首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have performed a detailed biochemical kinetic and spectroscopic study on a recombinant myosin X head construct to establish a quantitative model of the enzymatic mechanism of this membrane-bound myosin. Our model shows that during steady-state ATP hydrolysis, myosin X exhibits a duty ratio (i.e. the fraction of the cycle time spent strongly bound to actin) of around 16%, but most of the remaining myosin heads are also actin-attached even at moderate actin concentrations in the so-called "weak" actin-binding states. Contrary to the high duty ratio motors myosin V and VI, the ADP release rate constant from actomyosin X is around five times greater than the maximal steady-state ATPase activity, and the kinetic partitioning between different weak actin-binding states is a major contributor to the rate limitation of the enzymatic cycle. Two different ADP states of myosin X are populated in the absence of actin, one of which shows very similar kinetic properties to actomyosin.ADP. The nucleotide-free complex of myosin X with actin shows unique spectral and biochemical characteristics, indicating a special mode of actomyosin interaction.  相似文献   

2.
Ostap EM  Lin T  Rosenfeld SS  Tang N 《Biochemistry》2002,41(41):12450-12456
The ATPase activity of myosin-Is from lower eukaryotes is activated by phosphorylation by the p21-activated kinase family at the TEDS site on an actin-binding surface-loop. This actin-binding loop is the site of a cardiac myosin-II mutation responsible for some forms of familial hypertrophic cardiomyopathy. To determine the mechanism of myosin-I regulation by heavy-chain phosphorylation (HCP) and to better understand the importance of this loop in the function of all myosin isoforms, we performed a kinetic investigation of the regulatory mechanism of the Acanthamoeba myosin-IC motor domain (MIC(IQ)). Phosphorylated and dephosphorylated MIC(IQ) show actin-activated ATPase activity; however, HCP increases the ATPase activity >20-fold. HCP does not greatly affect the rate of phosphate release from MIC in the absence of actin, as determined by single turnover experiments. Additionally, HCP does not significantly affect the affinity of myosin for actin in the absence or presence of ATP, the rate of ATP-induced dissociation of actoMIC(IQ), the affinity of ADP, or the rate of ADP release. Sequential-mix single-turnover experiments show that HCP regulates the rate of phosphate release from actin-bound MIC(IQ). We propose that the TEDS-containing actin-binding loop plays a direct role in regulating phosphate release and the force-generating (A-to-R) transition of myosin-IC.  相似文献   

3.
Mutations of myosin VIIA cause deafness in various species from human and mice to Zebrafish and Drosophila. We analyzed the kinetic mechanism of the ATPase cycle of Drosophila myosin VIIA by using a single-headed construct with the entire neck domain. The steady-state ATPase activity (0.06 s(-1)) was markedly activated by actin to yield V(max) and K(ATPase) of 1.72 s(-1) and 3.2 microm, respectively. The most intriguing finding is that the ATP hydrolysis predominantly takes place in the actin-bound form (actin-attached hydrolysis) for the actomyosin VIIA ATPase reaction. The ATP hydrolysis rate was much faster for the actin-attached form than the dissociated form, in contrast to other myosins reported so far. Both the ATP hydrolysis step and the phosphate release step were significantly faster than the entire ATPase cycle rate, thus not rate-determining. The rate of ADP dissociation from actomyosin VIIA was 1.86 s(-1), which was comparable with the overall ATPase cycle rate, thus assigned to be a rate-determining step. The results suggest that Drosophila myosin VIIA spends the majority of the ATPase cycle in an actomyosin.ADP form, a strong actin binding state. The duty ratio calculated from our kinetic model was approximately 0.9. Therefore, myosin VIIA is classified to be a high duty ratio motor. The present results suggested that myosin VIIA can be a processive motor to serve cargo trafficking in cells once it forms a dimer structure.  相似文献   

4.
Myosin VI is expressed in a variety of cell types and is thought to play a role in membrane trafficking and endocytosis, yet its motor function and regulation are not understood. The present study clarified mammalian myosin VI motor function and regulation at a molecular level. Myosin VI ATPase activity was highly activated by actin with K(actin) of 9 microm. A predominant amount of myosin VI bound to actin in the presence of ATP unlike conventional myosins. K(ATP) was much higher than those of other known myosins, suggesting that myosin VI has a weak affinity or slow binding for ATP. On the other hand, ADP markedly inhibited the actin-activated ATPase activity, suggesting a high affinity for ADP. These results suggested that myosin VI is predominantly in a strong actin binding state during the ATPase cycle. p21-activated kinase 3 phosphorylated myosin VI, and the site was identified as Thr(406). The phosphorylation of myosin VI significantly facilitated the actin-translocating activity of myosin VI. On the other hand, Ca(2+) diminished the actin-translocating activity of myosin VI although the actin-activated ATPase activity was not affected by Ca(2+). Calmodulin was not dissociated from the heavy chain at high Ca(2+), suggesting that a conformational change of calmodulin upon Ca(2+) binding, but not its physical dissociation, determines the inhibition of the motility activity. The present results revealed the dual regulation of myosin VI by phosphorylation and Ca(2+) binding to calmodulin light chain.  相似文献   

5.
Watanabe S  Mabuchi K  Ikebe R  Ikebe M 《Biochemistry》2006,45(8):2729-2738
There are three isoforms of class V myosin in mammals. While myosin Va has been studied well, little is known about the function of other myosin V isoforms (Vb and Vc) at a molecular level. Here we report the mechanoenzymatic function of human myosin Vb (HuM5B) for the first time. Electron microscopic observation showed that HuM5B has a double-headed structure with a long neck like myosin Va. V(max) and K(actin) of the actin-activated ATPase activity of HuM5B were 9.7 +/- 0.4 s(-)(1) and 8.5 +/- 0.1 microM, respectively. K(actin) and K(ATP) of the actin-activated ATPase activity were significantly higher than those of myosin Va. ADP markedly inhibited the ATPase activity. The rate of release of ADP from acto-HuM5B was 12.2 +/- 0.5 s(-)(1), which was comparable to the V(max) of the actin-activated ATPase activity. These results suggest that ADP release is the rate-limiting step for the actin-activated ATPase cycle; thus, HuM5B is a high duty ratio myosin. Consistently, the actin gliding velocity (0.22 +/- 0.03 microm/s) remained constant at a low motor density. The actin filament landing assay revealed that a single HuM5B molecule is sufficient to move the actin filament continuously, indicating that HuM5b is a processive motor.  相似文献   

6.
Kinetic adaptation of muscle and non-muscle myosins plays a central role in defining the unique cellular functions of these molecular motor enzymes. The unconventional vertebrate class VII myosin, myosin VIIb, is highly expressed in polarized cells and localizes to highly ordered actin filament bundles such as those found in the microvilli of the intestinal brush border and kidney. We have cloned mouse myosin VIIb from a cDNA library, expressed and purified the catalytic motor domain, and characterized its actin-activated ATPase cycle using quantitative equilibrium and kinetic methods. The myosin VIIb steady-state ATPase activity is slow (approximately 1 s(-1)), activated by very low actin filament concentrations (K(ATPase) approximately 0.7 microm), and limited by ADP release from actomyosin. The slow ADP dissociation rate constant generates a long lifetime of the strong binding actomyosin.ADP states. ADP and actin binding is uncoupled, which enables myosin VIIb to remain strongly bound to actin and ADP at very low actin concentrations. In the presence of 2 mm ATP and 2 microm actin, the duty ratio of myosin VIIb is approximately 0.8. The enzymatic properties of actomyosin VIIb are suited for generating and maintaining tension and favor a role for myosin VIIb in anchoring membrane surface receptors to the actin cytoskeleton. Given the high conservation of vertebrate class VII myosins, deafness phenotypes arising from disruption of normal myosin VIIa function are likely to reflect a loss of tension in the stereocilia of inner ear hair cells.  相似文献   

7.
Human myosin Vc is a low duty ratio, nonprocessive molecular motor   总被引:1,自引:0,他引:1  
Myosin Vc is the product of one of the three genes of the class V myosin found in vertebrates. It is widely found in secretory and glandular tissues, with a possible involvement in transferrin trafficking. Transient and steady-state kinetic studies of human myosin Vc were performed using a truncated, single-headed construct. Steady-state actin-activated ATPase measurements revealed a V(max) of 1.8 +/- 0.3 s(-1) and a K(ATPase) of 43 +/- 11 microm. Unlike previously studied vertebrate myosin Vs, the rate-limiting step in the actomyosin Vc ATPase pathway is the release of inorganic phosphate (~1.5 s(-1)), rather than the ADP release step (~12.0-16.0 s(-1)). Nevertheless, the ADP affinity of actomyosin Vc (K(d) = 0.25 +/- 0.02 microm) reflects a higher ADP affinity than seen in other myosin V isoforms. Using the measured kinetic rates, the calculated duty ratio of myosin Vc was approximately 10%, indicating that myosin Vc spends the majority of the actomyosin ATPase cycle in weak actin-binding states, unlike the other vertebrate myosin V isoforms. Consistent with this, a fluorescently labeled double-headed heavy meromyosin form showed no processive movements along actin filaments in a single molecule assay, but it did move actin filaments at a velocity of approximately 24 nm/s in ensemble assays. Kinetic simulations reveal that the high ADP affinity of actomyosin Vc may lead to elevations of the duty ratio of myosin Vc to as high as 64% under possible physiological ADP concentrations. This, in turn, may possibly imply a regulatory mechanism that may be sensitive to moderate changes in ADP concentration.  相似文献   

8.
Human myosin Vc is a low duty ratio nonprocessive motor   总被引:1,自引:0,他引:1  
There are three distinct members of the myosin V family in vertebrates, and each isoform is involved in different membrane trafficking pathways. Both myosin Va and Vb have demonstrated that they are high duty ratio motors that are consistent with the processive nature of these motors. Here we report that the ATPase cycle mechanism of the single-headed construct of myosin Vc is quite different from those of other vertebrate myosin V isoforms. K(ATPase) of the actin-activated ATPase was 62 microm, which is much higher than that of myosin Va ( approximately 1 mum). The rate of ADP release from actomyosin Vc was 12.7 s(-1), which was 2 times greater than the entire ATPase cycle rate, 6.5 s(-1). P(i) burst size was 0.31, indicating that the equilibrium of the ATP hydrolysis step is shifted to the prehydrolysis form. Our kinetic model, based on all kinetic data we determined in this study, suggests that myosin Vc spends the majority of the ATPase cycle time in the weak actin binding state in contrast to myosin Va and Vb. Consistently, the two-headed myosin Vc construct did not show processive movement in total internal reflection fluorescence microscope analysis, demonstrating that myosin Vc is a nonprocessive motor. Our findings suggest that myosin Vc fulfills its function as a cargo transporter by different mechanisms from other myosin V isoforms.  相似文献   

9.
Yengo CM  Sweeney HL 《Biochemistry》2004,43(9):2605-2612
Myosin V is molecular motor that is capable of moving processively along actin filaments. The kinetics of monomeric myosin V containing a single IQ domain (MV 1IQ) differ from nonprocessive myosin II in that actin affinity is higher, phosphate release is extremely rapid, and ADP release is rate-limiting. We generated two mutants of myosin V by altering loop 2, a surface loop in the actin-binding region thought to alter actin affinity and phosphate release in myosin II, to determine the role that this loop plays in the kinetic tuning of myosin V. The loop 2 mutants altered the apparent affinity for actin (K(ATPase)) without altering the maximum ATPase rate (V(MAX)). Transient kinetic analysis determined that the rate of binding to actin, as well as the affinity for actin, was dependent on the net positive charge of loop 2, while other steps in the ATPase cycle were unchanged. The maximum rate of phosphate release was unchanged, but the affinity for actin in the M.ADP.Pi-state was dramatically altered by the mutations in loop 2. Thus, loop 2 is important for allowing myosin V to bind to actin with a relatively high affinity in the weak binding states but does not play a direct role in the product release steps. The ability to maintain a high affinity for actin in the weak binding states may prevent diffusion away from the actin filament and increase the degree of processive motion of myosin V.  相似文献   

10.
Mouse myosin V is a two-headed unconventional myosin with an extended neck that binds six calmodulins. Double-headed (heavy meromyosin-like) and single-headed (subfragment 1-like) fragments of mouse myosin V were expressed in Sf9 cells, and intact myosin V was purified from mouse brain. The actin-activated MgATPase of the tissue-purified myosin V, and its expressed fragments had a high V(max) and a low K(ATPase). Calcium regulated the MgATPase of intact myosin V but not of the fragments. Both the MgATPase activity and the in vitro motility were remarkably insensitive to ionic strength. Myosin V and its fragments translocated actin at very low myosin surface densities. ADP markedly inhibited the actin-activated MgATPase activity and the in vitro motility. ADP dissociated from myosin V subfragment 1 at a rate of about 11.5 s(-1) under conditions where the V(max) was 3.3 s(-1), indicating that, although not totally rate-limiting, ADP dissociation was close to the rate-limiting step. The high affinity for actin and the slow rate of ADP release helps the myosin head to remain attached to actin for a large fraction of each ATPase cycle and allows actin filaments to be moved by only a few myosin V molecules in vitro.  相似文献   

11.
Cytoplasmic (or non-muscle) myosin II isoforms are widely expressed molecular motors playing essential cellular roles in cytokinesis and cortical tension maintenance. Two of the three human non-muscle myosin II isoforms (IIA and IIB) have been investigated at the protein level. Transient kinetics of non-muscle myosin IIB showed that this motor has a very high actomyosin ADP affinity and slow ADP release. Here we report the kinetic characterization of the non-muscle myosin IIA isoform. Similar to non-muscle myosin IIB, non-muscle myosin IIA shows high ADP affinity and little enhancement of the ADP release rate by actin. The ADP release rate constant, however, is more than an order of magnitude higher than the steady-state ATPase rate. This implies that non-muscle myosin IIA spends only a small fraction of its ATPase cycle time in strongly actin-bound states, which is in contrast to non-muscle myosin IIB. Non-muscle myosin II isoforms thus appear to have distinct enzymatic properties that may be of importance in carrying out their cellular functions.  相似文献   

12.
Myosin X is expressed in a variety of cell types and plays a role in cargo movement and filopodia extension, but its mechanoenzymatic characteristics are not fully understood. Here we analyzed the kinetic mechanism of the ATP hydrolysis cycle of acto-myosin X using a single-headed construct (M10IQ1). Myosin X was unique for the weak "strong actin binding state" (AMD) with a K(d) of 1.6 microm attributed to the large dissociation rate constant (2.1 s(-1)). V(max) and K(ATPase) of the actin-activated ATPase activity of M10IQ1 were 13.5 s(-1) and 17.4 mum, respectively. The ATP hydrolysis rate (>100 s(-1)) and the phosphate release rate from acto-myosin X (>100 s(-1)) were much faster than the entire ATPase cycle rate and, thus, not rate-limiting. The ADP off-rate from acto-myosin X was 23 s(-1), which was two times larger than the V(max). The P(i)-burst size was low (0.46 mol/mol), indicating that the equilibrium is significantly shifted toward the prehydrolysis intermediate. The steady-state ATPase rate can be explained by a combination of the unfavorable equilibrium constant of the hydrolysis step and the relatively slow ADP off-rate. The duty ratio calculated from our kinetic model, 0.6, was consistent with the duty ratio, 0.7, obtained from comparison of K(m ATPase) and K(m motility). Our results suggest that myosin X is a high duty ratio motor.  相似文献   

13.
Myosin Va becomes a low duty ratio motor in the inhibited form   总被引:1,自引:0,他引:1  
Vertebrate myosin Va is a typical processive motor with high duty ratio. Recent studies have revealed that the actin-activated ATPase activity of the full-length myosin Va (M5aFull) is inhibited at a low [Ca(2+)], which is due to the formation of a folded conformation of M5aFull. To clarify the underlying inhibitory mechanism, we analyzed the actin-activated ATP hydrolysis mechanism of the M5aFull at the inhibited and the activated states, respectively. Marked differences were found in the hydrolysis, P(i) release, and ADP release steps between the activated and the inhibited states. The kinetic constants of these steps of the activated state were similar to those of the unregulated S1 construct, in which the rate-limiting step was the ADP release step. On the other hand, the P(i) release rate from acto-M5aFull was decreased in EGTA by >1,000-fold, which makes this step the rate-limiting step for the actin-activated ATP hydrolysis cycle of M5aFull. The ADP off rate from acto-M5aFull was decreased by approximately 10-fold, and the equilibrium between the prehydrolysis state and the post hydrolysis state was shifted toward the former state in the inhibited state of M5aFull. Because of these changes, M5aFull spends a majority of the ATP hydrolysis cycling time in the weak actin binding state. The present results indicate that M5aFull molecules at a low [Ca(2+)] is inhibited as a cargo transporter not only due to the decrease in the cross-bridge cycling rate but also due to the decrease in the duty ratio thus being dissociated from actin.  相似文献   

14.
We examined the magnesium dependence of five class II myosins, including fast skeletal muscle myosin, smooth muscle myosin, β-cardiac myosin (CMIIB), Dictyostelium myosin II (DdMII), and nonmuscle myosin IIA, as well as myosin V. We found that the myosins examined are inhibited in a Mg2+-dependent manner (0.3–9.0 mm free Mg2+) in both ATPase and motility assays, under conditions in which the ionic strength was held constant. We found that the ADP release rate constant is reduced by Mg2+ in myosin V, smooth muscle myosin, nonmuscle myosin IIA, CMIIB, and DdMII, although the ADP affinity is fairly insensitive to Mg2+ in fast skeletal muscle myosin, CMIIB, and DdMII. Single tryptophan probes in the switch I (Trp-239) and switch II (Trp-501) region of DdMII demonstrate these conserved regions of the active site are sensitive to Mg2+ coordination. Cardiac muscle fiber mechanic studies demonstrate cross-bridge attachment time is increased at higher Mg2+ concentrations, demonstrating that the ADP release rate constant is slowed by Mg2+ in the context of an activated muscle fiber. Direct measurements of phosphate release in myosin V demonstrate that Mg2+ reduces actin affinity in the M·ADP·Pi state, although it does not change the rate of phosphate release. Therefore, the Mg2+ inhibition of the actin-activated ATPase activity observed in class II myosins is likely the result of Mg2+-dependent alterations in actin binding. Overall, our results suggest that Mg2+ reduces the ADP release rate constant and rate of attachment to actin in both high and low duty ratio myosins.  相似文献   

15.
Chara corallina class XI myosin is by far the fastest molecular motor. To investigate the molecular mechanism of this fast movement, we performed a kinetic analysis of a recombinant motor domain of Chara myosin. We estimated the time spent in the strongly bound state with actin by measuring rate constants of ADP dissociation from actin.motor domain complex and ATP-induced dissociation of the motor domain from actin. The rate constant of ADP dissociation from acto-motor domain was >2800 s(-1), and the rate constant of ATP-induced dissociation of the motor domain from actin at physiological ATP concentration was 2200 s(-1). From these data, the time spent in the strongly bound state with actin was estimated to be <0.82 ms. This value is the shortest among known values for various myosins and yields the duty ratio of <0.3 with a V(max) value of the actin-activated ATPase activity of 390 s(-1). The addition of the long neck domain of myosin Va to the Chara motor domain largely increased the velocity of the motility without increasing the ATP hydrolysis cycle rate, consistent with the swinging lever model. In addition, this study reveals some striking kinetic features of Chara myosin that are suited for the fast movement: a dramatic acceleration of ADP release by actin (1000-fold) and extremely fast ATP binding rate.  相似文献   

16.
The missense mutation of Cys(442) to Tyr of myosin VI causes progressive postlingual sensorineural deafness. Here we report the affects of the C442Y mutation on the kinetics of the actomyosin ATP hydrolysis mechanism and motor function of myosin VI. The largest changes in the kinetic mechanism of ATP hydrolysis produced by the C442Y mutation are about 10-fold increases in the rate of ADP dissociation from both myosin VI and actomyosin VI. The rates of ADP dissociation from acto-C442Y myosin VI-ADP and C442Y myosin VI-ADP are 20-40 times more rapid than the steady state rates and cannot be the rate-limiting steps of the hydrolysis mechanism in the presence or absence of actin. The 2-fold increase in the actin gliding velocity of C442Y compared with wild type (WT) may be explained at least in part by the more rapid rate of ADP dissociation. The C442Y myosin VI has a significant increase ( approximately 10-fold) in the steady state ATPase rate in the absence of actin relative to WT myosin VI. The steady state rate of actin-activated ATP hydrolysis is unchanged by the C442Y mutation at low (<10(-7) m) calcium but is calcium-sensitive with a 1.6-fold increase at high ( approximately 10(-4) m) calcium that does not occur with WT. The actin gliding velocity of the C442Y mutant decreases significantly at low surface density of myosin VI, suggesting that the mutation hampers the processive movement of myosin VI.  相似文献   

17.
Class XIX myosin (Myo19) is a vertebrate-specific unconventional myosin, responsible for the transport of mitochondria. To characterize biochemical properties of Myo19, we prepared recombinant mouse Myo19-truncated constructs containing the motor domain and the IQ motifs using the baculovirus/Sf9 expression system. We identified regulatory light chain (RLC) of smooth muscle/non-muscle myosin-2 as the light chain of Myo19. The actin-activated ATPase activity and the actin-gliding velocity of Myo19-truncated constructs were about one-third and one-sixth as those of myosin-5a, respectively. The apparent affinity of Myo19 to actin was about the same as that of myosin-5a. The RLCs bound to Myo19 could be phosphorylated by myosin light chain kinase, but this phosphorylation had little effect on the actin-activated ATPase activity and the actin-gliding activity of Myo19-truncated constructs. Using dual fluorescence-labeled actin filaments, we determined that Myo19 is a plus-end-directed molecular motor. We found that, similar to that of the high-duty ratio myosin, such as myosin-5a, ADP release rate was comparable with the maximal actin-activated ATPase activity of Myo19, indicating that ADP release is a rate-limiting step for the ATPase cycle of acto-Myo19. ADP strongly inhibited the actin-activated ATPase activity and actin-gliding activity of Myo19-truncated constructs. Based on the above results, we concluded that Myo19 is a high-duty ratio molecular motor moving to the plus-end of the actin filament.  相似文献   

18.
A conventional five-step chemo-mechanical cycle of the myosin–actin ATPase reaction, which implies myosin detachment from actin upon release of hydrolysis products (ADP and phosphate, Pi) and binding of a new ATP molecule, is able to fit the [Pi] dependence of the force and number of myosin motors during isometric contraction of skeletal muscle. However, this scheme is not able to explain why the isometric ATPase rate of fast skeletal muscle is decreased by an increase in [Pi] much less than the number of motors. The question can be solved assuming the presence of a branch in the cycle: in isometric contraction, when the force generation process by the myosin motor is biased at the start of the working stroke, the motor can detach at an early stage of the ATPase cycle, with Pi still bound to its catalytic site, and then rapidly release the hydrolysis products and bind another ATP. In this way, the model predicts that in fast skeletal muscle the energetic cost of isometric contraction increases with [Pi]. The large dissociation constant of the product release in the branched pathway allows the isometric myosin–actin reaction to fit the equilibrium constant of the ATPase.  相似文献   

19.
Relaxation of both smooth and skeletal muscles appears to be caused primarily by inhibition of the step associated with Pi release in the actomyosin ATPase cycle, rather than by a block in the binding of the myosin X ATP and myosin X ADP X Pi complexes to actin. In skeletal muscle, troponin-tropomyosin not only causes marked inhibition of Pi release, but it also markedly inhibits the binding of myosin subfragment-1 X ADP to actin, raising the possibility that the two phenomena are coupled in some way. In the present study we determined whether phosphorylation of smooth muscle heavy meromyosin (HMM) also affects both the binding of HMM X ADP to actin and the Pi release step. This was done by having phosphorylated and unphosphorylated HMM X ADP compete for sites on F-actin. At mu = 30 mM, phosphorylation increased the affinity of the HMM molecule for actin about 12-fold and at mu = 170 mM, there was less than a 3-fold increase in the affinity of HMM. If phosphorylation affects the binding of each head of HMM to the same extent, then phosphorylation caused about a 4- and 2-fold increase in the affinity of each head of HMM for actin at mu = 30 and 170 mM, respectively. In contrast, at both ionic strengths, phosphorylation caused more than 100-fold actin activation of the ATPase activity of smooth muscle HMM. Therefore, the marked activation of Pi release in the acto X HMM ATPase cycle upon phosphorylation of HMM is not accompanied by a comparable increase in the affinity of HMM X ADP for actin. We have also found that phosphorylation increases by only 4-fold the rate of Pi release from HMM alone. These results suggest that in smooth muscle, phosphorylation accelerates the step associated with the release of Pi both in the forward and the reverse direction without correspondingly affecting the binding of myosin X ADP to actin.  相似文献   

20.
Watanabe S  Umeki N  Ikebe R  Ikebe M 《Biochemistry》2008,47(36):9505-9513
Usher syndrome (USH) is a human hereditary disorder characterized by profound congenital deafness, retinitis pigmentosa, and vestibular dysfunction. Myosin VIIa has been identified as the responsible gene for USH type 1B, and a number of missense mutations have been identified in the affected families. However, the molecular basis of the dysfunction of USH gene, myosin VIIa, in the affected families is unknown to date. Here we clarified the effects of USH1B mutations on human myosin VIIa motor function for the first time. The missense mutations of USH1B significantly inhibited the actin activation of ATPase activity of myosin VIIa. G25R, R212C, A397D, and E450Q mutations abolished the actin-activated ATPase activity completely. P503L mutation increased the basal ATPase activity for 2-3-fold but reduced the actin-activated ATPase activity to 50% of the wild type. While all of the mutations examined, except for R302H, reduced the affinity for actin and the ATP hydrolysis cycling rate, they did not largely decrease the rate of ADP release from actomyosin, suggesting that the mutations reduce the duty ratio of myosin VIIa. Taken together, the results suggest that the mutations responsible for USH1B cause the complete loss of the actin-activated ATPase activity or the reduction of duty ratio of myosin VIIa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号