data suggest that early IFN-gamma production and efficient induction of CD8(+)-T-cell responses during primary RSV infection require CD1d-dependent events. We also tested the ability of alpha-GalCer as an adjuvant to modulate the type 2 immune responses induced by RSV glycoprotein G or formalin-inactivated RSV immunization. However, immunized CD1-deficient or alpha-GalCer-treated wild-type mice did not exhibit diminished disease following RSV challenge. Rather, some disease parameters, including cytokine production, eosinophilia, and viral clearance, were increased. These findings indicate that CD1d-dependent NK T cells play a role in expansion of CD8(+) T cells and amplification of antiviral responses to RSV.  相似文献   

18.
Mycobacterium bovis bacillus Calmette-Guérin (M. bovis BCG), the only currently available vaccine against tuberculosis, has been reported to induce regulatory T cells in humans. The activity of regulatory T cells may not only dampen immunogenicity and protective efficacy of tuberculosis-vaccines, but also hamper diagnosis of infection of tuberculosis, when using immune (e.g. IFNγ-release) assays. Still, in settings of infectious diseases and vaccination, most studies have focused on CD4+ regulatory T cells, and not CD8+ regulatory T-cells. Here, we present a comparative analysis of the suppressive phenotype and function of CD4+ versus CD8+ T cells after in vitro live BCG activation of human cells. Moreover, as BCG is administered as a (partly) live vaccine, we also compared the ability of live versus heatkilled BCG in activating CD4+ and CD8+ regulatory T cell responses. BCG-activated CD8+ T cells consistently expressed higher levels of regulatory T cell markers, and after live BCG activation, density and (co-)expression of markers were significantly higher, compared to CD4+ T cells. Furthermore, selection on CD25-expression after live BCG activation enriched for CD8+ T cells, and selection on co-expression of markers further increased CD8+ enrichment. Ultimately, only T cells activated by live BCG were functionally suppressive and this suppressive activity resided predominantly in the CD8+ T cell compartment. These data highlight the important contribution of live BCG-activated CD8+ Treg cells to immune regulation and emphasize their possible negative impact on immunity and protection against tuberculosis, following BCG vaccination.  相似文献   

19.
Infection of C57BL/6 mice with Mycobacterium tuberculosis results in the development of a progressive disease during the first 2 wk after challenge. Thereafter, the disease is controlled by the emergence of protective T cells. We have used this infection model in conjunction with direct T cell expression cloning to identify Ags involved with the early control of the disease. A protective M. tuberculosis-specific CD4 T cell line derived from mice at 3 wk postchallenge was used to directly screen an M. tuberculosis genomic expression library. This screen resulted in the identification of a genomic clone comprising two putative adjacent genes with predicted open reading frames of 10 and 41 kDa, MTB10 and MTB41, respectively (the products of Rv0916c and Rv0915c, respectively, in the TubercuList H37Rv database). MTB10 and MTB41 belong to the PE and PPE family of proteins recently identified to comprise 10% of the M. tuberculosis genome. Evaluation of the recombinant proteins revealed that MTB41, but not MTB10, is the Ag recognized by the cell line and by M. tuberculosis-sensitized human PBMC. Moreover, C57BL/6 mice immunized with MTB41 DNA developed both CD4- (predominantly Th1) and CD8-specific T cell responses to rMTB41 protein. More importantly, immunization of C57BL/6 mice with MTB41 DNA induced protection against infection with M. tuberculosis comparable to that induced by bacillus Calmette-Guérin. Thus, the use of a proven protective T cell line in conjunction with the T cell expression cloning approach resulted in the identification of a candidate Ag for a subunit vaccine against tuberculosis.  相似文献   

20.
The requirement for CD4(+) Th cells in the cross-priming of antitumor CTL is well accepted in tumor immunology. Here we report that the requirement for T cell help can be replaced by local production of GM-CSF at the vaccine site. Experiments using mice in which CD4(+) T cells were eliminated, either by Ab depletion or by gene knockout of the MHC class II beta-chain (MHC II KO), revealed that priming of therapeutic CD8(+) effector T cells following vaccination with a GM-CSF-transduced B16BL6-D5 tumor cell line occurred independently of CD4(+) T cell help. The adoptive transfer of CD8(+) effector T cells, but not CD4(+) effector T cells, led to complete regression of pulmonary metastases. Regression of pulmonary metastases did not require either host T cells or NK cells. Transfer of CD8(+) effector T cells alone could cure wild-type animals of systemic tumor; the majority of tumor-bearing mice survived long term after treatment (>100 days). In contrast, adoptive transfer of CD8(+) T cells to tumor-bearing MHC II KO mice improved survival, but eventually all MHC II KO mice succumbed to metastatic disease. WT mice cured by adoptive transfer of CD8(+) T cells were resistant to tumor challenge. Resistance was mediated by CD8(+) T cells in mice at 50 days, while both CD4(+) and CD8(+) T cells were important for protection in mice challenged 150 days following adoptive transfer. Thus, in this tumor model CD4(+) Th cells are not required for the priming phase of CD8(+) effector T cells; however, they are critical for both the complete elimination of tumor and the maintenance of a long term protective antitumor memory response in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号