首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study is made of the motion of a plasma with a frozen-in magnetic field along the electrode surfaces in the direction transverse to the magnetic field. A one-dimensional problem of an electrode sheath is formulated in which all of the quantities depend only on the coordinate orthogonal to the electrode surface. Viscous plasma heating, plasma cooling via heat conduction, and other kinetic effects are taken into consideration. Account is also taken of the effect of plasma acceleration and of the related current that is transverse to the electrode surfaces and, due to the Hall effect, carries the magnetic flux away from the cathode and toward the anode. Solving the one-dimensional problem with a constant electric current and constant magnetic field shows that, in a sheath that forms near the cathode, the solution becomes self-similar, the plasma mass grows linearly, and the electron magnetization parameter remains unchanged. It is found that the anode sheath cannot be described in the magnetohydrodynamic approximation, according to which the plasma density in the sheath rapidly vanishes, while the current through the sheath remains constant. This difficulty can be overcome by incorporating some of the nonhydrodynamic effects (primarily, electron dispersion), thereby making the problem physically correct. Solving the problem numerically shows that a decrease in the plasma density in the anode sheath due to the Hall effect gives rise to additional significant plasma acceleration.  相似文献   

2.
Results are presented from experimental investigations of the dynamics of optical emission from a nanosecond diffuse discharge in a rod-plane electrode system. A study was made of discharges in a 10-cm-long interelectrode gap in atmospheric-pressure air (the cathode being a 1-cm-diameter rod with a bullet-shaped end). The voltage across the discharge gap was 220 kV and the voltage pulse duration was 180 ns, the voltage rise time being 10 ns. In experiments, the discharges were observed to evolve through two stages: the bridging stage and the conduction stage. The bridging stage begins with intense optical emission from the cathode region, the onset of the emission being delayed with respect to the beginning of the voltage pulse. Simultaneously with the onset of optical emission, a displacement current corresponding to the motion of charged particles begins to be generated in the cathode region. The duration of this current corresponds to the time the emission front takes to bridge the gap. As the emission front reaches the anode region, the current increases abruptly, indicating the beginning of the conduction stage. It was found that the time delay of optical emission relative to the beginning of the voltage pulse largely governs the discharge parameters: as the time delay becomes longer, the emission front velocity in the bridging stage increases from 0.6 to 1.5 cm/ns, the probability of realizing a multichannel structure of the discharge becomes higher, and the discharge current and the intensity of X-ray emission from the discharge grow.  相似文献   

3.
The dynamics of the spatial structure of the plasma of pulsed discharges in air and nitrogen in a nonuniform electric field and their erosion effect on the plane anode surface were studied experimentally. It is established that, at a nanosecond front of the voltage pulse, a diffuse discharge forms in the point cathode–plane anode gap due to the ionization wave propagating from the cathode. As the gap length decreases, the diffuse discharge transforms into a spark. A bright spot on the anode appears during the diffuse discharge, while the spark channel forms in the later discharge stage. The microstructure of autographs of anode spots and spark channels in discharges with durations of several nanoseconds is revealed. The autographs consist of up to 100 and more microcraters 5–100 μm in diameter. It is shown that, due to the short duration of the voltage pulse, a diffuse discharge can be implemented, several pulses of which do not produce appreciable erosion on the plane anode or the soot coating deposited on it.  相似文献   

4.
Breakdown dynamics in the course of glow discharge ignition in a long discharge tube (80 cm in length and 25 mm in diameter) filled with argon at a pressure of 3–4 Torr and mercury vapor at room temperature was studied experimentally. Rectangular voltage pulses with amplitudes from 1 to 2.5 kV were applied to the tube anode, the cathode being grounded. Complex electrical and optical measurements of the breakdown dynamics were carried out. Breakdown begins with a primary discharge between the anode and the tube wall. In this stage, a jump in the anode current and a sharp decrease in the anode voltage are observed and prebreakdown ionization wave arises near the anode. The cathode current appears only after the ionization wave reaches the cathode. The wave propagation velocity was measured at different points along the tube axis. The wave emission spectrum contains Hg, Ar, and Ar+ lines. The intensities of these lines measured at a fixed point exhibit very different time behaviors. The effect of the tube shielding on the breakdown characteristics was examined. It is found that, at a sufficiently narrow gap between the shield and the tube, this effect can be substantial.  相似文献   

5.
The properties of an electric arc operating in open air at currents of lower than 1 A were studied experimentally. The rod cathode was oriented horizontally. Cylindrical rods and plane plates either installed strictly vertically in front of the cathode end or tilted at a certain angle served as the anode. It is shown that, with such an electrode configuration, it is possible to form a discharge channel much longer than the electrode gap length. Regimes of regular oscillations are revealed, and conditions for their appearance are established. The electric field strength in the arc column and the electron temperature near the anode are calculated.  相似文献   

6.
A spherical glow discharge with a pointlike anode is considered in a self-consistent drift-diffusion approximation. The model includes the time-dependent continuity equations for ions and electrons in the drift-diffusion approximation and Poisson’s equation for the radial electric field. In finding steady-state distributions, Ohm’s law is used to relate the discharge voltage and discharge current. Steady-state distributions of the plasma parameters across the discharge gap, current-voltage characteristics, and cathode characteristics for an abnormal spherical discharge in molecular nitrogen are obtained. In a subnormal glow-discharge regime, oscillations in the conduction current, potential, and other discharge parameters are revealed. Similar regimes are also observed in conventional discharges in tubes.  相似文献   

7.
Mechanisms of tumor electrochemical treatment (ECT) were studied using normal dog liver. Five physical and chemical methods were used. Two platinum electrodes were inserted into an anesthetized dog's liver at 3 cm separation. A voltage of 8.5 V direct current (DC) at an average current of 30 mA was applied for 69 min; total charge was 124 coulombs. Concentrations of selected ions near the anode and cathode were measured. The concentrations of Na+ and K+ ions were higher around the cathode, whereas the concentration of Cl ions was higher around the anode. Water contents and pH were determined near the anode and the cathode at the midpoint between the two electrodes and in an untreated area away from the electrodes. Hydration occurred around the cathode, and dehydration occurred around the anode. The pH values were 2.1 near the anode and 12.9 near the cathode. Spectrophotometric scans of the liver sample extract were obtained, and the released gases were identified by gas chromatography as chlorine at the anode and hydrogen at the cathode. These results indicate that a series of electrochemical reactions take place during ECT. The cell metabolism and its environment are severely disturbed. Both normal and tumor cells are rapidly and completely destroyed in this altered environment. We believe that the above reactions are the ECT mechanisms for treating tumors. Bioelectromagnetics 18:2–7, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
For the first time, cathode and anode drops of powerful low-pressure amalgam lamps were measured. The lamp discharge current is 3.2 A, discharge current frequency is 43 kHz, linear electric power is 2.4 W/cm. The method of determination of a cathode drop is based on the change of a lamp operating voltage at variation of the electrode filament current at constant discharge current. The total (cathode plus anode) drop of voltage was measured by other, independent ways. The maximum cathode fall is 10.8 V; the anode fall corresponding to the maximal cathode fall is 2.4 V. It is shown that in powerful low pressure amalgam lamps the anode fall makes a considerable contribution (in certain cases, the basic one) to heating of electrodes. Therefore, the anode fall cannot be neglected, at design an electrode and ballast of amalgam lamps with operating discharge current frequency of tens of kHz.  相似文献   

9.
A novel method that embeds Pt voltage probes into the triple‐phase boundary (TPB) is developed. Moreover, the quantitative contributions of the anode, the cathode, and the electrolyte to cell performance are investigated in situ for anode‐supported planar solid oxide fuel cells (SOFCs). The voltage and maximum output power density (MOPD) measured by the probes, which are placed on both sides of the electrolyte, account for 97.3% and 94.4%, respectively, of those of the cell during the instantaneous current–voltage testing. When the stack is discharged at 0.32 A cm?2 for 200 h, the voltage drops of the anode, the cathode, and the electrolyte account for 76.9%, 15.4%, and 7.7%, respectively, of the total voltage drop of the unit cell. The ohmic resistance of the unit cell primarily depends on the resistance that results from the TPB. The variation in cell resistance is mainly attributed to the increase in anode polarization resistance caused by Ni particle agglomeration. However, cell voltage is more sensitive to the TPB ohmic resistance, which may be the primary factor for SOFC degradation.  相似文献   

10.
A dc cylindrical coaxial glow discharge with an inner grid anode has been studied. The region between the two electrodes is seen dark, while a brightly glowing region forms inside the grid anode up to the center. The current-voltage characteristic of a dc cylindrical glow discharge in nitrogen is similar to that of a normal glow discharge, while the normal glow discharge voltage decreases with increasing pressure. The minimum plasma potentials are observed in the hollow cathode region due to the accumulation of electrons at the back of the grid anode. At the center, some of the passed electrons are converged, so their potential is decreased. These electrons have a sufficient time to be redistributed to form one group with a Maxwellian electron energy distribution function. The electron temperature measured by electric probes varies from 1.6 to 3.6 eV, while the plasma density varies from 3.9 × 1016 to 7 × 1013 m−3, depending on the discharge current and probe position. The plasma density increases as the electrons move radially from the grid toward the central region, while their temperature decreases.  相似文献   

11.
Results from experimental studies of an electric discharge operating between a solid anode and an electrolytic cathode in a wide pressure range are presented. Specific features of the discharge ignition and discharge shape and peculiarities the structure of cathode spots on the electrolyte surface and anode spots on the surface of the solid electrode are revealed. The dependences of the current density on the electrolytic cathode and metal anode on the total current are measured, and the spatial distribution of the electric field is determined. A transition of a glow discharge into a multichannel discharge is investigated. The experimental data on the frequency and amplitude of the current and voltage pulsations are presented. Requirements for the maintenance of an electric discharge with an electrolytic cathode are formulated using the obtained experimental results.  相似文献   

12.
The formation of a neck in the cathode plasma jet in the initial stage of a low-voltage vacuum spark is investigated experimentally and theoretically. X-ray bursts corresponding to an electron temperature of 150–300 eV are detected. With the use of a pinhole camera, it is found that an emitting region less than 1 mm in size is located near the cathode. The free expansion of a current-carrying cathode plasma jet with a current growing in accordance with the experimentally observed time dependence is simulated using a hydrodynamic model. It is shown that the neck forms at the front of the plasma jet due to the plasma compression by the magnetic self-field. In the constriction region, the plasma is rapidly heated and multiply charged ions are generated. The calculated spatial and temporal variations in the electron temperature and average ion charge are close to the measured dependences over a wide range of the discharge parameters.  相似文献   

13.
An analysis is made of the current break process in microsecond plasma opening switches and their possible application in high-current generators. Necessary conditions are determined for generating megavolt pulses in the erosion mode of a plasma opening switch with the gap insulated by an external magnetic field. Under these conditions, efficient sharpening of high-power submegampere current pulses can be achieved. The possibility of using plasma opening switches operating at voltages of 5–6 MV to generate X-ray and gamma emission is discussed. The main operating and design parameters of a six-module plasma opening switch with a current pulse amplitude of 3.7 MA and voltage of 4–6 MV for use in the MOL generator, which is the prototype of one of the 24 modules of the projected Baikal multimegajoule generator, are estimated by using the available scalings.  相似文献   

14.
Investigations of high-voltage open discharge in helium have shown a possibility of generation of current pulses with subnanosecond front rise, due to ultra-fast breakdown development. The open discharge is ignited between two planar cathodes with mesh anode in the middle between them. For gas pressure 6 Torr and 20 kV applied voltage, the rate of current rise reaches 500 A/(cm2 ns) for current density 200 A/cm2 and more. The time of breakdown development was measured for different helium pressures and a kinetic model of breakdown in open discharge is presented, based on elementary reactions for electrons, ions and fast atoms. The model also includes various cathode emission processes due to cathode bombardment by ions, fast atoms, electrons and photons of resonant radiation with Doppler shift of frequency. It is shown, that the dominating emission processes depend on the evolution of the discharge voltage during the breakdown. In the simulations, two cases of voltage behavior were considered: (i) the voltage is kept constant during the breakdown; (ii) the voltage is reduced with the growth of current. For the first case, the exponentially growing current is maintained due to photoemission by the resonant photons with Doppler-shifted frequency. For the second case, the dominating factor of current growth is the secondary electron emission. In both cases, the subnanosecond rise of discharge current was obtained. Also the effect of gas pressure on breakdown development was considered. It was found that for 20 Torr gas pressure the time of current rise decreases to 0.1 ns, which is in agreement with experimental data.  相似文献   

15.
An atmospheric-pressure dc discharge in air (i = 10–50 mA) with metal and liquid electrolyte electrodes was studied experimentally. An aqueous solution of sodium chloride (0.5 mol/L) was used as the cathode or anode. The electric field strength in the plasma and the cathode (anode) voltage drops were obtained from the measured dependences of the discharge voltage on the electrode gap length. The gas temperature was deduced from the spectral distribution of nitrogen emission in the band N2(C3Π u B3Π g , 0–2). The time dependences of the temperatures of the liquid electrolyte electrodes during the discharge and in its afterglow, as well as the evaporation rate of the solution, were determined experimentally. The contributions of ion bombardment and heat flux from the plasma to the heating of the liquid electrode and transfer of solvent (water) into the gas phase are discussed using the experimental data obtained.  相似文献   

16.
Self-sustained glow discharge with a hollow cathode was studied at high discharge currents (up to 30 A). Using a grid analyzer placed on the side flange of the hollow cathode, the ion and electron currents flowing in the cathode sheath were measured. At a discharge current of 30 A, pressure of 0.2?C2 Pa, and plasma density of 1011 cm?3, the coefficient of secondary ion-electron emission ?? calculated from the experimental data is found to be 0.1?C0.15. The dependences of the plasma parameters on the area of the small anode placed inside the larger hollow cathode are determined.  相似文献   

17.
Experimental data on the spatial structure of a single-pulse sliding discharge in neon at voltages below, equal to, and above the threshold for spark breakdown are discussed. The experiments were carried at gas pressures of 30 and 100 kPa and different polarities of the discharge voltage. Photographs of the plasma structure in two discharge chambers with different dimensions of the discharge zone and different thicknesses of an alumina dielectric plate on the surface of which the discharge develops are inspected. Common features of the prebreakdown discharge and its specific features depending on the voltage polarity and gas pressure are analyzed. It is shown that, at voltages below the threshold for spark breakdown, a low-current glow discharge with cathode and anode spots develops in the electrode gap. Above the breakdown threshold, regardless of the voltage polarity, spark channels directed from the cathode to the anode develop against the background of a low-current discharge.  相似文献   

18.
The combination of high‐capacity anodes and high‐voltage cathodes has garnered a great deal of attention in the pursuit of high‐energy‐density lithium‐ion batteries. As a facile and scalable electrode‐architecture strategy to achieve this goal, a direct one‐pot decoration of high‐capacity silicon (Si) anode materials and of high‐voltage LiCoO2 (LCO) cathode materials is demonstrated with colloidal nanoparticles composed of electroconductive antimony‐doped tin oxide (ATO). The unusual ATO nanoparticle shells enhance electronic conduction in the LCO and Si electrode materials and mitigate unwanted interfacial side reactions between the electrode materials and liquid electrolytes. The ATO‐coated LCO materials (ATO‐LCO) enable the construction of a high‐mass‐loading cathode and suppress the dissolution of cobalt and the generation of by‐products during high‐voltage cycling. In addition, the ATO‐coated Si (ATO‐Si) anodes exhibit highly stable capacity retention upon cycling. Integration of the high‐voltage ATO‐LCO cathode and high‐capacity ATO‐Si anode into a full cell configuration brings unprecedented improvements in the volumetric energy density and in the cycling performance compared to a commercialized cell system composed of LCO/graphite.  相似文献   

19.
Electromigration, a tool for studies on anaerobic ciliates   总被引:1,自引:0,他引:1  
Abstract By applying electric current, anaerobic ciliates could be extracted from sludge samples. All the freshwater ciliates tested had one point of optimal current and voltage where they reached the highest net speed of migration in the electric field. The swimming behavior of Metopus es was tested under different current and voltage conditions. During electromigration the freshwater, marine and rumen ciliates moved from the anode to the cathode. In the anaerobic freshwater ciliates high numbersof methanogenic bacteria of different size were present. At the depth in the sludge with the highest number of Metopus minimus (660 cells ·ml−1, a peak of methane production also occurred.  相似文献   

20.
One of the key problems of the Baikal project, intended to create a superpower pulsed generator for ICF experiments, is that of matching a multimodule plasma opening switch (POS) to a liner load. An intermediate inductance or a separating discharger is proposed to be used as a matching element between the POS and the load. An analysis is made of the effect of both versions of the matching system on the synchronization of the POS modules and the energy transfer from the inductive storage to the load. Methods for optimizing the matching element are examined. It is shown that the POS modules can be synchronized and the inductive storage energy can be efficiently transferred to a low-impedance load. A multigap vacuum discharger with a point anode and plane cathode is to be used as a separating discharger. Such an electrode system make it possible to concentrate the electric field at the point anode and to substantially enhance the electric strength of the inter-electrode gap. Results are presented from experimental studies of vacuum breakdown in such an electrode system with a gap length of about 1 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号