首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Direct somatic embryogenesis from axes of mature peanut embryos   总被引:2,自引:0,他引:2  
Summary Plant regeneration via somatic embryogenesis was obtained in peanut (Arachis hypogaea L.) from axes of mature zygotic embryos. The area of greatest embryogenic activity was a 2-mm region adjacent to and encircling the epicotyl. Somatic embryogenesis was evaluated on Murashige and Skoog media supplemented with a variety of auxin treatments. Maximum production occurred on medium supplemented with 3 mg · liter−1 4-amino-3,5,6-trichloropicolinic acid. Explant cultures were transferred to half-strength medium supplemented with 1 mg · liter−1 gibberellic acid for somatic embryo germination and early plantlet growth. Plantlets, transferred to soil, were placed in a greenhouse and grown to maturity.  相似文献   

2.
Genotypic control of peanut somatic embryogenesis   总被引:2,自引:0,他引:2  
The protocol for obtaining a high frequency of plant development via somatic embryogenesis from mature zygotic embryo-derived leaflets of peanut (Arachis hypogaea L.) involves multiple stages; these include the induction of embryogenic masses, development of embryos, radicle emergence/conversion of embryos and the development of plants from rooted abnormal embryos. Sixteen genotypes were subjected to this protocol by exposing mature zygotic embryo-derived leaflets to the common media sequence and comparing responses. Although the protocol was effective for all the genotypes, variation in frequency of response at each stage of development indicated that, with the exception of root meristem differentiation and subsequent radicle emergence, the whole process of somatic embryogenesis depended on the genotypic constitution of the original plant. The failure of somatic embryos to undergo conversion to plantlets could be a genotype-dependent characteristic. Received: 5 June 1997 / Revision received: 2 December 1997 / Accepted: 12 December 1997  相似文献   

3.
Genotypes representing the three botanical varieties of peanut (Arachis hypogaea L.) were assessed for somatic embryogenesis and subsequent plant conversion from mature zygotic embryo axes. Explants were initially cultured on Murashige and Skoog medium supplemented with 12.42 M 4-amino-3,5,6-trichloropicolinic acid. Individual somatic embryos wer isolated from explant tissue and used to initiate repetitive liquid cultures. There were significant differences among genotypes and varieties for somatic embryo formation and plant regeneration using a single media sequence. Botanical variety fastigiata had a lower embryogenic frequency and produced significantly fewer embryos than either hypogaea or vulgaris, which were similar in response.Abbreviations EA zygotic embryo axes - MS Murashige and Skoog (1962) medium - picloram 4-amino-3,5 - 6 trichloropicolinic acid  相似文献   

4.
Repetitive somatic embryogenesis from peanut cultures in liquid medium   总被引:3,自引:0,他引:3  
Summary A regeneration system based on repetitive somatic embryogenesis was developed for peanut (Arachis hypogaea L.). Embryogenic suspension cultures were initiated using individual somatic embryos induced from immature cotyledons cultured on a modified Murashige and Skoog medium containing 40 mg/l 2,4-D for 30 days. After transfer to a modified MS liquid medium, the somatic embryos produced masses of secondary and tertiary embryos which continued to proliferate following manual separation and subculture of the embryogenic clumps. The cultures exhibited exponential growth, and have been maintained for over one year without apparent loss of embryogenic potential. Further embryo development, germination, and conversion were achieved by placing embryo clumps onto hormone-free, solid medium. The inclusion of a desiccation period during embryo development enhanced conversion four-fold. Plants have been established in soil and appear to be phenotypically normal.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - NAA 1-naphthaleneacetic acid - BA 6-benzylaminopurine - MSO Modified Murashige and Skoog basal medium - EM embryogenic masses  相似文献   

5.
The role of proline in thidiazuron-induced somatic embryogenesis of peanut   总被引:7,自引:0,他引:7  
Summary Peanut seeds germinated on media supplemented with thidiazuron [TDZ: N-phenyl-N′-(1,2,3-thiadiazol-yl)urea], formed somatic embryos at the hypocotyledonary notch region by Day 35 of the culture period. Supplementation of the culture media with proline, thioproline, or glutamine reduced the total number of embryos formed, but the resulting embryos were larger, greener and had a more synchronous development than the regenerants formed on media containing TDZ alone. Analysis of the endogenous amino acid content of the germinating seeds during the induction phase of somatic embryogenesis revealed accumulation of proline to 6% of the dry seed weight. Concurrent with the emergence of the radicle, the proline concentration remained significantly elevated throughout the expression phase of embryogenesis. Several other amino acids including alanine, aspartate, asparagine, glutamate, glutamine, γ-aminobutyrate (GABA), hydroxyproline, isoleucine, threonine and valine accumulated to peak values approximately 10-fold higher than those of the controls. These results indicate that proline plays a key role in directing the route of TDZ-induced somatic embryogenesis and that TDZ effectively stimulates a cascade of metabolic events resulting in the production of specific metabolites, including amino acids, required for the regenerative process.  相似文献   

6.
Factors affecting somatic embryogenesis in peanut (Arachis hypogaea L.) using leaflet explants of seedlings obtained from aseptically germinated embryo axes were evaluated. Somatic embryogenesis was influenced by developmental stage, leaflet size, induction medium, and time on induction medium. Leaflets that were 5–7 mm long had a greater embryogenic response than smaller or larger leaflets. Percent embryogenesis and mean number of embryos were related to the developmental stage of germinating seedlings. A greater response was obtained if leaflets were folded and closely appressed. Preselection of leaflets increased percent embryogenesis from 21% up to 67%. As leaflets unfolded, embryogenesis decreased; open leaflets lost the potential for embryogenesis. The optimal induction conditions were a 7-day incubation period on Murashige and Skoog medium with 136 μm 2,4-dichlorophenoxyacetic acid and 0.93 μm kinetin. Somatic embryos germinated to form plants that exhibited a normal morphology. Received: 29 December 1997 / Revision received: 9 April 1998 / Accepted: 24 April 1998  相似文献   

7.
Somatic embryos from immature cotyledons in peanut (Arachis hypogaea) were initiated on media supplemented with 2,4-dichlorophenoxyacetic acid (2,4-d). Over 90% primary embryogenesis and 41–46% repetitive embryogenesis were obtained 12 weeks after initiation by maintaining embryogenic cultures on medium containing 20 mg 1-1 2,4-d. Maintenance of cultures on medium with 30 or 40 mg I-1 2,4-d resulted in lower primary and secondary embryogenesis, and proliferation of nonembryogenic callus. Transfer of embryogenic cultures to a secondary medium with 10 or 20 mg I-1 2,4-d significantly enhanced secondary embryogenesis compared to basal medium without the growth regulator. The use of Murashige & Skoog versus Finer's media had no significant effect on embryogenesis (85–95%), repetitive embryogenesis (11–37%) or mean embryo number. Secondary embryogenesis was also maintained for over one year by repeated subculture of isolated somatic embryos on medium with 20 mg I-1 2,4-d.Abbreviations B5 Gamborg et al. medium (Gamborg et al. 1968) - 2,4-d 2,4-dichlorophenoxyacetic acid - FN Finer & Nagasawa medium (Finer & Nagasawa 1968) - MS Murashige & Skoog medium (Murashige & Skoog 1962)  相似文献   

8.
Influence of auxin type and concentration on peanut somatic embryogenesis   总被引:8,自引:0,他引:8  
Somatic embryogenesis in peanut (Arachis hypogaea L.) using immature cotyledonary explants was induced on a wide range of 2,4-dichlorophenoxyacetic acid (2,4-D) (5 to 60mg l–1) and naphthaleneacetic acid (NAA) (20 to 50 mg l–1) levels. Percent embryogenesis ranged from 31 to 94%. As auxin level increased in induction medium, percent embryogenesis decreased and was associated with browning of explants. However, with higher 2,4-D induction levels (40 mg l–1 and over), embryogenic explants had dense masses of embryogenic areas and repetitive embryogenesis was enhanced. Higher auxin concentrations during induction decreased precocious germination of embryos, but had no marked effect on somatic embryo morphology. The use of 2,4-D compared to NAA in the induction medium resulted in greater per cent embryogenesis and mean number of embryos. Embryos induced on NAA were harder, less pliant, and less succulent; cultures exhibited more extensive root development and nonembryogenic callus proliferation.Abbreviations B5 Gamborg et al. (1968) - BA benzyladenine - 2,4-D dichlorophenoxyacetic acid - IAA indole-3-acetic acid - MS Murashige & Skoog (1962) - NAA naphthaleneacetic acid - picloram 4-amino-3,5,6-trichloropicolinic acid  相似文献   

9.
In planta differentiation of somatic embryos was induced in seedlings of peanut (Arachis hypogaea L.) obtained from mature seeds germinated on a medium supplemented with thidiazuron (TDZ: N-phenyl-N1- (1,2,3 thiadiazol-yl)urea). At optimum levels of TDZ (10 M), all germinating seeds produced embryogenic seedlings, and somatic embryos developed in the apical region and on the surface of cotyledons and hypocotyls. These somatic embryos matured, germinated, and formed shoots which eventually developed into whole plants. Thidiazuron-induced direct embryogenesis from morphologically intact seedlings may provide an excellent experimental system for investigating somatic embryogenesis and the morphoregulatory role of TDZ.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - MS Murashige and Skoog (1962) medium - TDZ thidiazuron (N-phenyl-N1(1,2,3 thiadiazol-yl)urea) This research was supported by an operating grant from the Natural and Engineering Research Council of Canada to P.K.S. We thank Drs. J.A. Qureshi and Judith Strommer for helpful discussions, and Sangeeta Saxena for technical assistance. A gift of technical-grade thidiazuron from Nor-Am Chemical Co., Wilmington, Del., USA is gratefully acknowledged.  相似文献   

10.
 Segments taken from young leaves of an orchid (Oncidium Gower Ramsey) produced clusters of somatic embryos directly from epidermal and mesophyll cells of leaf tips and wound surfaces without an intervening callus within 1 month when cultured on a GelriteTM-gelled 1/2-MS basal medium supplemented with a low dosage (0.3–1 mg/l) of thidiazuron. Subculturing of these embryo clusters produced more embryos and subsequent plantlet formation on the same medium. The high-frequency embryogenesis of these leaf cells in this orchid is strong evidence of their totipotency, and further modification of the protocol for plant formation could be useful for the mass propagation and transformation of selected elite lines. Received: 16 September 1998 / Revision received: 16 February 1999 / Accepted: 26 February 1999  相似文献   

11.
Regeneration of Acacia mangium through somatic embryogenesis   总被引:2,自引:0,他引:2  
 Somatic embryogenesis and whole plant regeneration were achieved in callus cultures derived from immature zygotic embryos of Acacia mangium. Embryogenic callus was induced on MS medium containing combinations of TDZ (1–2 mg/l), IAA (0.25–2 mg/l) and a mixture of amino acids. Globular embryos developed on embryogenic callus cultured on the induction medium. Nearly 42% of embryogenic cultures with globular embryos produced torpedo- and cotyledonary-stage embryos by a two-step maturation phase. The first stage occurred on 1/2-strength MS basal medium containing 30 g/l sucrose and 5 mg/l GA3 followed by the second stage on 1/2-strength MS basal medium containing 50 g/l sucrose. Of the cotyledonary-stage somatic embryos, 11% germinated into seedlings that could be successfully transferred to pots. Light- and scanning electron microscopy showed that the somatic embryos originated from single cells of the embryogenic callus. Further, a single cell layer could be detected beneath the developing somatic embryos that appeared to be a demarcation layer isolating the somatic proembryonic structure from the rest of the maternal callus. A suspensor-like structure connected the globular embryos to the demarcation layer. This is the first successful report of plant regeneration through somatic embryogenesis for this economically important tropical forest species. Received: 20 January 2000 / Revision received: 28 September 2000 / Accepted: 29 September  相似文献   

12.
Somatic embryogenesis in geranium (Pelargonium xhortorum Bailey cv Scarlet Orbit Improved) can be achieved by incubating hypocotyl explants on MS medium supplemented with thidiazuron (TDZ; 10 M for 3 days followed by subculture on medium devoid of any plant growth regulators. The presence of gibberellins (GAs) during both the induction and expression phases of embryogenesis was significantly detrimental to somatic embryo formation on the hypocotyl explants. The addition of the GA-synthesis inhibitors paclobutrazol, uniconazole or ancymidol during the period of growth and differentiation of somatic embryos increased the number of somatic embryos formed on each explant. However, paclobutrazol added during the period of induction had no significant influence on somatic embryo formation. Results suggest that both exogenously supplied as well as endogenous GAs play a role, albeit a negative one, on somatic embryogenesis of geranium.Abbreviations MS Murashige and Skoog (1962) medium - MSO basal medium devoid of any plant growth regulator - TDZ N-phenyl-N1,2,3-thidiazol-5-ylurea (thidiazuron)  相似文献   

13.
 The effects of 11 different auxins and one cytokinin-like compound were tested at four concentrations for their ability to induce primary and repetitive somatic embryos from mature, dry peanut (Arachis hypogaea L.) epicotyls of genotype AT120. Treatment with picloram and centrophenoxine at 83.0 and 124.4 μm resulted in the greatest number of embryos per explant and the highest percentage of explants responding. In a follow-up experiment, picloram, centrophenoxine, and dicamba were tested at 83.0 and 124.4 μm on four peanut genotypes (AT120, 59-4144, GK7, and VC1). Picloram and centrophenoxine induced similar numbers of globular-stage and total embryos from each genotype, while dicamba was less effective. Similar results were observed with percentage of responding axes. Genotypes AT120 and VC1 yielded more clusters of repetitive embryos than GK7 and 59-4144. After 5 months, embryos derived from repetitive embryogenic cultures were converted into mature plants. Received: 8 February 1999 / Revision received: 9 June 1999 / Accepted: 30 June 1999  相似文献   

14.
Summary Embryogenic masses were obtained from immature leaves of peanut (Arachis hypogaea L.) cultured on a medium containing 20 mg/l 2,4-D. Somatic embryos developed from these masses following transfer to a medium containing 3 mg/l 2,4-D. The embryo morphology was quite variable. Following transfer to hormone-free medium, these embryos germinated. Shoot elongation was obtained in 25% of the embryos following transfer to a medium supplemented with 0.5 mg/l each of BAP and Kn. The plants grown in vitro by this method survived in sand:soil mixture and were grown to maturity.Abbreviations ABA abscisic acid - BAP 6-benzyl amino purine - 2,4-D 2,4 dichlorophenoxyacetic acid - GA3 gibberellic acid - Kn kinetin - NAA 1-naphthaleneacetic acid - 2,4,5-T 2,4,5-trichlorophenoxyacetic acid - Z zeatin  相似文献   

15.
Summary Leaves from 2-month-old in vitro grown plantlets of a clone ofCichorium placed in agitated liquid induction medium at 35°C in the dark produce embryoids after 5 days of culture, without synchronization. Vascular sheath parenchyma cells react first, but every mesophyll cell is potentially embryogenic. Single cells show an early patchy callosic wall and undergo dedifferentiation. With SEM the cells of those proembryoids just emerging through the epidermis are seen to be linked by a fibrillar network, the nature of which is discussed. Four FITC-labelled lectins were tested; only DBA shows embryogenic specificity.  相似文献   

16.
Summary Somatic embryogenesis from different genotypes of Asparagus officinalis L. could be obtained by in vitro culture of shoot apices. Apices were first cultured on an auxin-rich inducing medium and then transferred onto a hormone-free development medium. All genotypes tested in this way produced a few somatic embryos. In some experiments, during the development phase, a new kind of friable highly embryogenic tissue appeared in a random manner. These tissues could be continuously subcultured on a hormone-free medium and were named embryogenic lines. Five of these embryogenic lines regenerated plants from somatic embryos. These regenerated plants exhibited an increased embryogenic response compared to the parent plants; e.g. apex culture produced somatic embryos without any auxin treatments. For one of the embryogenic lines, a genetic analysis showed that the improved embryogenic response of regenerated plants was controlled by a mendelian dominant monogenic mutation.Abbreviations LSEA low somatic embryogenesis ability - HSEA high somatic embryogenesis ability - NAA 1-naphthaleneacetic acid  相似文献   

17.
In vitro protocols for plant regeneration of Arachis correntina through both somatic embryogenesis and organogenesis were developed using immature leaves as explants. Morphologically normal somatic embryos were obtained on culture media composed of 20.70 or 41.41 μM picloram (PIC) with the addition of 0.044 μM 6-benzylaminopurine (BA), resulting in a 33 and 24% of conversion into plants, respectively. The source of explants and the developmental stage of the leaves had a marked effect on somatic embryogenesis. The second folded immature leaves from in vitro growing plants were the most responsive producing up to 30% embryogenesis in MS+41.41 μM PIC. Embryos converted into plants after transfer to MS medium devoid of growth regulators and these plants were successfully acclimatised. Adventitious shoots were obtained on culture media supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) or naphthaleneacetic acid (NAA) with or without 0.044 μM BA, achieving plant regeneration in the induction media. The highest percentage of bud formation was obtained on culture medium composed of␣MS+10.74 μM NAA+0.044 μM BA (12.5%). Roots were formed on all culture media tested. Regenerated plants were transferred to pots and grew well under greenhouse conditions.  相似文献   

18.
Efficient plant regeneration through somatic embryogenesis was achieved in Polyscias filicifolia. Embryogenic calluses were induced on Murashige and Skoog (MS) basal medium supplemented with 0.5 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.0 mg l−1 benzylaminopurine (BAP; type I callus) and on MS medium with 2.0 mg l−1 2,4-D and 0.01 mg l−1 kinetin (type II callus) from leaf explants of a 2-yr-old plant. Primary somatic embryos (PSEs) developed after four passages of suspension culture established from embryogenic callus when cultured in liquid half-strength MS medium (1/2 MS) without growth regulators. PSEs in the cotyledonary stage were multiplied by adventitious embryogenesis. Single secondary somatic embryos (SSEs) or their clusters developed at the base of PSE hypocotyls and regenerated into plantlets in a one-step process on plant growth regulator-free 1/2 MS medium. Low sucrose concentration of 15 g l−1 promoted development of normal SSEs. All SSEs regenerated into single, well-rooted plantlets on a Nitsch and Nitsch medium supplemented with 0.5 mg l−1 kinetin, 0.1 mg l−1 indole-3-butyric acid, and 10 mg l−1 adenine sulfate. Subsequent two subculture cycles on the same medium were necessary to obtain plantlets sufficiency developed to allow successful transfer to the soil. Rooted plantlets were established in a peat mixture with 90% survival, with the plants showing normal morphological characteristics.  相似文献   

19.
Daucus carota L. cell lines secrete a characteristic set of arabinogalactan proteins (AGPs) into the medium. The composition of this set of AGPs changes with the age of the culture, as can be determined by crossed electrophoresis with the specific AGP-binding agent, β-glucosyl Yariv reagent. Addition of AGPs isolated from the medium of a non-embryogenic cell line to an expiant culture initiated the development of the culture to a non-embryogenic cell line. Without addition of AGPs or with addition of carrot-seed AGPs an embryogenic cell line was established. Three-month-old embryogenic cell lines usually contain less than 30% of dense, highly cytoplasmic cells, i.e. the embryogenic cells, but when carrot-seed AGPs were added this percentage increased to 80%. Addition of carrot-seed AGPs to a two-year-old, non-embryogenic cell line resulted in the re-induction of embryogenic potential. These results show that specific AGPs are essential in somatic embryogenesis and are able to direct development of cells.  相似文献   

20.
Cotyledons from immature embryos of white clover (Trifolium repens L.) cv. Osceola were exposed to 2,4-D or NAA to induce somatic embryogenesis. NAA at 10 or 20 mg 1–1 was very inefficient at stimulating embryogenesis, while concentrations of 30 or 40 mg 1–1 resulted in death of the explant tissue. Continuous exposure of cotyledons to 40 mg 1–1 2,4-D resulted in somatic embryos which were arrested at the globular stage, or which underwent cycles of secondary embryogenesis, never proceeding beyond the globular stage. A 10 day exposure time to 2,4-D at the same concentration led to formation of somatic embryos, most of which had poorly developed cotyledons. Almost 10% of the somatic embryos converted into plants following transfer to medium devoid of growth regulators. Attempts to improve morphology of somatic embryos by using shorter exposure times to 2,4-D at 40 mg 1–1, or by maintaining the 10 day exposure time while varying the concentration of 2,4-D, were not successful. Plants were obtained from all parents evaluated, although at different frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号