首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paucity of crystallographic data on the structure of intrinsic membrane proteins necessitates the development of additional techniques to probe their structures. The colicin E1 ion channel domain contains one prominent hydrophobic region near its COOH terminus that has been proposed to be an anchor for the assembly of the channel. Saturation site-directed mutagenesis of the hydrophobic anchor region of the colicin E1 ion channel was used to probe whether it spanned the bilayer once or twice. A nonpolar amino acid was replaced by a charged residue in 29 mutations made at 26 positions in the channel domain. Substitution of the charged amino acid at all positions except those in the center of the hydrophobic region and the periphery of the hydrophobic region caused a large decrease in the cytotoxicity of the purified mutant colicin E1 protein. This result implies that the hydrophobic domain spans the membrane bilayer twice in a helical hairpin loop, with the center of this domain residing in an aqueous or polar phase. The lengths of the trans-membrane helices appear to be approximately 18 and 16 residues. The absence of significant changes in ion selectivity in five of nine mutants indicated that these mutations did not cause a large change in the channel structure. The ion selectivity changes in four mutants and those previously documented for the flanking Lys residues imply that the hydrophobic hairpin is part of the channel lumen. Water may "abhor" the hydrophobic side of the channel, explaining the small effects of residue charge changes on ion selectivity.  相似文献   

2.
Structure and dynamics of the colicin E1 channel   总被引:13,自引:0,他引:13  
The toxin-like and bactericidal colicin E1 molecule is of interest for problems of toxin action, polypeptide translocation across membranes, voltage-gated channels, and receptor function. Colicin E1 binds to a receptor in the outer membrane and is translocated across the cell envelope to the inner membrane. Import of the colicin channel-forming domain into the inner membrane involves a translocation-competent intermediate state and a membrane potential-dependent movement of one third to one half of the channel peptide into the membrane bilayer. The voltage-gated channel has a conductance sufficiently large to depolarize the Escherichia coli cytoplasmic membrane. Amino acid residues that affect the channel ion selectivity have been identified by site-directed mutagenesis. The colicin E1 channel is one of a few membrane proteins whose secondary structures in the membrane, predominantly alpha-helix, have been determined by physico-chemical techniques. Hypothesis for the identity of the trans-membrane helices, and the mechanism of binding to the membrane, are influenced by the solved crystal structure of the soluble colicin A channel peptide. The protective action of immunity protein is a unique aspect of the colicin problem, and information has been obtained, by genetic techniques, about the probable membrane topography of the imm gene product.  相似文献   

3.
Colicin E1 was altered by oligonucleotide-directed mutagenesis at the site of three charged residues on the COOH side of the 35-residue hydrophobic segment in the channel-forming domain. Asp-509 is one of five conserved acidic residues in the channel domain of colicins A, B, E1, Ia, and Ib and is the first charged residue following the hydrophobic segment, followed by the basic residues Lys-510 and Lys-512. Asp-509 and Lys-512 were changed to amber and ochre stop codons, respectively, while Lys-510 was mutated to a Met codon. Proteins truncated after residue 508 or 511, and missing the last 14 or 11 residues, were obtained from a nonsuppressing cell strain harboring the mutant plasmid while full-length colicin molecules with single residue changes at Asp-509 to Leu, Ser, and Gln, and Lys-512 to Tyr, were obtained by using appropriate suppressor strains. The truncated colicins displayed (i) a low cytotoxicity, approximately 1% of intact wild-type colicin, (ii) 10-fold less in vitro channel activity with liposomes, and (iii) reduced labeling of the colicin in liposomes by a phospholipid photoaffinity probe, showing that one or more of the residues following Asn-511 is necessary for both in vivo and in vitro activity and insertion into the bilayer. (iv) The truncated mutants also displayed an altered conformation at pH 6 that allowed greater binding and activity with liposomes at this pH relative to wild type. The cytotoxicity of single residue substitutions at Asp-509 showed a range of cytotoxicities, wild type greater than Ser-509 greater than Gln-509 greater than Leu-509, although none of these changes greatly affected the in vitro channel activity or pH dependence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Structure-function relations of the colicin E1 ion channel were studied through the effects of mutations in the 35-residue hydrophobic region of the channel polypeptide and neighboring residues in the channel domain. Mutation of neutral residues threonine 501 and glycine 502 to a more polar or charged glutamic acid generated a protein whose channel conductance properties in each case had a decreased selectivity for anions. There was no significant effect on ion selectivity caused by mutations that changed residue charge outside the hydrophobic domain at the neighboring aspartic acid 509 or at glycine 439. The Thr501----Glu and Gly502----Glu mutants possessed lower cytotoxic and in vitro activity. An altered thermolysin cleavage pattern and a greater binding to membrane vesicles at pH greater than 4.5 of the Gly502----Glu mutant indicated greater exposure of its COOH-terminal hydrophobic domain in solution. It is concluded that the hydrophobic nature of threonine 501 and glycine 502 is important in the structure of the channel lumen and the soluble colicin. Altering proline 462, a residue conserved in five sequenced channel-forming colicins, had no significant effect on channel properties. These conclusions are discussed in the context of sequence-structure-function concepts for channel proteins.  相似文献   

5.
Major transmembrane movement associated with colicin Ia channel gating   总被引:14,自引:4,他引:10       下载免费PDF全文
Colicin Ia, a bacterial protein toxin of 626 amino acid residues, forms voltage-dependent channels in planar lipid bilayer membranes. We have exploited the high affinity binding of streptavidin to biotin to map the topology of the channel-forming domain (roughly 175 residues of the COOH-terminal end) with respect to the membrane. That is, we have determined, for the channel's open and closed states, which parts of this domain are exposed to the aqueous solutions on either side of the membrane and which are inserted into the bilayer. This was done by biotinylating cysteine residues introduced by site-directed mutagenesis, and monitoring by electrophysiological methods the effect of streptavidin addition on channel behavior. We have identified a region of at least 68 residues that flips back and forth across the membrane in association with channel opening and closing. This identification was based on our observations that for mutants biotinylated in this region, streptavidin added to the cis (colicin- containing) compartment interfered with channel opening, and trans streptavidin interfered with channel closing. (If biotin was linked to the colicin by a disulfide bond, the effects of streptavidin on channel closing could be reversed by detaching the streptavidin-biotin complex from the colicin, using a water-soluble reducing agent. This showed that the cysteine sulfur, not just the biotin, is exposed to the trans solution). The upstream and downstream segments flanking the translocated region move into and out of the bilayer during channel opening and closing, forming two transmembrane segments. Surprisingly, if any of several residues near the upstream end of the translocated region is held on the cis side by streptavidin, the colicin still forms voltage-dependent channels, indicating that a part of the protein that normally is fully translocated across the membrane can become the upstream transmembrane segment. Evidently, the identity of the upstream transmembrane segment is not crucial to channel formation, and several open channel structures can exist.  相似文献   

6.
A COOH-terminal tryptic fragment (Mr approximately equal to 20,000) of colicin E1 has been proposed to contain the membrane channel-forming domain of the colicin molecule. A comparison is made of the conductance properties of colicin E1 and its COOH-terminal fragment in planar bilayer membranes. The macroscopic and single channel properties of colicin E1 and its COOH-terminal tryptic fragment are very similar, if not indistinguishable, implying that the NH2-terminal, two-thirds of the colicin E1 molecule, does not significantly influence its channel properties. The channel-forming activity of both polypeptides is dependent upon the presence of a membrane potential, negative on the trans side of the membrane. The average single channel conductance of colicin E1 and the COOH-terminal fragment is 20.9 +/- 3.9 and 19.1 +/- 2.9 picosiemens, respectively. The rate at which both proteins form conducting channels increases as the pH is lowered from 7 to 5. Both molecules require negatively charged lipids for activity to be expressed, exhibit the same ion selectivity, and rectify the current to the same extent. Both polypeptides associate irreversibly with the membrane in the absence of voltage, but subsequent formation of conducting channels requires a negative membrane potential.  相似文献   

7.
A R Merrill  W A Cramer 《Biochemistry》1990,29(37):8529-8534
The voltage dependence of channel activity of the bactericidal protein colicin E1 was found to be correlated with insertion into the membrane bilayer of a specific segment of the 178-residue COOH-terminal thermolytic colicin channel peptide. The insertion into the bilayer was detected by an increase in labeling by one of two different lipophilic photoaffinity probes or by a decrease in iodination of peptide tyrosines from the external solution. Imposition of a potassium diffusion potential of -100 mV resulted in an increase of 35-60% in the labeling of the peptide by the lipophilic probe in the bilayer and a concomitant decrease in labeling of Tyr residues in the peptide by the iodination reagent in the external solution. The change in labeling decreased upon dissipation of the membrane potential with a half-time of about 1 min. The labeling change was localized to a 36-residue peptide segment bounded by alanine-425 and by tryptophan-460. This segment containing seven positively charged residues at low pH is a voltage-sensitive region that inserts into the membrane bilayer when the channel is turned on by the potential and is extruded from it when the voltage is removed and the channel is turned off.  相似文献   

8.
Clostridium botulinum C2 toxin belongs to the family of binary AB type toxins that are structurally organized into distinct enzyme (A, C2I) and binding (B, C2II) components. The proteolytically activated 60-kDa C2II binding component is essential for C2I transport into target cells. It oligomerizes into heptamers and forms channels in lipid bilayer membranes. The C2II channel is cation-selective and can be blocked by chloroquine and related compounds. Residues 303-330 of C2II contain a conserved pattern of alternating hydrophobic and hydrophilic residues, which has been implicated in the formation of two amphipathic beta-strands involved in membrane insertion and channel formation. In the present study, C2II mutants created by substitution of different negatively charged amino acids by alanine-scanning mutagenesis were analyzed in artificial lipid bilayer membranes. The results suggested that most of the C2II mutants formed SDS-resistant oligomers (heptamers) similar to wild type. The mutated negatively charged amino acids did not influence channel properties with the exception of Glu(399) and Asp(426), which are probably localized in the vestibule near the channel entrance. These mutants show a dramatic decrease in their affinity for binding of chloroquine and its analogues. Similarly, F428A, which represents the Phi-clamp in anthrax protective antigen, was mutated in C2II in several other amino acids. The C2II mutants F428A, F428D, F428Y, and F428W not only showed altered chloroquine binding but also had drastically changed single channel properties. The results suggest that amino acids Glu(399), Asp(426), and Phe(428) have a major impact on the function of C2II as a binding protein for C2I delivery into target cells.  相似文献   

9.
The region of the colicin E1 polypeptide that interacts with immunity protein has been localized to a 168-residue COOH-terminal peptide. This is the length of a proteolytically generated peptide fragment of colicin E1 against which imm+ function can be demonstrated in osmotically shocked cells. The role of particular amino acids of the COOH-terminal peptide in the expression of the immune phenotype was studied. Chemical modification showed that the two histidine residues (His 427 and His 440) and the single cysteine residue (Cys 505) present in the COOH-terminal peptide were not necessary for the colicin-immunity protein interaction. The immunity protein was localized in the cytoplasmic membrane fraction, consistent with previous work of others on the colicin Ia immunity protein and the prediction from the immunity protein amino acid sequence that it is a hydrophobic protein. The distribution of hydrophobic residues along the immunity polypeptide was calculated.  相似文献   

10.
Dynamic properties of the colicin E1 ion channel   总被引:1,自引:0,他引:1  
Abstract The mechanism of channel formation and action of channel-forming colicins is a paradigm for the study of dynamic aspects of membrane-protein interactions. The following experimental results concerning interaction of the colicin E1 channel domain with target membranes, in vitro and in vivo, are discussed: (1) the nature of the translocation-competent state of the channel-forming domain; (2) unfolding of the colicin channel peptide during in vitro binding and anchoring of the channel to liposome membranes at acidic pH; (3) reversal of channel peptide binding to liposomes by an alkaline-directed pH shift; (4) voltage-driven translocation and gating of the ion channel, discussed in the context of a four-helix model for a monomeric channel; (5) rescue of colicin-treated cells by high levels of external K+; (6) trypsin rescue of cells depolarized by the colicin ion channel; and (7) interaction of the channel domain with its immunity protein.  相似文献   

11.
E Schramm  J Mende  V Braun    R M Kamp 《Journal of bacteriology》1987,169(7):3350-3357
Colicin B formed by Escherichia coli kills sensitive bacteria by dissipating the membrane potential through channel formation. The nucleotide sequence of the structural gene (cba) which encodes colicin B and of the upstream region was determined. A polypeptide consisting of 511 amino acids was deduced from the open reading frame. The active colicin had a molecular weight of 54,742. The carboxy-terminal amino acid sequence showed striking homology to the corresponding channel-forming region of colicin A. Of 216 amino acids, 57% were identical and an additional 19% were homologous. In this part 66% of the nucleotides were identical in the colicin A and B genes. This region contained a sequence of 48 hydrophobic amino acids. Sequence homology to the other channel-forming colicins, E1 and I, was less pronounced. A homologous pentapeptide was detected in colicins B, M, and I whose uptake required TonB protein function. The same consensus sequence was found in all outer membrane proteins involved in the TonB-dependent uptake of iron siderophores and of vitamin B12. Upstream of cba a sequence comprising 294 nucleotides was identical to the sequence upstream of the structural gene of colicin E1, with the exception of 43 single-nucleotide replacements, additions, or deletions. Apparently, the region upstream of colicins B and E1 and the channel-forming sequences of colicins A and B have a common origin.  相似文献   

12.
We have sought to obtain conditions for cyanogen bromide (CNBr) cleavage of apolipoprotein AI which would preserve, as far as possible, the biological activity of the resulting fragments. We found that the choice of solvent is an important consideration since modification of amino acids in different proteins varies with cleavage conditions. Initially, an analytical technique employing reversed-phase (RP)-HPLC which separates the four CNBr fragments in a single chromatographic step was established to monitor the products and extent of cleavage. In developing this technique, spectral data indicated damage to tyrosine and tryptophan residues during CNBr digestion. This problem was resolved by using 70% trifluoroacetic acid instead of 70% formic acid as the solvent, which had the added benefit of increasing the extent of cleavage of the Met86-Ser87 bond by 50%. We applied the information derived from the analytical RP-HPLC method to achieve the preparative isolation of CNBr fragments. This procedure included a gel permeation chromatography step using a citrate/urea buffer before RP-HPLC to isolate pure fragments in volatile buffers. Finally, we discuss aspects of structural integrity with an emphasis on modification of aromatic amino acids and deamidation of asparagine and glutamine residues.  相似文献   

13.
The bacterial toxin colicin E1 is known to induce voltage-gated currents across a planar bilayer lipid membrane. In the present study, it is shown that the colicin-induced current decreased substantially upon illumination of the membrane in the presence of the photosensitizer, aluminum phthalocyanine. This effect was almost completely abolished by the singlet oxygen quencher, sodium azide. Using single tryptophan mutants of colicin E1, Trp495 was identified as the amino acid residue responsible for the sensitized photodamage of the colicin channel activity. Thus, the distinct participation of a specific amino acid residue in the sensitized photoinactivation of a defined protein function was demonstrated. It is suggested that Trp495 is critical for the translocation and/or anchoring of the colicin channel domain in the membrane.  相似文献   

14.
A new approach for the determination of the bilayer location of Trp residues in proteins has been applied to the study of the membrane topology of the channel-forming bacteriocin, colicin E1. This method, red-edge excitation shift (REES) analysis, was initially applied to the study of 12 single Trp-containing channel peptides of colicin E1 in the soluble state in aqueous medium. Notably, REES was observed for most of the channel peptides in aqueous solution upon low pH activation. The extent of REES was subsequently characterized using a model membrane system composed of the tripeptide, Lys-Trp-Lys, bound to dimyristoyl-sn-glycerol-3-phosphatidylserine liposomes. Subsequently, data accrued from the model peptide-lipid system was used to interpret information obtained on the channel peptides when bound to dioleoyl-sn-glycerol-3-phosphatidylcholine/dioleoyl-sn-glycerol-3-phosphatidylglycerol membrane vesicles. The single Trp mutant peptides were divided into three categories based on the change in the REES values observed for the Trp residues when the peptides were bound to liposomes as compared to the REES values measured for the soluble peptides. F-404W, F-413W, F-443W, F-484W, and W-495 peptides exhibited small and/or insignificant REES changes (ΔREES) whereas W-424, F-431W, and Y-507W channel peptides possessed modest REES changes (3 nm≤ΔREES≤7 nm). In contrast, wild-type, Y-367W, W-460, Y-478W, and I-499W channel peptides showed large ΔREES values upon membrane binding (7 nm<ΔREES≤12 nm). The REES data for the membrane-bound structure of the colicin E1 channel peptide proved consistent with previous data for the topology of the closed channel state, which lends further credence to the currently proposed channel model. In conclusion, the REES method provides another source of topological data for assignment of the bilayer location for Trp residues within membrane-associated proteins; however, it also requires careful interpretation of spectral data in combination with structural information on the proteins being investigated.  相似文献   

15.
OprM, the outer membrane component of the MexAB-OprM multidrug efflux pump of Pseudomonas aeruginosa, has been assumed to facilitate the export of antibiotics across the outer membrane of this organism. Here we purified to homogeneity the OprM protein, reconstituted it into liposome membranes, and tested its channel activity by using the liposome swelling assay. It was demonstrated that OprM is a channel-forming protein and exhibits the channel property that amino acids diffuse more efficiently than saccharides. However, antibiotics showed no significant diffusion through the OprM channel in the liposome membrane, suggesting that OprM functions as a gated channel. We reasoned that the protease treatment may cause the disturbance of the gate structure of OprM. Hence, we treated OprM reconstituted in the membranes with alpha-chymotrypsin and examined its solute permeability. The results demonstrated that the protease treatment caused the opening of an OprM channel through which antibiotics were able to diffuse. To elucidate which cleavage is intimately related to the opening, we constructed mutant OprM proteins where the amino acid at the cleavage site was replaced with another amino acid. By examining the channel activity of these mutant proteins, it was shown that the proteolysis at tyrosine 185 and tyrosine 196 of OprM caused the channel opening. Furthermore, these residues were shown to face into the periplasmic space and interact with other component(s). We considered the possible opening mechanism of the OprM channel based on the structure of TolC, a homologue of OprM.  相似文献   

16.
A new approach for the determination of the bilayer location of Trp residues in proteins has been applied to the study of the membrane topology of the channel-forming bacteriocin, colicin E1. This method, red-edge excitation shift (REES) analysis, was initially applied to the study of 12 single Trp-containing channel peptides of colicin E1 in the soluble state in aqueous medium. Notably, REES was observed for most of the channel peptides in aqueous solution upon low pH activation. The extent of REES was subsequently characterized using a model membrane system composed of the tripeptide, Lys-Trp-Lys, bound to dimyristoyl-sn-glycerol-3-phosphatidylserine liposomes. Subsequently, data accrued from the model peptide-lipid system was used to interpret information obtained on the channel peptides when bound to dioleoyl-sn-glycerol-3-phosphatidylcholine/dioleoyl-sn-glycerol-3-phosphatidylglycerol membrane vesicles. The single Trp mutant peptides were divided into three categories based on the change in the REES values observed for the Trp residues when the peptides were bound to liposomes as compared to the REES values measured for the soluble peptides. F-404 W, F-413 W, F-443 W, F-484 W, and W-495 peptides exhibited small and/or insignificant REES changes (Delta REES) whereas W-424, F-431 W, and Y-507 W channel peptides possessed modest REES changes (3 nm< or = Delta REES< or = 7 nm). In contrast, wild-type, Y-367 W, W-460, Y-478 W, and I-499 W channel peptides showed large Delta REES values upon membrane binding (7 nm< Delta REES< or =12 nm). The REES data for the membrane-bound structure of the colicin E1 channel peptide proved consistent with previous data for the topology of the closed channel state, which lends further credence to the currently proposed channel model. In conclusion, the REES method provides another source of topological data for assignment of the bilayer location for Trp residues within membrane-associated proteins; however, it also requires careful interpretation of spectral data in combination with structural information on the proteins being investigated.  相似文献   

17.
Chemical modification and photodynamic treatment of the colicin E1 channel-forming domain (P178) in vesicular and planar bilayer lipid membranes (BLMs) was used to elucidate the role of tryptophan residues in colicin E1 channel activity. Modification of colicin tryptophan residues by N-bromosuccinimide (NBS), as judged by the loss of tryptophan fluorescence, resulted in complete suppression of wild-type P178 channel activity in BLMs formed from fully saturated (diphytanoyl) phospholipids, both at the macroscopic-current and single-channel levels. The similar effect on both the tryptophan fluorescence and the electric current across BLM was observed also after NBS treatment of gramicidin channels. Of the single-tryptophan P178 mutants studied, W460 showed the highest sensitivity to NBS treatment, pointing to the importance of the water-exposed Trp460 in colicin channel activity. In line with previous work, the photodynamic treatment (illumination with visible light in the presence of a photosensitizer) led to suppression of P178 channel activity in diphytanoyl-phospholipid membranes concomitant with the damage to tryptophan residues detected here by a decrease in tryptophan fluorescence. The present work revealed novel effects: activation of P178 channels as a result of both NBS and photodynamic treatments was observed with BLMs formed from unsaturated (dioleoyl) phospholipids. These phenomena are ascribed to the effect of oxidative modification of double-bond-containing lipids on P178 channel formation. The pronounced stimulation of the colicin-mediated ionic current observed after both pretreatment with NBS and sensitized photomodification of the BLMs support the idea that distortion of membrane structure can facilitate channel formation.Abbreviations: AlPcS3, almininum trisulfophthalocyanine; BLM, bilayer lipid membrane; DOPC, dioleoylphosphatidylcholine; DOPG, dioleoylphosphatidyl-glycerol; DPhPG, diphytanoylphos-phatidylglycerol; DPhPg, diphytanoylphosphatidylcholine; gA, gramicidin A; NBS, N-bromosuccinimideThis revised version was published online in August 2005 with a corrected cover date.  相似文献   

18.
Colicin E1 is a soluble, bacteriocidal protein that forms voltage-gated channels in planar lipid bilayers. The channel-forming region of the 522-amino acid protein is near the COOH terminus, and contains a 35-amino acid hydrophobic segment which is presumed to be important in interacting with the membrane. We have used site-directed mutagenesis in the region immediately upstream from the hydrophobic segment to construct several functional colicin mutants in which a wild-type residue was replaced with a cysteine. We also replaced the only naturally occurring cysteine in the molecule, Cys-505, with alanine, so that synthetically introduced cysteines could unambiguously serve as targets for chemical modification. All of the replacements reported here (at positions 449, 459, 473, 505, and some combinations) resulted in a channel that had an ion selectivity (K+ versus Cl-) identical to wild type at low pH. At higher pH, however, one of these mutations, which replaced the negatively charged aspartate at position 473 (the upstream boundary of the hydrophobic segment), resulted in a channel that was less cation-selective than was wild type. When the introduced Cys-473 was reacted with iodoacetic acid, which inserted a COOH group close to the position of the missing aspartate COOH, wild-type ion selectivity was restored, suggesting that the greater cation selectivity of the wild-type channel was directly produced by the negative charge at Asp-473. By comparing the ion selectivity of the Cys-473 mutant channel to that of the wild type as a function of the pH on the cis and trans sides of the membrane, it was possible to locate residue 473 close to the cis side. Locating in this manner the positions in the channel of particular residues places important constraints on channel model building.  相似文献   

19.
A model peptide, FKCRRWQWRMKKLGA, residues 17-31 of bovine lactoferricin, has been subjected to structure-antibacterial activity relationship studies. The two Trp residues are very important for antibacterial activity, and analogue studies have demonstrated the significance of the size, shape and aromatic character of the side chains. In the current study we have replaced Trp residues in the model peptide with bulky aromatic amino acids to elucidate further the importance of size and shape. The counterproductive Cys residue in position 3 was also replaced by these aromatic amino acids. The largest aromatic amino acids employed resulted in the most active peptides. The peptides containing these hydrophobic residues were generally more active against Staphylococcus aureus than against Escherichia coli, indicating that the bacterial specificity as well as the antibacterial efficiency can be altered by employing large hydrophobic aromatic amino acid residues.  相似文献   

20.
Kringle 5(K5) is the fifth kringle domain of human plasminogen and its anti‐angiogenic activity is more potent than angiostatin that includes the first four kringle fragment of plasminogen. Our recent study demonstrated that K5 suppressed hepatocarcinoma growth by anti‐angiogenesis. To find high efficacy and minimal peptide sequence required for the anti‐angiogenic and anti‐tumour activities of K5, two deletion mutants of K5 were generated. The amino acid residues outside kringle domain of intact K5 (Pro452‐Ala542) were deleted to form K5mut1(Cys462‐Cys541). The residue Cys462 was deleted again to form K5mut2(Met463‐Cys541). K5mut1 specifically inhibited proliferation, migration and induced apoptosis of endothelial cells, with an apparent two‐fold enhanced activity than K5. Intraperitoneal injection of K5mut1 resulted in more potent tumour growth inhibition and microvessel density reduction than K5 both in HepA‐grafted and Bel7402‐xenografted hepatocarcinoma mouse models. These results suggested that K5mut1 has more potent anti‐angiogenic activity than intact K5. K5mut2, which lacks only the amino terminal cysteine of K5mut1, completely lost the activity, suggesting that the kringle domain is essential for the activity of K5. The activity was enhanced to K5mut1 level when five acidic amino acids of K5 in NH2 terminal outside kringle domain were replaced by five serine residues (K5mut3). The shielding effect of acidic amino acids may explain why K5mut1 has higher activity. K5, K5mut1 and K5mut3 held characteristic β‐sheet spectrum while K5mut2 adopted random coil structure. These results suggest that K5mut1 with high efficacy is the minimal active peptide sequence of K5 and may have therapeutic potential in liver cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号