首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Lithium‐sulfur (Li–S) batteries are one of the most promising alternative energy storage systems beyond Li‐ion batteries. However, the sluggish kinetics of the nucleation and growth of the solid discharge product of Li2S/Li2S2 in the lower discharge plateau has been recently identified as a critical hurdle for attaining high specific capacity in Li–S batteries with high sulfur loadings under lean electrolyte conditions. Herein, a new strategy of breaking the charge‐transport bottleneck by successful generation of experimentally verified stable Li2S2 and a reservoir of quasi‐solid lithium polysulfides within the micropores of activated carbon fiber cloth as a high‐sulfur‐loading host is proposed. The developed Li–S cell is capable of delivering a highly sustainable areal capacity of 6.0 mAh cm?2 under lower electrolyte to sulfur ratios (<3.0 mLE gS?1). Micropore confinement leads to generation of solid Li2S2 that enables high utilization of the entire electroactive area by its inherent self‐healing capacity. This strategy opens a new avenue for rational material designs for Li–S batteries under lean electrolyte condition.  相似文献   

2.
Selenium–sulfur solid solutions are a class of potential cathode materials for high energy batteries, since they have higher theoretical capacities than selenium and improved conductivity over sulfur. Here, a high‐performance cathode material by confining 70 wt% of SeS2 in a highly ordered mesoporous carbon (CMK‐3) framework with a polydopamine (PDA) protection sheath for novel Li–Se/S batteries is reported. With a relatively high SeS2 mass loading of 2.6–3 mg cm?2, the CMK‐3/SeS2@PDA cathode exhibits a high capacity of >1200 mA h g?1 at 0.2 A g?1, excellent C‐rate capability of 535 mA h g?1 at 5 A g?1, and prolonged life over 500 cycles. Benefitting from the unique advantages of SeS2 and the rationally designed host framework, this new cathode material demonstrates a feasible strategy to overcome the bottlenecks of current Li–S systems for high energy density rechargeable batteries.  相似文献   

3.
The critical challenges of Li‐O2 batteries lie in sluggish oxygen redox kinetics and undesirable parasitic reactions during the oxygen reduction reaction and oxygen evolution reaction processes, inducing large overpotential and inferior cycle stability. Herein, an elaborately designed 3D hierarchical heterostructure comprising NiCo2S4@NiO core–shell arrays on conductive carbon paper is first reported as a freestanding cathode for Li‐O2 batteries. The unique hierarchical array structures can build up multidimensional channels for oxygen diffusion and electrolyte impregnation. A built‐in interfacial potential between NiCo2S4 and NiO can drastically enhance interfacial charge transfer kinetics. According to density functional theory calculations, intrinsic LiO2‐affinity characteristics of NiCo2S4 and NiO play an importantly synergistic role in promoting the formation of large peasecod‐like Li2O2, conducive to construct a low‐impedance Li2O2/cathode contact interface. As expected, Li‐O2 cells based on NiCo2S4@NiO electrode exhibit an improved overpotential of 0.88 V, a high discharge capacity of 10 050 mAh g?1 at 200 mA g?1, an excellent rate capability of 6150 mAh g?1 at 1.0 A g?1, and a long‐term cycle stability under a restricted capacity of 1000 mAh g?1 at 200 mA g?1. Notably, the reported strategy about heterostructure accouplement may pave a new avenue for the effective electrocatalyst design for Li‐O2 batteries.  相似文献   

4.
With high theoretical energy density, rechargeable metal–gas batteries (e.g., Li–CO2 battery) are considered as one of the most promising energy storage devices. However, their practical applications are hindered by the sluggish reaction kinetics and discharge product accumulation during battery cycling. Currently, the solutions focus on exploration of new catalysts while the thorough understanding of their underlying mechanisms is often ignored. Herein, the interfacial electronic interaction within rationally designed catalysts, ZnS quantum dots/nitrogen‐doped reduced graphene oxide (ZnS QDs/N‐rGO) heterostructures, and their effects on transformation and deposition of discharge products in the Li–CO2 battery are revealed. In this work, the interfacial interaction can both enhance the catalytic activities of ZnS QDs/N‐rGO heterostructures and induce the nucleation of discharge products to form a homogeneous Li2CO3/C film with excellent electronic transmission and high electrochemical activities. When the batteries cycle within a cutoff specific capacity of 1000 mAh g?1 at a current density of 400 mA g?1, the cycling performance of the Li–CO2 battery using a ZnS QDs/N‐rGO cathode is over 3 and 9 times than those coupled with a ZnS nanosheets (NST)/N‐rGO cathode and a N‐rGO cathode, respectively. This work provides comprehensive understandings on designing catalysts for Li–CO2 batteries as well as other rechargeable metal–gas batteries.  相似文献   

5.
As promising cathode materials, the lithium‐excess 3d‐transition‐metal layered oxides can deliver much higher capacities (>250 mAh g?1 at 0.1 C) than the current commercial layered oxide materials (≈180 mAh g?1 at 0.1 C) used in lithium ion batteries. Unfortunately, the original formation mechanism of these layered oxides during synthesis is not completely elucidated, that is, how is lithium and oxygen inserted into the matrix structure of the precursor during lithiation reaction? Here, a promising and practical method, a coprecipitation route followed by a microwave heating process, for controllable synthesis of cobalt‐free lithium‐excess layered compounds is reported. A series of the consistent results unambiguously confirms that oxygen atoms are successively incorporated into the precursor obtained by a coprecipitation process to maintain electroneutrality and to provide the coordination sites for inserted Li ions and transition metal cations via a high‐temperature lithiation. It is found that the electrochemical performances of the cathode materials are strongly related to the phase composition and preparation procedure. The monoclinic layered Li[Li0.2Ni0.2Mn0.6]O2 cathode materials with state‐of‐the‐art electrochemical performance and comparably high discharge capacities of 171 mAh g?1 at 10 C are obtained by microwave annealing at 750 °C for 2 h.  相似文献   

6.
Olivine‐type LiMnPO4 (LMP) cathodes have gained enormous attraction for Li‐ion batteries (LIBs), thanks to their large theoretical capacity, high discharge platform, and thermal stability. However, it is still hugely challenging to achieve encouraging Li‐storage behaviors owing to their low electronic conductivity and limited lithium diffusion. Herein, the core double‐shell Ti‐doped LMP@NaTi2(PO4)3@C/3D graphene (TLMP@NTP@C/3D‐G) architecture is designed and constructed via an in situ synthetic methodology. A continuous electronic conducting network is formed with the unfolded 3D‐G and conducting carbon nanoshell. The Nasicon‐type NTP nanoshell with exceptional ionic conductivity efficiently inhibits gradual enrichment in by‐products, and renders low surfacial/interfacial electron/ion‐diffusion resistance. Besides, a rapid Li+ diffusion in the bulk structure is guaranteed with the reduction of MnLi+˙ antisite defects originating from the synchronous Ti‐doping. Benefiting from synergetic contributions from these design rationales, the integrated TLMP@NTP@C/3D‐G cathode yields high initial discharge capacity of ≈164.8 mAh g?1 at 0.05 C, high‐rate reversible capacity of ≈116.2 mAh g?1 at 10 C, and long‐term capacity retention of ≈93.3% after 600 cycles at 2 C. More significantly, the electrode design developed here will exert significant impact upon constructing other advanced cathodes for high‐energy/power LIBs.  相似文献   

7.
A new approach to intentionally induce phase transition of Li‐excess layered cathode materials for high‐performance lithium ion batteries is reported. In high contrast to the limited layered‐to‐spinel phase transformation that occurred during in situ electrochemical cycles, a Li‐excess layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 is completely converted to a Li4Mn5O12‐type spinel product via ex situ ion‐exchanges and a post‐annealing process. Such a layered‐to‐spinel phase conversion is examined using in situ X‐ray diffraction and in situ high‐resolution transmission electron microscopy. It is found that generation of sufficient lithium ion vacancies within the Li‐excess layered oxide plays a critical role for realizing a complete phase transition. The newly formed spinel material exhibits initial discharge capacities of 313.6, 267.2, 204.0, and 126.3 mAh g?1 when cycled at 0.1, 0.5, 1, and 5 C (1 C = 250 mA g?1), respectively, and can retain a specific capacity of 197.5 mAh g?1 at 1 C after 100 electrochemical cycles, demonstrating remarkably improved rate capability and cycling stability in comparison with the original Li‐excess layered cathode materials. This work sheds light on fundamental understanding of phase transitions within Li‐excess layered oxides. It also provides a novel route for tailoring electrochemical performance of Li‐excess layered cathode materials for high‐capacity lithium ion batteries.  相似文献   

8.
A challenge still remains to develop high‐performance and cost‐effective air electrode for Li‐O2 batteries with high capacity, enhanced rate capability and long cycle life (100 times or above) despite recent advances in this field. In this work, a new design of binder‐free air electrode composed of three‐dimensional (3D) graphene (G) and flower‐like δ‐MnO2 (3D‐G‐MnO2) has been proposed. In this design, graphene and δ‐MnO2 grow directly on the skeleton of Ni foam that inherits the interconnected 3D scaffold of Ni foam. Li‐O2 batteries with 3D‐G‐MnO2 electrode can yield a high discharge capacity of 3660 mAh g?1 at 0.083 mA cm?2. The battery can sustain 132 cycles at a capacity of 492 mAh g?1 (1000 mAh gcarbon ?1) with low overpotentials under a high current density of 0.333 mA cm?2. A high average energy density of 1350 Wh Kg?1 is maintained over 110 cycles at this high current density. The excellent catalytic activity of 3D‐G‐MnO2 makes it an attractive air electrode for high‐performance Li‐O2 batteries.  相似文献   

9.
As the theoretical limit of intercalation material‐based lithium‐ion batteries is approached, alternative chemistries based on conversion reactions are presently considered. The conversion of sulfur is particularly appealing as it is associated with a theoretical gravimetric energy density up to 2510 Wh kg?1. In this paper, three different carbon‐iron disulfide‐sulfur (C‐FeS2‐S) composites are proposed as alternative positive electrode materials for all‐solid‐state lithium‐sulfur batteries. These are synthesized through a facile, low‐cost, single‐step ball‐milling procedure. It is found that the crystalline structure (evaluated by X‐ray diffraction) and the morphology of the composites (evaluated by scanning electron microscopy) are greatly influenced by the FeS2:S ratio. Li/LiI‐Li3PS4/C‐FeS2‐S solid‐state cells are tested under galvanostatic conditions, while differential capacity plots are used to discuss the peculiar electrochemical features of these novel materials. These cells deliver capacities as high as 1200 mAh g(FeS2+S)?1 at the intermediate loading of 1 mg cm?2 (1.2 mAh cm?2), and up to 3.55 mAh cm?2 for active material loadings as high as 5 mg cm?2 at 20 °C. Such an excellent performance, rarely reported for (sulfur/metal sulfide)‐based, all solid‐state cells, makes these composites highly promising for real application where high positive electrode loadings are required.  相似文献   

10.
Lithium–sulfur (Li–S) batteries are of great interest due to their high theoretical energy density. However, one of the key issues hindering their real world applications is polysulfide shuttle, which results in severe capacity decay and self‐discharge. Here, a laponite nanosheets/carbon black coated Celgard (LNS/CB‐Celgard) separator to inhibit polysulfide shuttle and to enhance the Li+ conductivity simultaneously is reported. The polysulfide shuttle is efficiently inhibited through strong interactions between the O active sites of the LNS and polysulfides by forming the Li···O and O? S bonds. Moreover, the separator features high Li+ conductivity, fast Li+ diffusion, excellent electrolyte wettability, and high thermal stability. Consequently, the Li–S batteries with the LNS/CB‐Celgard separator and the pure S cathode show a high initial reversible capacity of 1387 mA h g?1 at 0.1 C, high rate performance, superior cycling stability (with a capacity decay rate of 0.06% cycle?1 at 0.2 C and 0.028% cycle?1 at 1.0 C over 500 cycles), and ultralow self‐discharge. The separator could also enhance the performance of other batteries such as the LiFePO4/separator/Li battery. This work sheds a new light on the design and preparation of novel separators for highly stable Li–S batteries via a “green” and cost‐effective approach.  相似文献   

11.
Promising lithium–oxygen batteries (LOBs) with extra‐high capacities have attracted increasing attention for use in future electric devices. However, the challenges facing this complicated battery system still limit their practical applications. These challenges mainly consist of inefficient product evolution and low‐activity catalysts. In present work, a cation occupying, modified 3D‐architecture NiFeO cubic spinel is constructed via superassembly strategy to achieve a high rate, stable electrocatalyst for LOBs. The octahedron predominant spinel provides a stable polycrystal structure and optimized electronic structure, which dominates the discharge/charge products evolution with multiformation kinetics of crystal Li2O2 and Li2?xO2 at low and high rate conditions and energetically favors the mass transport between the electrode/electrolyte interface. Simultaneously, the porous NiFeO framework provides adequate spaces for Li2O2 accommodation and complex channels for sufficient electrolyte, oxygen, and ion transportation, which dramatically alter the cathode catalysis for an unprecedented performance. As a consequence, a large specific capacity of 23413 mAh g?1 and an excellent cyclability of 193 cycles at a high current of 1000 mA g?1, and 300 cycles at a current of 500 mA g?1, are achieved. The present work provides intrinsic insights into designing high‐performance metal oxide electrocatalysts for Li–O2 batteries with fine‐tuned electronic and frame structure.  相似文献   

12.
A NaSICON‐type Li+‐ion conductive membrane with a formula of Li1+ x Y x Zr2? x (PO4)3 (LYZP) (x = 0–0.15) has been explored as a solid‐electrolyte/separator to suppress polysulfide‐crossover in lithium‐sulfur (Li‐S) batteries. The LYZP membrane with a reasonable Li+‐ion conductivity shows both favorable chemical compatibility with the lithium polysulfide species and exhibits good electrochemical stability under the operating conditions of the Li‐S batteries. Through an integration of the LYZP solid electrolyte with the liquid electrolyte, the hybrid Li‐S batteries show greatly enhanced cyclability in contrast to the conventional Li‐S batteries with the porous polymer (e.g., Celgard) separator. At a rate of C/5, the hybrid Li ||LYZP|| Li2S6 batteries developed in this study (with a Li‐metal anode, a liquid/LYZP hybrid electrolyte, and a dissolved lithium polysulfide cathode) delivers an initial discharge capacity of ≈1000 mA h g?1 (based on the active sulfur material) and retains ≈90% of the initial capacity after 150 cycles with a low capacity fade‐rate of <0.07% per cycle.  相似文献   

13.
Developing rechargeable lithium ion batteries with fast charge/discharge rate, high capacity and power, long lifespan, and broad temperature adaptability is still a significant challenge. In order to realize the fast and efficient transport of ions and electrons during the charging/discharging process, a 3D hierarchical carbon‐decorated Li3V2(PO4)3 is designed and synthesized with a nanoscale amorphous carbon coating and a microscale carbon network. The Brunauer–Emmett–Teller (BET) surface area is 65.4 m2 g?1 and the porosity allows for easy access of the electrolyte to the active material. A specific capacity of 121 mAh g?1 (91% of the theoretical capacity) can be obtained at a rate up to 30 C. When cycled at a rate of 20 C, the capacity retention is 77% after 4000 cycles, corresponding to a capacity fading of 0.0065% per cycle. More importantly, the composite cathode shows excellent temperature adaptability. The specific discharge capacities can reach 130 mAh g?1 at 20 C and 60 °C, and 106 mAh g?1 at 5 C and –20 °C. The rate performance and broad temperature adaptability demonstrate that this hierarchical carbon‐decorated Li3V2(PO4)3 is one of the most attractive cathodes for practical applications.  相似文献   

14.
The Li‐rich cathode materials have been considered as one of the most promising cathodes for high energy Li‐ion batteries. However, realization of these materials for use in Li‐ion batteries is currently limited by their intrinsic problems. To overcome this barrier, a new surface treatment concept is proposed in which a hybrid surface layer composed of a reduced graphene oxide (rGO) coating and a chemically activated layer is created. A few layers of GO are first coated on the surface of the Li‐rich cathode material, followed by a hydrazine treatment to produce the reducing agent of GO and the chemical activator of the Li2MnO3 phase. Compared to previous studies, this surface treatment provides substantially improved electrochemical performance in terms of initial Coulombic effiency and retention of discharge voltage. As a result, the surface‐treated 0.4Li­2MnO3–0.6LiNi1/3Co1/3Mn1/3O2 exhibits a high capacity efficiency of 99.5% during the first cycle a the discharge capacity of 250 mAh g?1 (2.0–4.6 V under 0.1C), 94.6% discharge voltage retention during 100 cycles (1C) and the superior capacity retention of 60% at 12C at 24 °C.  相似文献   

15.
Li–CO2 batteries are attractive electrical energy storage devices; however, they still suffer from unsatisfactory electrochemical performance, and the kinetics of CO2 reduction and evolution reactions must be improved significantly. Herein, a composite of ruthenium–copper nanoparticles highly co‐dispersed on graphene (Ru–Cu–G) as efficient air cathodes for Li–CO2 batteries is designed. The Li–CO2 batteries with Ru–Cu–G cathodes exhibit ultra‐low overpotential and can be operated for 100 cycles with a fixed capacity of 1000 mAh g?1 at 200 and 400 mA g?1. The synergistic effect between Ru and Cu not only regulates the growth of discharge products, but also promotes CO2 reduction and evolution reactions by changing the electron cloud density of the surface between Ru and Cu. This work may provide new directions and strategies for developing highly efficient air cathodes for Li–CO2 batteries, or even practical Li–air batteries.  相似文献   

16.
The lithium–sulfur (Li–S) battery is considered a promising candidate for the next generation of energy storage system due to its high specific energy density and low cost of raw materials. However, the practical application of Li–S batteries is severely limited by several weaknesses such as the shuttle effect of polysulfides and the insulation of the electrochemical products of sulfur and Li2S/Li2S2. Here, by doping nitrogen and integrating highly dispersed cobalt catalysts, a porous carbon nanocage derived from glucose adsorbed metal–organic framework is developed as the host for a sulfur cathode. This host structure combines the reported positive effects, including high conductivity, high sulfur loading, effective stress release, fast lithium‐ion kinetics, fast interface charge transport, fast redox of Li2Sn, and strong physical/chemical absorption, achieving a long cycle life (86% of capacity retention at 1C within 500 cycles) and high rate performance (600 mAh g?1 at 5C) for a Li–S battery. By combining experiments and density functional theoretical calculations, it is demonstrated that the well‐dispersed cobalt clusters play an important role in greatly improving the diffusion dynamics of lithium, and enhance the absorption and conversion capability of polysulfides in the host structure.  相似文献   

17.
Thin solid‐state electrolytes with nonflammability, high ionic conductivity, low interfacial resistance, and good processability are urgently required for next‐generation safe, high energy density lithium metal batteries. Here, a 3D Li6.75La3Zr1.75Ta0.25O12 (LLZTO) self‐supporting framework interconnected by polytetrafluoroethylene (PTFE) binder is prepared through a simple grinding method without any solvent. Subsequently, a garnet‐based composite electrolyte is achieved through filling the flexible 3D LLZTO framework with a succinonitrile solid electrolyte. Due to the high content of garnet ceramic (80.4 wt%) and high heat‐resistance of the PTFE binder, such a composite electrolyte film with nonflammability and high processability exhibits a wide electrochemical window of 4.8 V versus Li/Li+ and high ionic transference number of 0.53. The continuous Li+ transfer channels between interconnected LLZTO particles and succinonitrile, and the soft electrolyte/electrode interface jointly contribute to a high ambient‐temperature ionic conductivity of 1.2 × 10?4 S cm?1 and excellent long‐term stability of the Li symmetric battery (stable at a current density of 0.1 mA cm?2 for over 500 h). Furthermore, as‐prepared LiFePO4|Li and LiNi0.5Mn0.3Co0.2O2|Li batteries based on the thin composite electrolyte exhibit high discharge specific capacities of 153 and 158 mAh g?1 respectively, and desirable cyclic stabilities at room temperature.  相似文献   

18.
Herein, a composite polymer electrolyte with a viscoelastic and nonflammable interface is designed to handle the contact issue and preclude Li dendrite formation. The composite polymer electrolyte (cellulose acetate/polyethylene glycol/Li1.4Al0.4Ti1.6P3O12) exhibits a wide electrochemical window of 5 V (vs Li+/Li), a high Li+ transference number of 0.61, and an excellent ionic conductivity of above 10?4 S cm?1 at 60 °C. In particular, the intimate contact, low interfacial impedance, and fast ion‐transport process between the electrodes and solid electrolytes can be simultaneously achieved by the viscoelastic and nonflammable layer. Benefiting from this novel design, solid lithium metal batteries with either LiFePO4 or LiCoO2 as cathode exhibit superior cyclability and rate capability, such as a discharge capacity of 157 mA h g?1 after 100 cycles at C/2 and 97 mA h g?1 at 5C for LiFePO4 cathode. Moreover, the smooth and uniform Li surface after long‐term cycling confirms the successful suppression of dendrite formation. The viscoelastic and nonflammable interface modification of solid electrolytes provides a promising and general strategy to handle the interfacial issues and improves the operative safety of solid lithium metal batteries.  相似文献   

19.
Li‐rich layered oxides (LLOs) can deliver almost double the capacity of conventional electrode materials such as LiCoO2 and LiMn2O4; however, voltage fade and capacity degradation are major obstacles to the practical implementation of LLOs in high‐energy lithium‐ion batteries. Herein, hexagonal La0.8Sr0.2MnO3?y (LSM) is used as a protective and phase‐compatible surface layer to stabilize the Li‐rich layered Li1.2Ni0.13Co0.13Mn0.54O2 (LM) cathode material. The LSM is Mn? O? M bonded at the LSM/LM interface and functions by preventing the migration of metal ions in the LM associated with capacity degradation as well as enhancing the electrical transfer and ionic conductivity at the interface. The LSM‐coated LM delivers an enhanced reversible capacity of 202 mAh g?1 at 1 C (260 mA g?1) with excellent cycling stability and rate capability (94% capacity retention after 200 cycles and 144 mAh g?1 at 5 C). This work demonstrates that interfacial bonding between coating and bulk material is a successful strategy for the modification of LLO electrodes for the next‐generation of high‐energy Li‐ion batteries.  相似文献   

20.
Rational design of effective polysulfide barriers is highly important for high‐performance lithium‐sulfur (Li‐S) batteries. A variety of adsorbents have been applied as interlayers to alleviate the shuttle effect. Nevertheless, the unsuccessful oxidation of Li2S on interlayers leads to loss of active materials and blocks Li ion transport. In this work, a MoN‐based interlayer sandwiched between the C‐S cathode and the separator is developed. Such an interlayer not only strongly binds lithium polysulfides via Mo‐S bonding but also efficiently accelerates the decomposition of Li2S. The acceleration mechanism toward Li2S decomposition is determined to be a combination of contributions of catalytic cleavage of Li‐S bond in Li2S based on the proposed covalence‐activation mechanism and rapid migration of the produced Li ions. As a result, the C–S cathodes with the as‐developed interlayer manifest a negligible charging potential barrier and outstanding cycling stability with a very low capacity fading rate of 0.023% per cycle during 1500 cycles at 1 C. High areal capacity of 6.02 mAh cm?2 is achieved for high sulfur loading of 7.0 mg cm?2 after cycling at 0.1 C. The material and strategy demonstrated in this work can open the door toward developing shuttle suppression interlayers without impairing cathode performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号