首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.

Background

Recently, a new subfamily of long-chain toxins with a Kunitz-type fold was found in scorpion venom glands. Functionally, these toxins inhibit protease activity and block potassium channels. However, the genomic organization and three-dimensional (3-D) structure of this kind of scorpion toxin has not been reported.

Principal Findings

Here, we characterized the genomic organization and 3-D nuclear magnetic resonance structure of the scorpion Kunitz-type toxin, LmKTT-1a, which has a unique cysteine pattern. The LmKTT-1a gene contained three exons, which were interrupted by two introns located in the mature peptide region. Despite little similarity to other Kunitz-type toxins and a unique pattern of disulfide bridges, LmKTT-1a possessed a conserved Kunitz-type structural fold with one α-helix and two β-sheets. Comparison of the genomic organization, 3-D structure, and functional data of known toxins from the α-KTx, β-KTx, γ-KTx, and κ-KTx subfamily suggested that scorpion Kunitz-type potassium channel toxins might have evolved from a new ancestor that is completely different from the common ancestor of scorpion toxins with a CSα/β fold. Thus, these analyses provide evidence of a new scorpion potassium channel toxin subfamily, which we have named δ-KTx.

Conclusions/Significance

Our results highlight the genomic, structural, and evolutionary diversity of scorpion potassium channel toxins. These findings may accelerate the design and development of diagnostic and therapeutic peptide agents for human potassium channelopathies.  相似文献   

2.
3.
Toxins from the venoms of scorpion, snake, and spider are valuable tools to probe the structure-function relationship of ion channels. In this investigation, a new toxin gene encoding the peptide ImKTx1 was isolated from the venom gland of the scorpion Isometrus maculates by constructing cDNA library method, and the recombinant ImKTx1 peptide was characterized physiologically. The mature peptide of ImKTx1 has 39 amino acid residues including six cross-linked cysteines. The electrophysiological experiments showed that the recombinant ImKTx1 peptide had a pharmacological profile where it inhibited Kv1.3 channel currents with IC(50) of 1.70 n± 1.35 μM, whereas 10 μM rImKTx1 peptide inhibited about 40% Kv1.1 and 42% Kv1.2 channel currents, respectively. In addition, 10 μM rImKTx1 had no effect on the Nav1.2 and Nav1.4 channel currents. Multiple sequence alignments showed that ImKTx1 had no homologous toxin peptide, but it was similar with Ca(2+) channel toxins from scorpion and spider in the arrangement of cysteine residues. These results indicate that ImKTx1 is a new Kv1.3 channel blocker with a unique primary structure. Our results indicate the diversity of K(+) channel toxins from scorpion venoms and also provide a new molecular template targeting Kv1.3 channel.  相似文献   

4.
The ICK (inhibitor cystine knot) defines a large superfamily of polypeptides with high structural stability and functional diversity. Here, we describe a new scorpion venom-derived K+ channel toxin (named λ-MeuKTx-1) with an ICK fold through gene cloning, chemical synthesis, nuclear magnetic resonance spectroscopy, Ca2+ release measurements and electrophysiological recordings. λ-MeuKTx-1 was found to adopt an ICK fold that contains a three-strand anti-parallel β-sheet and a 310-helix. Functionally, this peptide selectively inhibits the Drosophila Shaker K+ channel but is not capable of activating skeletal-type Ca2+ release channels/ryanodine receptors, which is remarkably different from the previously known scorpion venom ICK peptides. The removal of two C-terminal residues of λ-MeuKTx-1 led to the loss of the inhibitory activity on the channel, whereas the C-terminal amidation resulted in the emergence of activity on four mammalian K+ channels accompanied by the loss of activity on the Shaker channel. A combination of structural and pharmacological data allows the recognition of three putative functional sites involved in channel blockade of λ-MeuKTx-1. The presence of a functional dyad in λ-MeuKTx-1 supports functional convergence among scorpion venom peptides with different folds. Furthermore, similarities in precursor organization, exon–intron structure, 3D-fold and function suggest that scorpion venom ICK-type K+ channel inhibitors and Ca2+ release channel activators share a common ancestor and their divergence occurs after speciation between buthidae and non-buthids. The structural and functional characterizations of the first scorpion venom ICK toxin with K+ channel-blocking activity sheds light on functionally divergent and convergent evolution of this conserved scaffold of ancient origin.  相似文献   

5.
Potassium channels play a key role in regulating many physiological processes, thus, alterations in their proper functioning can lead to the development of several diseases. Hence, the search for compounds capable of regulating the activity of these channels constitutes an intense field of investigation. Potassium scorpion toxins are grouped into six subfamilies (α, β, γ, κ, δ, and λ). However, experimental structures and functional analyses of the long chain β-KTx subfamily are lacking. In this study, we recombinantly produced the toxins TcoKIK and beta-KTx14.3 present in the venom of Tityus costatus and Lychas mucronatus scorpions, respectively. The 3D structures of these β-KTx toxins were determined by nuclear magnetic resonance. In both toxins, the N-terminal region is unstructured, while the C-terminal possesses the classic CSα/β motif. TcoKIK did not show any clear activity against frog Shaker and human KCNQ1 potassium channels; however, beta-KTx14.3 was able to block the KCNQ1 channel. The toxin-channel interaction mode was investigated using molecular dynamics simulations. The results showed that this toxin could form a stable network of polar-to-polar and hydrophobic interactions with KCNQ1, involving key conserved residues in both molecular partners. The discovery and characterization of a toxin capable of inhibiting KCNQ1 pave the way for the future development of novel drugs for the treatment of human diseases caused by the malfunction of this potassium channel.Statement of significanceScorpion toxins have been shown to rarely block human KCNQ1 channels, which participate in the regulation of cardiac processes. In this study, we obtained recombinant beta-KTx14.3 and TcoKIK toxins and determined their 3D structures by nuclear magnetic resonance. Electrophysiological studies and molecular dynamics models were employed to examine the interactions between these two toxins and the human KCNQ1, which is the major driver channel of cardiac repolarization; beta-KTx14.3 was found to block effectively this channel. Our findings provide insights for the development of novel toxin-based drugs for the treatment of cardiac channelopathies involving KCNQ1-like channels.  相似文献   

6.

Background

The hERG potassium channel can modulate the proliferation of the chronic myelogenous leukemic K562 cells, and its role in the erythroid differentiation of K562 cells still remains unclear.

Principal Findings

The hERG potassium channel blockage by a new 36-residue scorpion toxin BmKKx2, a potent hERG channel blocker with IC50 of 6.7±1.7 nM, enhanced the erythroid differentiation of K562 cells. The mean values of GPA (CD235a) fluorescence intensity in the group of K562 cells pretreated by the toxin for 24 h and followed by cytosine arabinoside (Ara-C) treatment for 72 h were about 2-fold stronger than those of K562 cells induced by Ara-C alone. Such unique role of hERG potassium channel was also supported by the evidence that the effect of the toxin BmKKx2 on cell differentiation was nullified in hERG-deficient cell lines. During the K562 cell differentiation, BmKKx2 could also suppress the expression of hERG channels at both mRNA and protein levels. Besides the function of differentiation enhancement, BmKKx2 was also found to promote the differentiation-dependent apoptosis during the differentiation process of K562 cells. In addition, the blockage of hERG potassium channel by toxin BmKKx2 was able to decrease the intracellular Ca2+ concentration during the K562 cell differentiation, providing an insight into the mechanism of hERG potassium channel regulating this cellular process.

Conclusions/Significance

Our results revealed scorpion toxin BmKKx2 could enhance the erythroid differentiation of leukemic K562 cells via inhibiting hERG potassium channel currents. These findings would not only accelerate the functional research of hERG channel in different leukemic cells, but also present the prospects of natural scorpion toxins as anti-leukemic drugs.  相似文献   

7.
Several peptide families, including insect antimicrobial peptides, plant protease inhibitors, and ion channel gating modifiers, as well as blockers from scorpions, bear a common CSαβ scaffold. The high structural similarity between two peptides containing this scaffold, drosomycin and a truncated scorpion β-toxin, has prompted us to examine and compare their biological effects. Drosomycin is the most expressed antimicrobial peptide in Drosophila melanogaster immune response. A truncated scorpion β-toxin is capable of binding and inducing conformational alteration of voltage-gated sodium channels. Here, we show that both peptides (i) exhibit anti-fungal activity at micromolar concentrations; (ii) enhance allosterically at nanomolar concentration the activity of LqhαIT, a scorpion alpha toxin that modulates the inactivation of the D. melanogaster voltage-gated sodium channel (DmNav1); and (iii) inhibit the facilitating effect of the polyether brevetoxin-2 on DmNav1 activation. Thus, the short CSαβ scaffold of drosomycin and the truncated scorpion toxin can maintain more than one bioactivity, and, in light of this new observation, we suggest that the biological role of peptides bearing this scaffold should be carefully examined. As for drosomycin, we discuss the intriguing possibility that it has additional functions in the fly, as implied by its tight interaction with DmNav1.The cysteine-stabilized αβ scaffold, CSαβ, contains an α-helix packed against a two-stranded β-sheet stabilized by three spatially conserved disulfide bonds (reviewed in Ref. 1). The CSαβ motif appears in a number of polypeptide families that can exert various biological functions such as: short chain (30–50 residues long) and long chain (60–76 residues long) scorpion toxins that affect voltage-gated ion channels, antimicrobial peptides (of insect and plants) as well as plant protease inhibitors (see Fig. 1) (2, 3).Open in a separate windowFIGURE 1.Diversity of peptides containing the CSαβ motif. Representatives from each of five major groups of peptides containing a CSαβ motif are aligned according to their conserved disulfide bridging and common structural features: two β-strands packed against an α-helix. The featured molecules are from a diverse array of organisms. Scorpion α-toxins: P01484 (Aah2 of the North African scorpion Androctonus australis hector), AAB30413 (Ts4 of the Brazilian scorpion Tityus serrulatus); Scorpion β-toxins: P60266 (Css4 of the Mexican scorpion Centruroides suffusus suffusus), 1BCG_A (Bj-xtrIT of the Israeli black scorpion Hottentota judaica); Scorpion potassium channel blockers: P13487 (charybdotoxin of the Israeli yellow scorpion Leiurus quinquestriatus hebraeus), P0C194 (α-KTx 6.11 of the scorpion Opisthacanthus madagascariensis of Madagascar); Insect antimicrobial peptides: NP_523901 (drosomycin of the fruit fly Drosophila melanogaster), 1I2U_A (heliomicin of the tobacco budworm Heliothis virescens); plant γ-thionins: 1N4N (defensin of the garden petunia Petunia hybrida), AAL85480 (defensin of peach Prunus persica), AAM62652 (protease inhibitor II of the thale cress Arabidopsis thaliana).Analysis of the structure-function relationships of several representatives of a subclass of the long chain scorpion toxins family, the scorpion β-toxins (activators of voltage-gated sodium channels (Navs)5), elucidated their bioactive surfaces including those of the anti-insect excitatory and depressant toxins Bj-xtrIT and LqhIT2 (from Hottentota judaica and Leiurus quinquestriatus hebraeus, respectively (46)) and the anti-mammalian β-toxin Css4 (from Centruroides suffusus suffusus (7)). These studies highlighted a conserved pharmacophore positioned on the CSαβ protein core (7). The C-tail, loops, turns, and unstructured stretches that connect to the CSαβ protein core in long chain scorpion toxins constitute a large portion of their exteriors and bear residues that participate in bioactivity (reviewed in Ref. 8). We have recently reported that truncated scorpion β-toxins, lacking the N- and C-terminal regions of the parental peptides but maintaining the CSαβ motif (ΔΔβ-toxins), are able to interact at high affinity with Navs (9). Although by themselves, the ΔΔβ-toxins (ΔΔCss4 and ΔΔBj-xtrIT) were nontoxic and did not bind at the receptor sites of the parental toxins, they exhibited an unexpected ability to allosterically facilitate the activity of a scorpion α-toxin (inhibition of Nav fast inactivation), which binds at receptor site-3 on insect Navs (10), and the effect of the marine polyether toxin brevetoxin-2 (PbTx-2, facilitator of Nav activation), which binds to receptor site-5 (11). However, a short chain potassium channel blocker (charybdotoxin) with a CSαβ structural fold did not exert any of these effects (9). These results indicated that it is not only the CSαβ motif but that specific amino acids at key sites on the protein exterior that can interact with ion channels and either block voltage-gated potassium channels or induce conformational alteration of voltage-gated sodium channels. From a structural viewpoint, the ability of ΔΔBj-xtrIT and ΔΔCss4 to bind to the Nav, as manifested in modulation of the interaction of receptor site-3 and -5 ligands, suggests that by truncation of the two β-toxins, a masked functional surface was exposed. Because the CSαβ motif appears in several protein families including antimicrobial peptides, potassium channel blockers, and sodium channel gating modifiers (Fig. 1) (2, 3), we explored the possibility that a well characterized CSαβ peptide may exert an additional function known for other peptides bearing this scaffold.For this aim, we tested the ability of a well characterized Drosophila melanogaster anti-fungal peptide drosomycin (DRS) to interact with voltage-gated sodium channels. The solution structure of DRS indicates that this 44-amino acid peptide is cross-linked by four disulfide bonds, of which three render a CSαβ structural fold (Fig. 2) (12). Sequence comparison of the truncated scorpion β-toxin ΔΔCss4 with DRS indicates moderate identity (34%) and similarity (50%), including conservation of six cysteine residues that stabilize the CSαβ motif, which is manifested by a remarkable structural similarity (Fig. 2). Moreover, Lys-3, Asp-11, Asn-12, Glu-13, Gln-21, and Gln-22 of ΔΔCss4, which are involved in the interaction with insect Navs, are spatially conserved in DRS (Fig. 2) (9) but not in potassium channel blockers (Fig. 1). In light of the resemblance between the truncated scorpion β-toxin and DRS, we tested whether DRS is able to interact with the D. melanogaster voltage-gated sodium channel DmNav1.Open in a separate windowFIGURE 2.Sequence alignment and three-dimensional structures of ΔΔCss4 and DRS. A, schematic diagrams of the Cα model structures of ΔΔCss4 and DRS covered by semitransparent molecular surfaces. The structure of DRS (right panel) is derived from the Protein Data Bank code 1MYN. The ΔΔCss4 model (left panel) is based on the NMR structure of Cn2 (Protein Data Bank code 1Cn2) and is spatially aligned with that of DRS. A was prepared using PyMOL. B, sequences were aligned according to the conserved cysteine residues, and the disulfide bonds formed between cysteine pairs are marked in solid lines. Dashes indicate gaps. Amino acid residues that were identified as part of the interacting surface of ΔΔCss4 with insect Navs (9) are shown in sticks according to their chemical nature (blue, positive charge; red, negative charge; green, nonpolar) and are also highlighted in the sequence alignment. Corresponding residues in DRS according to sequence and structural alignments are also shown in sticks.  相似文献   

8.
Tao J  Shi J  Yan L  Chen Y  Duan YH  Ye P  Feng Q  Zhang JW  Shu XQ  Ji YH 《PloS one》2011,6(3):e15896

Background

BK channels are usually activated by membrane depolarization and cytoplasmic Ca2+. Especially,the activity of BK channel (α+β4) can be modulated by martentoxin, a 37 residues peptide, with Ca2+-dependent manner. gBK channel (glioma BK channel) and BK channel (α+β1) possessed higher Ca2+ sensitivity than other known BK channel subtypes.

Methodology and Principal Findings

The present study investigated the modulatory characteristics of martentoxin on these two BK channel subtypes by electrophysiological recordings, cell proliferation and Ca2+ imaging. In the presence of cytoplasmic Ca2+, martentoxin could enhance the activities of both gBK and BK channel (α+β1) subtypes in dose-dependent manner with EC50 of 46.7 nM and 495 nM respectively, while not shift the steady-state activation of these channels. The enhancement ratio of martentoxin on gBK and BK channel (α+β1) was unrelated to the quantitive change of cytoplasmic Ca2+ concentrations though the interaction between martentoxin and BK channel (α+β1) was accelerated under higher cytoplasmic Ca2+. The selective BK pore blocker iberiotoxin could fully abolish the enhancement of these two BK subtypes induced by martentoxin, suggesting that the auxiliary β subunit might contribute to the docking for martentoxin. However, in the absence of cytoplasmic Ca2+, the activity of gBK channel would be surprisingly inhibited by martentoxin while BK channel (α+β1) couldn''t be affected by the toxin.

Conclusions and Significance

Thus, the results shown here provide the novel evidence that martentoxin could increase the two Ca2+-hypersensitive BK channel subtypes activities in a new manner and indicate that β subunit of these BK channels plays a vital role in this enhancement by martentoxin.  相似文献   

9.
α-KTx toxin Tc32, from the Amazonian scorpion Tityus cambridgei, lacks the dyad motif, including Lys27, characteristic of the family and generally associated with channel blockage. The toxin has been cloned and expressed for the first time. Electrophysiological experiments, by showing that the recombinant form blocks Kv1.3 channels of olfactory bulb periglomerular cells like the natural Tc32 toxin, when tested on the Kv1.3 channel of human T lymphocytes, confirmed it is in an active fold. The nuclear magnetic resonance-derived structure revealed it exhibits an α/β scaffold typical of the members of the α-KTx family. TdK2 and TdK3, all belonging to the same α-KTx 18 subfamily, share significant sequence identity with Tc32 but diverse selectivity and affinity for Kv1.3 and Kv1.1 channels. To gain insight into the structural features that may justify those differences, we used the recombinant Tc32 nuclear magnetic resonance-derived structure to model the other two toxins, for which no experimental structure is available. Their interaction with Kv1.3 and Kv1.1 has been investigated by means of docking simulations. The results suggest that differences in the electrostatic features of the toxins and channels, in their contact surfaces, and in their total dipole moment orientations govern the affinity and selectivity of toxins. In addition, we found that, regardless of whether the dyad motif is present, it is always a Lys side chain that physically blocks the channels, irrespective of its position in the toxin sequence.  相似文献   

10.
The aim of this study was to evaluate KCNQ1 K+ channel expression in the frog kidney of Rana esculenta. KCNQ1 K+ channel, also known as KvLQT1, is the pore forming α-subunit of the IKs K+ channel, a delayed rectifier voltage-gated K+ channel, which has an important role in water and salt transport in the kidney and gastrointestinal tract. The expression of KCNQ1 K+ channel along tubular epithelium differs from species to species. In the present study the expression of KCNQ1 K+ channel in the frog kidney has been demonstrated by immunohistochemistry. The presence of KCNQ1 K+ channel was demonstrated in the epithelial cells of distal convoluted tubule and collecting duct. However, the pattern of expression of KCNQ1 K+ channel differs between distal convoluted tubules and collecting duct. All epithelial cells of distal convoluted tubules revealed basolateral expression of KCNQ1 K+ channel. On the contrary, only the single cells of collecting duct, probably intercalated cells, showed diffuse cell surface staining with antibodies against KCNQ1 K+ channel. These findings suggest that KCNQ1 K+ channel has cell-specific roles in renal potassium ion transport.Key words: KCNQ1 K+ channel, rana esculenta, frog kidney, immunohistochemistry.  相似文献   

11.
Mutations in KCNQ K+ channel genes underlie several human pathologies. KCNQ α-subunits form either homotetramers or hetero-oligomers with a restricted subset of other KCNQ α-subunits or with KCNE β-subunits. KCNQ1 assembles with KCNE β-subunits but not with other KCNQ α-subunits. By contrast, KCNQ3 interacts with KCNQ2, KCNQ4 and KCNQ5. Using a chimaeric strategy, we show that a cytoplasmic carboxy-terminal subunit interaction domain (sid) suffices to transfer assembly properties between KCNQ3 and KCNQ1. A chimaera (KCNQ1-sidQ3) carrying the si domain of KCNQ3 within the KCNQ1 backbone interacted with KCNQ2, KCNQ3 and KCNQ4 but not with KCNQ1. This interaction was shown by enhancement of KCNQ2 currents, testing for dominant-negative effects of pore mutants, determining its effects on surface expression and co-immunoprecipitation experiments. Conversely, a KCNQ3-sidQ1 chimaera no longer affects KCNQ2 but interacts with KCNQ1. We conclude that the si domain suffices to determine the subunit specificity of KCNQ channel assembly.  相似文献   

12.

Background

Intakes of n-3 polyunsaturated fatty acids (PUFAs), especially EPA (C20∶5n-3) and DHA (C22∶6n-3), are known to prevent fatal coronary heart disease (CHD). The effects of n-6 PUFAs including arachidonic acid (C20∶4n-6), however, remain unclear. δ-5 and δ-6 desaturases are rate-limiting enzymes for synthesizing long-chain n-3 and n-6 PUFAs. C20∶4n-6 to C20∶3n-6 and C18∶3n-6 to C18∶2n-6 ratios are markers of endogenous δ-5 and δ-6 desaturase activities, but have never been studied in relation to incident CHD. Therefore, the aim of this study was to investigate the relation between these ratios as well as genotypes of FADS1 rs174547 and CHD incidence.

Methods

We applied a case-cohort design within the CAREMA cohort, a large prospective study among the general Dutch population followed up for a median of 12.1 years. Fatty acid profile in plasma cholesteryl esters and FADS1 genotype at baseline were measured in a random subcohort (n = 1323) and incident CHD cases (n = 537). Main outcome measures were hazard ratios (HRs) of incident CHD adjusted for major CHD risk factors.

Results

The AA genotype of rs174547 was associated with increased plasma levels of C204n-6, C20∶5n-3 and C22∶6n-3 and increased δ-5 and δ-6 desaturase activities, but not with CHD risk. In multivariable adjusted models, high baseline δ-5 desaturase activity was associated with reduced CHD risk (P for trend = 0.02), especially among those carrying the high desaturase activity genotype (AA): HR (95% CI) = 0.35 (0.15–0.81) for comparing the extreme quintiles. High plasma DHA levels were also associated with reduced CHD risk.

Conclusion

In this prospective cohort study, we observed a reduced CHD risk with an increased C20∶4n-6 to C20∶3n-6 ratio, suggesting that δ-5 desaturase activity plays a role in CHD etiology. This should be investigated further in other independent studies.  相似文献   

13.

Introduction

The cholinergic anti-inflammatory pathway can downregulate inflammation via the release of acetylcholine (ACh) by the vagus nerve. This neurotransmitter binds to the α7 subunit of nicotinic acetylcholine receptors (α7nAChR), expressed on macrophages and other immune cells. We tested the pharmacological and functional profile of two novel compounds, PMP-311 and PMP-072 and investigated their role in modulating collagen-induced arthritis (CIA) in mice.

Methods

Both compounds were characterized with binding, electrophysiological, and pharmacokinetic studies. For in vivo efficacy studies in the CIA model the compounds were administered daily by oral gavage from day 20 till sacrifice at day 34. Disease progression was monitored by visual clinical scoring and measurement of paw swelling. Inflammation and joint destruction were examined by histology and radiology.

Results

Treatment with PMP-311 was effective in preventing disease onset, reducing clinical signs of arthritis, and reducing synovial inflammation and bone destruction. PMP-072 also showed a trend in arthritis reduction at all concentrations tested. The data showed that while both compounds bind to α7nAChR with high affinity, PMP-311 acts like a classical agonist of ion channel activity, and PMP-072 can actually act as an ion channel antagonist. Moreover, PMP-072 was clearly distinct from typical competitive antagonists, since it was able to act as a silent agonist. It synergizes with the allosteric modulator PNU-120596, and subsequently activates desensitized α7nAChR. However, PMP-072 was less efficacious than PMP-311 at both channel activation and desensitization, suggesting that both conducting and non-conducting states maybe of importance in driving an anti-inflammatory response. Finally, we found that the anti-arthritic effect can be observed despite limited penetration of the central nervous system.

Conclusions

These data provide direct evidence that the α7nAChR in immune cells does not require typical ion channel activation to exert its antiinflammatory effects.  相似文献   

14.
The scorpion α-toxin Lqh2 (from Leiurus quinquestriatus hebraeus) is active at various mammalian voltage-gated sodium channels (Navs) and is inactive at insect Navs. To resolve the molecular basis of this preference we used the following strategy: 1) Lqh2 was expressed in recombinant form and key residues important for activity at the rat brain channel rNav1.2a were identified by mutagenesis. These residues form a bipartite functional surface made of a conserved “core domain” (residues of the loops connecting the secondary structure elements of the molecule core), and a variable “NC domain” (five-residue turn and the C-tail) as was reported for other scorpion α-toxins. 2) The functional role of the two domains was validated by their stepwise construction on the similar scaffold of the anti-insect toxin LqhαIT. Analysis of the activity of the intermediate constructs highlighted the critical role of Phe15 of the core domain in toxin potency at rNav1.2a, and has suggested that the shape of the NC-domain is important for toxin efficacy. 3) Based on these findings and by comparison with other scorpion α-toxins we were able to eliminate the activity of Lqh2 at rNav1.4 (skeletal muscle), hNav1.5 (cardiac), and rNav1.6 channels, with no hindrance of its activity at Nav1.1–1.3. These results suggest that by employing a similar approach the design of further target-selective sodium channel modifiers is imminent.The pivotal role of voltage-gated sodium channels (Navs)4 in excitability mark them as major targets for a large variety of toxins that bind at distinct receptor sites and modify their gating (1). These channels are large membrane proteins made of a pore-forming α-subunit of ∼260 kDa and auxiliary β-subunits of ∼30 kDa. The α-subunit is composed of four homologous domains (D1–D4), each consisting of six α-helical transmembrane segments (S1–S6) connected by intracellular and extracellular loops. A key feature in Navs function is their ability to rapidly activate and inactivate, leading to transient increase in Na+ conductance through the cell membrane. This mechanism is attributed to the ability of the positively charged S4 voltage sensors to move across the membrane in response to changes in membrane potential (1, 2).In mammals, at least nine genes encode a variety of Nav subtypes (1, 3), whose expression varies greatly in different tissues (Nav1.1–1.3 mainly in the central nervous system; Nav1.6 in both central and peripheral neurons; Nav1.7 in the peripheral nervous system; Nav1.8 and Nav1.9 in sensory neurons; Nav1.4 and Nav1.5 in skeletal and cardiac muscles, respectively). Nav subtypes are distributed heterogeneously in the human brain and their expression is regulated under developmental and pathological conditions (1, 35). In addition, many disorders in humans result from abnormal function due to mutations in various Nav genes (68). Thus, ligands that show specificity for Nav subtypes may be used for their identification at various tissues and as leads for design of specific drugs. This requires that the bioactive surfaces of these ligands be resolved along with molecular details that determine their specificity.Among the wide range of Nav modifiers, those derived from scorpion venoms play an important role in studying channel activation (β-toxins) and inactivation (α-toxins) (911). The channel site of interaction with scorpion α-toxins, named neurotoxin receptor site-3 (12), is shared also by structurally unrelated toxins from sea anemone and spider venoms (13, 14), which raises questions as to its architecture and boundaries. Based on the findings that site-3 toxins eliminate a gating charge component associated with the movement of D4/S4 (15, 16), and that this segment plays a critical role in coupling channel inactivation to activation (17), scorpion α-toxins were postulated to inhibit channel inactivation by hindering the outward movement of this segment during depolarization (9).Scorpion α-toxins constitute a class of structurally and functionally related 61–67-residue long polypeptides reticulated by four conserved disulfide bridges. Despite a common βαββ core (10, 18, 19) these toxins are highly diverse in sequence and preference for insect and mammalian Navs. Indeed, the α-toxin class is divided to pharmacological groups according to their toxicity in insects and mice brain and ability to compete on binding at insect and mammalian Navs (10) (supplemental Fig. S1): (i) classical anti-mammalian toxins, such as Aah2 (from Androctonus australis hector) and Lqh2 (from Leiurus quinquestriatus hebraeus), which bind with high affinity to Navs at rat brain synaptosomes and are practically non-toxic to insects; (ii) α-toxins, such as LqhαIT, which strongly affect insect Navs and are weak in mammalian brain; and (iii) α-like toxins, such as Lqh3 and BmKM1 (from Buthus martensii Karsch), which are active in both mammalian brain and insects.Efforts to identify α-toxin residues involved in the interaction with the Nav receptor site-3 revealed a generally common bioactive surface divided to two topologically distinct domains: a conserved “core domain” formed by residues of the loops connecting the secondary structure elements of the molecule core, and a variable “NC domain” formed by the five-residue turn (residues 8–12) and the C-tail (2023). These analyses raised the hypothesis that a protruding conformation of the NC domain correlates with high activity at insect Navs, whereas a flat conformation of this domain appears in α-toxins active at the brain channel rNav1.2a (21). The correlation of this structural difference with toxin preference for Nav subtypes was corroborated by constructing the bioactive surface of LqhαIT on the scaffold of the anti-mammalian α-toxin Aah2 ending up with a chimera (Aah2LqhαIT(face)) active on insects, whose NC domain is in the protruding conformation (21). Despite this result, the molecular requirements that enable high affinity binding of classical α-toxins to mammalian Navs have not been clarified, and only initial data about the channel region that constitutes receptor site-3 is available (Refs. 2426; also see Ref. 10 for review).Lqh2 is a 64-residue long toxin from L. quinquestriatus hebraeus (Israeli yellow scorpion) (27) that is almost identical in sequence (96% identity) to the most active anti-mammalian toxin, Aah2, whose structure and action are documented (18, 28, 29). By functional expression and mutagenesis we uncovered residues on the Lqh2 exterior that are putatively involved in bioactivity. By construction of these residues on the scaffold of the anti-insect toxin LqhαIT we confirmed their bioactive role and differentiated those that determine toxin potency from those contributing to toxin efficacy. Comparison to other α-toxins was then instrumental for the design of an Lqh2 mutant that exhibits high specificity for the neuronal channels hNav1.1, rNav1.2a, and rNav1.3.  相似文献   

15.
Animal venoms are rich sources of ligands for studying ion channels and other pharmacological targets. Proteomic analyses of the soluble venom from the Mexican scorpion Vaejovis mexicanus smithi showed that it contains more than 200 different components. Among them, a 36-residue peptide with a molecular mass of 3864 Da (named Vm24) was shown to be a potent blocker of Kv1.3 of human lymphocytes (K(d) ~ 3 pM). The three-dimensional solution structure of Vm24 was determined by nuclear magnetic resonance, showing the peptide folds into a distorted cystine-stabilized α/β motif consisting of a single-turn α-helix and a three-stranded antiparallel β-sheet, stabilized by four disulfide bridges. The disulfide pairs are formed between Cys6 and Cys26, Cys12 and Cys31, Cys16 and Cys33, and Cys21 and Cys36. Sequence analyses identified Vm24 as the first example of a new subfamily of α-type K(+) channel blockers (systematic number α-KTx 23.1). Comparison with other Kv1.3 blockers isolated from scorpions suggests a number of structural features that could explain the remarkable affinity and specificity of Vm24 toward Kv1.3 channels of lymphocytes.  相似文献   

16.
The KCNE3 β-subunit constitutively opens outwardly rectifying KCNQ1 (Kv7.1) K+ channels by abolishing their voltage-dependent gating. The resulting KCNQ1/KCNE3 heteromers display enhanced sensitivity to K+ channel inhibitors like chromanol 293B. KCNE3 was also suggested to modify biophysical properties of several other K+ channels, and a mutation in KCNE3 was proposed to underlie forms of human periodic paralysis. To investigate physiological roles of KCNE3, we now disrupted its gene in mice. kcne3−/− mice were viable and fertile and displayed neither periodic paralysis nor other obvious skeletal muscle abnormalities. KCNQ1/KCNE3 heteromers are present in basolateral membranes of intestinal and tracheal epithelial cells where they might facilitate transepithelial Cl secretion through basolateral recycling of K+ ions and by increasing the electrochemical driving force for apical Cl exit. Indeed, cAMP-stimulated electrogenic Cl secretion across tracheal and intestinal epithelia was drastically reduced in kcne3−/− mice. Because the abundance and subcellular localization of KCNQ1 was unchanged in kcne3−/− mice, the modification of biophysical properties of KCNQ1 by KCNE3 is essential for its role in intestinal and tracheal transport. Further, these results suggest KCNE3 as a potential modifier gene in cystic fibrosis.  相似文献   

17.

Background

Colombia and Brazil are affected by severe cases of scorpionism. In Colombia the most dangerous accidents are caused by Tityus pachyurus that is widely distributed around this country. In the Brazilian Amazonian region scorpion stings are a common event caused by Tityus obscurus. The main objective of this work was to perform the molecular cloning of the putative Na+-channel scorpion toxins (NaScTxs) from T. pachyurus and T. obscurus venom glands and to analyze their phylogenetic relationship with other known NaScTxs from Tityus species.

Methodology/Principal Findings

cDNA libraries from venom glands of these two species were constructed and five nucleotide sequences from T. pachyurus were identified as putative modulators of Na+-channels, and were named Tpa4, Tpa5, Tpa6, Tpa7 and Tpa8; the latter being the first anti-insect excitatory β-class NaScTx in Tityus scorpion venom to be described. Fifteen sequences from T. obscurus were identified as putative NaScTxs, among which three had been previously described, and the others were named To4 to To15. The peptides Tpa4, Tpa5, Tpa6, To6, To7, To9, To10 and To14 are closely related to the α-class NaScTxs, whereas Tpa7, Tpa8, To4, To8, To12 and To15 sequences are more related to the β-class NaScTxs. To5 is possibly an arthropod specific toxin. To11 and To13 share sequence similarities with both α and β NaScTxs. By means of phylogenetic analysis using the Maximum Parsimony method and the known NaScTxs from Tityus species, these toxins were clustered into 14 distinct groups.

Conclusions/Significance

This communication describes new putative NaScTxs from T. pachyurus and T. obscurus and their phylogenetic analysis. The results indicate clear geographic separation between scorpions of Tityus genus inhabiting the Amazonian and Mountain Andes regions and those distributed over the Southern of the Amazonian rainforest. Based on the consensus sequences for the different clusters, a new nomenclature for the NaScTxs is proposed.  相似文献   

18.

Background

Prions are infectious proteins propagating as self-perpetuating amyloid polymers. The [Het-s] prion of Podospora anserina is involved in a cell death process associated with non-self recognition. The prion forming domain (PFD) of HET-s adopts a β-solenoid amyloid structure characterized by the two fold repetition of an elementary triangular motif. [Het-s] induces cell death when interacting with HET-S, an allelic variant of HET-s. When templated by [Het-s], HET-S undergoes a trans-conformation, relocates to the cell membrane and induces toxicity.

Methodology/Principal Findings

Here, comparing HET-s homologs from different species, we devise a consensus for the HET-s elementary triangular motif. We use this motif to screen genomic databases and find a match to the N-terminus of NWD2, a STAND protein, encoded by the gene immediately adjacent to het-S. STAND proteins are signal transducing ATPases which undergo ligand-induced oligomerisation. Homology modelling predicts that the NWD2 N-terminal region adopts a HET-s-like fold. We propose that upon NWD2 oligomerisation, these N-terminal extensions adopt the β-solenoid fold and template HET-S to adopt the amyloid fold and trigger toxicity. We extend this model to a putative prion, the σ infectious element in Nectria haematococca, because the s locus controlling propagation of σ also encodes a STAND protein and displays analogous features. Comparative genomic analyses indicate evolutionary conservation of these STAND/prion-like gene pairs, identify a number of novel prion candidates and define, in addition to the HET-s PFD motif, two distinct, novel putative PFD-like motifs.

Conclusions/Significance

We suggest the existence, in the fungal kingdom, of a widespread and evolutionarily conserved mode of signal transduction based on the transmission of an amyloid-fold from a NOD-like STAND receptor protein to an effector protein.  相似文献   

19.
20.

Background

Many bacterial surface exposed proteins mediate the host-pathogen interaction more effectively in the presence of Ca2+. Leptospiral immunoglobulin-like (Lig) proteins, LigA and LigB, are surface exposed proteins containing Bacterial immunoglobulin like (Big) domains. The function of proteins which contain Big fold is not known. Based on the possible similarities of immunoglobulin and βγ-crystallin folds, we here explore the important question whether Ca2+ binds to a Big domains, which would provide a novel functional role of the proteins containing Big fold.

Principal Findings

We selected six individual Big domains for this study (three from the conserved part of LigA and LigB, denoted as Lig A3, Lig A4, and LigBCon5; two from the variable region of LigA, i.e., 9th (Lig A9) and 10th repeats (Lig A10); and one from the variable region of LigB, i.e., LigBCen2. We have also studied the conserved region covering the three and six repeats (LigBCon1-3 and LigCon). All these proteins bind the calcium-mimic dye Stains-all. All the selected four domains bind Ca2+ with dissociation constants of 2–4 µM. Lig A9 and Lig A10 domains fold well with moderate thermal stability, have β-sheet conformation and form homodimers. Fluorescence spectra of Big domains show a specific doublet (at 317 and 330 nm), probably due to Trp interaction with a Phe residue. Equilibrium unfolding of selected Big domains is similar and follows a two-state model, suggesting the similarity in their fold.

Conclusions

We demonstrate that the Lig are Ca2+-binding proteins, with Big domains harbouring the binding motif. We conclude that despite differences in sequence, a Big motif binds Ca2+. This work thus sets up a strong possibility for classifying the proteins containing Big domains as a novel family of Ca2+-binding proteins. Since Big domain is a part of many proteins in bacterial kingdom, we suggest a possible function these proteins via Ca2+ binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号