首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 530 毫秒
1.
Biological indicators of genotoxic risk and metabolic polymorphisms   总被引:13,自引:0,他引:13  
International scientific publications on the influence of metabolic genotypes on biological indicators of genotoxic risk in environmental or occupational exposure are reviewed. Biomarkers of exposure (substance or its metabolites in biological fluids, urinary mutagenicity, protein and DNA adducts) and of effects (chromosome aberrations (CAs), sister chromatid exchanges (SCEs), micronuclei (Mn), COMET assay, HPRT mutants) have been evaluated according to different genotypes (or phenotypes) of several activating/detoxifying metabolic activities. In less than half the studies (43 out of 95), the influence of genotype on the examined biological indicator was found, of which four report poorly reliable results (i.e., with scarce biological plausibility, because of the inconsistency of modulated effect with the type of enzymatic activity expressed). As regards urinary metabolites, the excretion of mercapturic acids (MA) is greater in subjects with high GST activity, that of 1-pyrenol and other PAH metabolites turns out to be significantly influenced by genotypes CYP1A1 or GSTM1 null, and that of exposure indicators to aromatic amines (AA) (acetylated and non-acetylated metabolites) is modulated by NAT2. In benzene exposure, preliminary results suggest an increase in urinary t, t-muconic acid (t,t-MA) in subjects with some genotypes. On urinary mutagenicity of PAH-exposed subjects, the effects of genotype GSTM1 null, alone or combined with NAT2 slow are reported. When DNA adduct levels are clearly increased in PAH-exposed group (18 out of 22), 7 out of 18 studies report the influence of GSTM1 null on this biomarker, and of the five studies which also examined genotype CYP1A1, four report the influence of genotype CYP1A1, alone or in combination with GSTM1 null. A total of 25 out of 41 publications (61%) evaluating the influence of metabolic polymorphisms on biomarkers of effect (cytogenetic markers, COMET assay, HPRT mutants) do not record any increase in the indicator due to exposure to the genotoxic agents studied, confirming the scarce sensitivity of these indicators (mainly HPRT mutants, Mn, COMET assay) for assessing environmental or occupational exposure to genotoxic substances. Concluding, in determining urinary metabolites for monitoring exposure to genotoxic substances, there is sufficient evidence that genetically-based metabolic polymorphisms must be taken into account in the future. The unfavourable association for the activating/detoxifying metabolism of PAH is also confirmed as a risk factor due to the formation of PAH-DNA adducts. The clearly protective role played by GSTT1 on DEB (and/or related compound)-induced sister chromatid exchanges (SCEs) should be noted. The modulating effects of genotypes on protein adduct levels in environmental and occupational exposure have not yet been documented, and most studies on the influence of genotype on biological indicators of early genotoxic effects report negative results.  相似文献   

2.
It is undisputed that DNA adduct formation is one of the key processes in early carcinogenesis. Therefore, analysis of DNA adduct levels may be one of the best tools available to characterize exposure to complex mixtures of genotoxic chemicals as occurring in different environmental and occupational exposure settings. However, from an analytical point of view the detection and quantification of DNA adducts is a challenging enterprise as extremely high sensitivity and selectivity are required. The entire spectrum of chromatographic techniques, including thin-layer chromatography (TLC), gas and liquid chromatography as well as capillary electrophoresis has been used in combination with different detection systems, all with their own specific characteristics. Among the various combinations of techniques, the TLC-(32)P-postlabeling combination appears to meet best with criteria of sensitivity and requirements of minimal amounts of material. Recent developments in the application of capillary electrophoresis in combination with either immunochemical or mass spectrometric detection techniques may offer new and promising approaches, with higher selectivity as compared to TLC-(32)P postlabeling. The applicability of these new techniques in biomonitoring studies aiming at the exposure and risk assessment of low and chronic exposures remains to be determined. In this paper we compare and discuss the advantages and limitations of different techniques used in DNA adduct analysis, with specific emphasis on those adducts formed by the polycyclic aromatic hydrocarbons and heterocyclic aromatic amines.  相似文献   

3.
Aluminium production plant workers are exposed to a great number of airborne polycyclic aromatic hydrocarbons and epidemiological studies suggest that these workers are at increased risk of lung and bladder cancer. Blood samples from 46 workers at 2 primary aluminium plants and from 29 occupationally unexposed control individuals were analysed. DNA was isolated from the peripheral blood lymphocytes and aromatic DNA adducts were detected by 32P-postlabelling assay using the nuclease P1 digestion procedure for the enrichment of the adducts. The total levels of DNA adducts of exposed individuals varied from the detection limit of about 0.5 adducts/10(8) nucleotides up to 7.1 adducts/10(8) nucleotides and control adduct levels were up to 2.42 adducts/10(8) nucleotides. There was no significant difference between the mean adduct levels of the control group and of the individuals of one plant. However, the mean DNA adduct level obtained from workers of the second plant was significantly higher than that of the controls (p less than 0.001) and of the first plant (p less than 0.01), respectively. This difference can be attributed to differences in the design of technology and different levels of exposure at the 2 plants. The results of this study encourage further investigations of the use of peripheral white blood cells as marker cells and of 32P-postlabelling analysis for monitoring occupational exposure to mixtures of environmental carcinogenic pollutants.  相似文献   

4.
Shipbuilding workers are exposed to a variety of genotoxic compounds including polycyclic aromatic hydrocarbons (PAHs). A limited number of studies have been conducted to evaluate biomarkers related to PAH exposure in painters in the shipyard industry. We examined this in 208 workers recruited from a shipyard located in South Korea. Employees were grouped into three exposure groups: (1) 111 painters using coal tar paints, (2) 70 painters using general paints, and (3) 27 on-site controls using no paints. Levels of urinary 1-hydroxypyrene glucuronide (1-OHPG), as internal dose of PAH exposure, were measured by synchronous fluorescence spectroscopy. Glutathione S-transferase (GST) M1 and T1 genotypes were assessed by a multiplex polymerase chain reaction (PCR)-based method, aromatic-DNA adducts in peripheral white blood cells were measured by 32P-postlabeling, and glycophorin A (GPA) variant frequencies in red blood cells were assessed by flow cytometry. Information on demographic characteristics, smoking habits, diet, job title and use of personal protective equipment (e.g. respiratory and dermal) were collected by self-administered questionnaire. Average urinary 1-OHPG levels in coal tar paint (2.24 micromol/mol creatinine) and general paint (1.38 micromol/mol creatinine) users were significantly higher than in on-site controls (0.62 micromol/mol creatinine) (P<0.001). Paint use, irrespective of the type of paints, and smoking (yes/no) were positively associated with urinary 1-OHPG levels, whereas green tea consumption (yes/no) was negatively associated with the 1-OHPG levels. No significant effect in the 1-OHPG levels were observed for the GSTM1 and GSTT1 genotypes. Aromatic-DNA adduct levels tended to be higher in coal tar paint users (P = 0.06) and painters (P = 0.07) compared to on-site controls. No differences in adduct levels were observed, between the two groups of painters, and the combined group showed greater adduct levels than on-site controls (P = 0.05). GPA mutation frequencies measured in 55 individuals with MN heterozygote genotypes were not significantly different among the three exposure groups, and no correlation was observed between urinary 1-OHPG levels and aromatic-DNA adducts or GPA mutation frequency. These results suggest that painters in the shipyard were exposed to significant amounts of PAHs and possibly to other genotoxic aromatic compounds, and that urinary 1-OHPG may be a potential biomarker of PAH exposure in this population.  相似文献   

5.
Principal aims of this study were at first, to find a relevant human derived cell line to investigate the genotoxic potential of PAH-containing complex mixtures and second, to use this cell system for the analysis of DNA adduct forming activity of organic compounds bound onto PM10 particles. Particles were collected by high volume air samplers during summer and winter periods in three European cities (Prague, Kosice, and Sofia), representing different levels of air pollution. The genotoxic potential of extractable organic matter (EOM) was compared with the genotoxic potential of individual carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) as well as their artificial mixtures. Metabolically competent human hepatoma HepG2 cells, confluent cultures of human diploid lung fibroblasts (HEL), and the human monocytic leukemia cell line THP-1 were used as models. DNA adducts were analyzed by 32P-postlabeling. The total DNA adduct levels induced in HepG2 cells after exposure to EOMs were higher than in HEL cells treated under the same conditions (15–190 versus 2–15 adducts/108 nucleotides, in HepG2 and HEL cells, respectively). THP-1 cells exhibited the lowest DNA adduct forming activity induced by EOMs (1.5–3.7 adducts/108 nucleotides). A direct correlation between total DNA adduct levels and c-PAH content in EOM was found for all EOMs in HepG2 cells incubated with 50 μg EOM/ml (R = 0.88; p = 0.0192). This correlation was even slightly stronger when B[a]P content in EOMs and B[a]P-like adduct spots were analyzed (R = 0.90; p = 0.016). As THP-1 cells possess a limited metabolic capacity for most c-PAHs to form DNA reactive intermediates and are also more susceptible to toxic effects of PAHs and various EOM components, this cell line seemed to be an inappropriate system for genotoxicity studies of PAH-containing complex mixtures. The seasonal variability of genotoxic potential of extracts was stronger than variability among the three localities studied. In HepG2 cells, the highest DNA adduct levels were induced by EOM collected in Prague in the winter period, followed by Sofia and Kosice. However, in the summer sampling period, the order was quite opposite: Kosice > Sofia > Prague. When the EOM content per m3 of air was taken into consideration in order to compare real exposures of humans to genotoxic compounds in all three localities, extracts from respirable dust particles collected in Sofia exhibited the highest genotoxicity regardless of the sampling period. The results indicate that most of DNA adducts detected in cells incubated with EOMs have their origin in low concentrations of c-PAHs representing 0.03–0.17% of EOM total mass. Finally, our results suggest that HepG2 cells have a metabolic capacity for PAHs similar to human hepatocytes and represent therefore the best in vitro model for investigating the genotoxic potential of complex mixtures containing PAHs among the three cell lines tested in this study.  相似文献   

6.
Epidemiological studies conducted in metropolitan areas have demonstrated that exposure to environmental air pollution is associated with increases in mortality. Carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) are the major source of genotoxic activities of organic mixtures associated with respirable particulate matter, which is a constituent of environmental air pollution. In this study,we wanted to evaluate the relationship between exposure to these genotoxic compounds present in the air and endogenous oxidative DNA damage in three different human populations exposed to varying levels of environmental air pollution. As measures of oxidative DNA damage we have determined 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) by liquid chromatography–tandem mass spectrometry (LC–MS/MS) and cyclic pyrimidopurinone N-1,N2 malondialdehyde-2′-deoxyguanosine (M1dG) by the immunoslot blot assay from lymphocyte DNA of participating individuals. The level of endogenous oxidative DNA damage was significantly increased in individuals exposed to environmental air pollution compared to unexposed individuals from Kosice (8-oxodG adducts) and Sofia (M1dG adducts). However, there was no significant difference in the level of endogenous oxidative DNA and exposure to environmental air pollution in individuals from Prague (8-oxodG and M1dG adducts) and Kosice (M1dG adducts). The average level of M1dG adducts was significantly lower in unexposed and exposed individuals from Kosice compared to those from Prague and Sofia. The average level of 8-oxodG adducts was significantly higher in unexposed and exposed individuals from Kosice compared to those from Prague. A significant increasing trend according to the interaction of c-PAHs exposure and smoking status was observed in levels of 8-oxodG adducts in individuals from Kosice. However, no other relationship was observed for M1dG and 8-oxodG adduct levels with regard to the smoking status and c-PAH exposure status of the individuals. The conclusion that can be made from this study is that environmental air pollution may alter the endogenous oxidative DNA damage levels in humans but the effect appears to be related to the country where the individuals reside. Genetic polymorphisms of the genes involved in metabolism and detoxification and also differences in the DNA repair capacity and antioxidant status of the individuals could be possible explanations for the variation observed in the level of endogenous oxidative DNA damage for the different populations.  相似文献   

7.
The present work is focused on the determination of in vivo doses and studies of genetic effects in workers exposed to epichlorohydrin (ECH). The studied endpoints were hemoglobin (Hb) adducts, frequencies of hprt mutants, micronuclei in cytochalasin B blocked binucleated lymphocytes, sister chromatid exchanges (SCE) and high frequency cells (HFC). Blood samples were collected from office clerks and ECH exposed factory workers at an industrial plant in Germany. The workers were exposed to 0.11–0.23 ppm ECH in the air 45 h per week and to 0.2–2.6 ppm for 3 h per week. Some Swedish non-exposed subjects were also used for Hb adduct measurements. The genetic data, HFC and SCE, showed a significant difference between exposed and unexposed donors. In contrast to earlier studies on SCE, no impact of smoking was observed. Effects on micronuclei were on the borderline of significance, whereas there was no effect for HPRT mutants. The average Hb adduct level was higher in exposed than in non-exposed donors, although the difference was only significant when the exposed group was compared to Swedish controls. Smoking gave significantly increased adduct levels. The absence of significant correlations between individual data for Hb adducts and genetic effects, may be explained by the different periods of time covered by the responses in these endpoints. Whereas Hb adducts reflect the exposure during up to 4 months (i.e. the life span of human erythrocytes), the SCE, and particularly the HFC, seem to accumulate for years in a long-lived fraction of T-lymphocytes without DNA repair. Thus, the adduct data does not reflect the exposure backwards in time unless it can be shown that exposure conditions have remained unchanged. The origin of the background adduct levels in non-smoking control persons is at present not known.  相似文献   

8.
Biologic markers in ethylene oxide-exposed workers and controls   总被引:2,自引:0,他引:2  
Ethylene oxide (EtO) is an alkylating agent and a model direct-acting mutagen and carcinogen. This study has evaluated a panel of biologic markers including EtO-hemoglobin adducts (EtO-Hb), sister-chromatid exchanges (SCEs), micronuclei, chromosomal aberrations (CAs), DNA single-strand breaks (SSB) and an index of DNA repair (ratio of UDS to NA-AAF-DNA binding) in the peripheral blood cells of 34 workers at a sterilization unit of a large university hospital and 23 controls working in the university library. Comprehensive environmental histories were obtained on each subject including detailed occupational and smoking histories. Industrial hygiene data obtained prior to the study and personal monitoring during the 8 years preceding the study showed that workers were subject to low-level exposure near or below the current Occupational Safety and Health Administration (OSHA) standard of 1 ppm (TWA). Personal monitoring data obtained during 2 weeks prior to blood sampling were uniformly less than 0.3 ppm (TWA). After adjusting for smoking, EtO workplace exposure was significantly (p less than 0.001) associated with EtO-Hb (a carcinogen-protein adduct) and 2 measures of SCEs [the average number of SCEs/cell (SCE50) and the number of high frequency cells (SCEHFC)]. There was an apparent suppression of DNA repair capacity in EtO-exposed individuals as measured by the DNA repair index; i.e., the ratio of unscheduled DNA synthesis (UDS) and NA-AAF-DNA binding (p less than 0.01). No association of DNA repair index with smoking was found. Another important finding of this study is the highly significant correlation between EtO-Hb adduct levels and SCEHFC (p less than 0.01) and SCEs (p less than 0.02) which provides evidence of a direct link between a marker of biologically effective dose and markers of genotoxic response. In contrast, micronuclei, CAs and SSBs were not significantly elevated in the workers. The activity of the u-isoenzyme of glutathione-S-transferase (GT) was measured as a possible genetic marker of susceptibility and a modulator of biomarker formation. However, possibly because of confounding by age, no significant relationships were found between GT and any of the exposure-related markers by ANOVA or among other independent variables by regression. This study demonstrates significant effects of low-level EtO exposure, independent of smoking history, near or below 1 ppm on multiple biomarkers and suggests that the current OSHA standard may not be adequately protective. Previously described effects of smoking on EtO-Hb adducts, SCEs and SCEHFC were also seen in this study.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Ethylene oxide (EO) is mutagenic in various in vitro and in vivo test systems and carcinogenic in rodents. EO forms different adducts upon reaction with DNA, N7-(2-hydroxyethyl)guanine (N7-HEG) being the main adduct. The major objectives of this study were: (a) to determine the formation and persistence of N7-HEG adducts in liver DNA of adult male rats exposed to 0, 50, 100 and 200 ppm by inhalation (4 weeks, 5 days/week, 6 h/day) and (b) to assess dose-response relationships for Hprt gene mutations and various types of chromosomal changes in splenic lymphocytes.N7-HEG adducts were measured 5, 21, 35 and 49 days after cessation of exposure. By extrapolation, the mean concentrations of N7-HEG immediately after cessation of exposure ('day 0') to 50, 100 and 200 ppm were calculated as 310, 558 and 1202 adducts/10(8) nucleotides, respectively, while the mean concentration in control rats was 2.6 adducts/10(8) nucleotides. At 49 days, N7-HEG values had returned close to background levels. The mean levels of N-(2-hydroxyethylvaline) adducts in haemoglobin were also determined and amounted 61.7, 114 and 247 nmol/g globin, respectively. Statistically significant linear relationships were found between mean N7-HEG levels ('day 0') and Hprt mutant frequencies at expression times 21/22 and 49/50 days and between mean N7-HEG ('day 0') and sister-chromatid exchanges (SCEs) or high frequency cells (HFC) measured 5 days post-exposure. At day 21 post-exposure, SCEs and HFCs in-part persisted and were significantly correlated with persistent N7-HEG adducts. No statistically significant dose effect relationships were observed for induction of micronuclei, nor for chromosome breaks or translocations.In conclusion, this study indicates that following sub-chronic exposure, EO is only weakly mutagenic in adult rats. Using the data of this study to predict cancer risk in man resulting from low level EO exposures in conjunction with other published data, i.e., those on (a) genotoxic effects of EO in humans and rats, (b) DNA binding of other carcinogens, (c) natural background DNA binding and (d) genotoxic potency of low energy transfer (LET) radiation, it is not expected that long term occupational exposure to airborne concentrations of EO at or below 1 ppm EO produces an unacceptable increased risk in man.  相似文献   

10.
Acellular assay of calf thymus DNA ± rat liver microsomal S9 fraction coupled with 32P-postlabelling was used to study the genotoxic potential of organic compounds bound onto PM10 particles collected in three European cities—Prague (CZ), Kosice (SK) and Sofia (BG) during summer and winter periods. B[a]P alone induced DNA adduct levels ranging from 4.8 to 768 adducts/108 nucleotides in the concentration dependent manner. However, a mixture of 8 c-PAHs with equimolar doses of B[a]P induced 3.7–757 adducts/108 nucleotides, thus suggesting the inhibition of DNA adduct forming activity by interaction among various PAHs. Comparison of DNA adduct levels induced by various EOMs indicates higher variability among seasons than among localities. DNA adduct levels for Prague collection site varied from 19 to 166 adducts/108 nucleotides, for Kosice from 22 to 85 and for Sofia from 6 to 144 adducts/108 nucleotides. Bioactivation with S9 microsomal fraction caused 2- to 7-fold increase in DNA adduct levels compared to −S9 samples, suggesting a crucial role of indirectly acting genotoxic EOM components, such as PAHs. We have demonstrated for the first time a significant positive correlation between B[a]P content in EOMs and total DNA adduct levels detected in the EOM treated samples (R = 0.83; p = 0.04). These results suggest that B[a]P content in EOM is an important factor for the total genotoxic potential of EOM and/or B[a]P is a good indicator of the presence of other genotoxic compounds causing DNA adducts. Even stronger correlation between the content of genotoxic compounds in EOMs and total DNA adduct levels detected (R = 0.94; p = 0.005) was found when eight c-PAHs were taken into the consideration. Our findings support a hypothesis that a relatively limited number of EOM components is responsible for a major part of its genotoxicity detectable as DNA adducts by 32P-postlabelling.  相似文献   

11.
A study employing several biomarkers of styrene exposure and genotoxicity was carried out in a group of lamination (reinforced plastic) workers and controls, who had been repeatedly sampled during a 3-year period. Special attention will be paid to the last sampling (S.VI), reported here for the first time. Styrene concentration in the breathing zone, monitored by personal dosimeters, and urinary mandelic acid (MA) were measured as indicators of external exposure. Blood samples were assayed for styrene-specific O6-guanine adducts in DNA, N-terminal valine adducts of styrene in haemoglobin, DNA single-strand breaks (SSB), determined by use of the single cell gel electrophoresis (Comet) assay), and hypoxanthine guanine phosphoribosyl transferase (HPRT) mutant frequencies (MF) in T-lymphocytes. O6-styrene guanine adduct levels were significantly higher in the exposed group (5.9 +/- 4.9 adducts/10(8) dNp) as compared to laboratory controls (0.7 +/- 0.8 adducts/10(8) dNp; P = 0.001). DNA adduct levels significantly correlated with haemoglobin adducts, SSB parameters and years of employment. Styrene-induced N-terminal valine adducts were detected in the lamination workers (1.7 +/- 1.1 pmol/g globin), but not in the control group (detection limit 0.1 pmol/g globin). N-terminal valine adducts correlated strongly with external exposure indicators, DNA adducts and HPRT MF. No significant correlation was found with SSB parameters. A statistically significant difference in HPRT MF was observed between the laminators (22.3 +/- 10.6/10(6)) and laboratory controls (14.2 +/- 6.5/10(6), P = 0.039). HPRT MF in the laminators significantly correlated with styrene concentration in air, MA and haemoglobin adducts, as well as with years of employment and age of the employees. No significant difference (P = 0.450) in MF between the laminators and the factory controls was observed. Surprisingly, we detected differences in MF between sexes. When data from all measurements were combined, women showed higher MF (geometric mean 15.4 vs. 11.2 in men, P = 0.020). The styrene-exposed group exhibited significantly higher SSB parameters (tail moment (TM), tail length (TL) and the percentage of DNA in the tail (TP)) than the control group (P < 0.001). SSB parameters correlated with indicators of external exposure and with O6-styrene guanine adducts. No significant correlation was found between SSB parameters and haemoglobin adducts or HPRT MF. The data encompassing biomarkers from repeated measurements of the same population over a 3-year period are discussed with respect to the mechanisms of genotoxic effects of styrene and the interrelationship of individual biomarkers.  相似文献   

12.
The dorsal skin of C3H/Tif/hr hairless mice was painted with coal tar, pharmacological grade. Epidermal cells and hepatocytes were isolated after 4, 24, 48 and 96 h and DNA strand breaks were determined as tail moment by the alkaline comet assay. The tail moment of epidermal cells was significantly greater at the time points 4, 24, 48 and 96 h after exposure compared to the controls, with the most DNA strand breaks at 24 h. The DNA strand breaks in epidermal cells increased linearly with the dose of coal tar. In hepatocytes, no difference in DNA strand breaks was found between exposed animals and controls. DNA adducts were determined by the 32P-postlabeling assay. For epidermal cells, the mean DNA adduct level was 12-fold greater in coal tar painted mice after 24 h than in controls. Again, a linear dose/response relationship was seen 24 h after painting. For liver DNA, the mean DNA adduct level was 3-fold greater than for controls. The mutation frequency in epidermal and liver cells was examined in lambdalacZ transgenic mice (MutaMouse). Thirty-two days after painting, the mutation frequency in epidermal cells was 16-fold greater in coal tar treated mice compared to controls. No effect was detected in hepatocytes. We found that a single painting of coal tar resulted in strong genotoxic effects in the murine epidermis, evidenced by induction of DNA strand breaks and DNA adducts in hairless mice and lambdalacZ mutations in the MutaMouse. This demonstrates that it is possible to detect genotoxic effects of mixtures with high sensitivity in mouse skin by these end-points.  相似文献   

13.
Blood samples were volunteered by workers in a Finnish iron foundry who were occupationally exposed to polycyclic aromatic hydrocarbons and from control subjects not known to be occupationally exposed to this class of chemical carcinogens. DNA was isolated from peripheral white blood cells and digested with micrococcal nuclease, spleen phosphodiesterase and nuclease P1. The DNA digest was then incubated with [gamma-32P]ATP and polynucleotide kinase. Aromatic adducts present in the digest that were resistant to nuclease P1 were thus 32P-labelled while unmodified nucleotides were not. The 32P-labelled adducts were resolved by t.l.c. and detected by autoradiography. Foundry workers were classified as belonging to high, medium or low exposure groups according to their exposure to airborne benzo[a]pyrene (high greater than 0.2, medium 0.05-0.2, low less than 0.05 microgram BP/m3 air). Aromatic adducts were found to be present in DNA from 3/4 samples from the high exposure group, 8/10 samples from the medium exposure group. 4/18 samples from the low exposure group and 1/9 samples from the unexposed controls. The levels of adducts found in the high and medium group samples ranged up to 1 adduct in 10(7) nucleotides but the levels formed in the low exposure group samples were not significantly different from those in unexposed controls. No differences related to the smoking habits of the subjects were observed. Most of the DNA adducts detected had chromatographic mobilities distinct from those formed when the 7,8-diol 9,10-oxide of BP reacted with DNA. The results indicate that highly-exposed individuals are more likely to contain aromatic DNA adducts in their white blood cells, but large interindividual variations were evident. In addition, multiple samples from the same subjects indicate that qualitative and quantitative changes in adduct patterns occur with time. This pilot study suggests that 32P-postlabelling may be useful in monitoring human exposure to known and to previously unidentified environmental genotoxic agents.  相似文献   

14.
Benz[a]anthracene (BA), dibenz[a,h]anthracene (DBA), dibenzo[a,i]pyrene (DBP), and dibenz[a,h]acridine (DBAC) are by-products found in many industrial wastes and emissions. Workers in the related occupational settings are potentially exposed to these substances through inhalation. In the present study, induction of DNA adducts in vivo by these chemicals was investigated using 32P-postlabeling analysis in the rat-lung-cell system. The potency of DNA-adduct inducing activity was also compared to that of two cytogenetic endpoints i.e., sister-chromatid exchange (SCE) and micronucleus formation. Via intratracheal instillation, male CD rats (6/group) were dosed 3 times with BA, DBA, DBP or DBAC in a 24-h interval. Lung cells were enzymatically separated and used to determine the frequency of DNA adducts, SCE and micronuclei. Results show that all 4 test compounds induced DNA adducts, SCEs, and micronuclei in the rat-lung cell in vivo and that the postlabeling DNA adduct assay detected genotoxic activity at lower dose levels than the two cytogenetic assays. These findings suggest that BA, DBA, DBP or DBAC are rat pulmonary genetoxicants and the DNA-adduct assay is more sensitive than SCE or micronucleus assays for detecting the pulmonary genotoxicity of these industrial PAHs in the in vivo rat-lung-cell system.  相似文献   

15.
Secondhand smoke (SHS) exposure is a known risk factor for lung cancer in lifelong nonsmokers. However, the underlying mechanism of action of SHS in lung carcinogenesis remains elusive. We have investigated, using the (32)P-postlabeling assay, the genotoxic potential of SHS in vivo by determining the formation and kinetics of repair of DNA adducts in the lungs of mice exposed whole body to SHS for 2 or 4 months (5h/day, 5 days/week), and an ensuing one-month recovery period. We demonstrate that exposure of mice to SHS elicits a significant genotoxic response as reflected by the elevation of DNA adduct levels in the lungs of SHS-exposed animals. The increases in DNA adduct levels in the lungs of SHS-exposed mice are dose-dependent as they are related to the intensity and duration of SHS exposure. After one month of recovery in clean air, the levels of lung DNA adducts in the mice exposed for 4 months remain significantly higher than those in the mice exposed for 2 months (P<0.0005), levels in both groups being significantly elevated relative to controls (P<0.00001). Our experimental findings accord with the epidemiological data showing that exposure to smoke-derived carcinogens is a risk factor for lung cancer; not only does the magnitude of risk depend upon carcinogen dose, but it also becomes more irreversible with prolonged exposure. The confirmation of epidemiologic data by our experimental findings is of significance because it strengthens the case for the etiologic involvement of SHS in nonsmokers' lung cancer. Identifying the etiologic factors involved in the pathogenesis of lung cancer can help define future strategies for prevention, early detection, and treatment of this highly lethal malignancy.  相似文献   

16.
DNA adducts are considered an integrate measure of carcinogen exposure and the initial step of carcinogenesis. Their levels in more accessible peripheral blood lymphocytes (PBLs) mirror that in the bladder tissue. In this study we explore whether the formation of PBL DNA adducts may be associated with bladder cancer (BC) risk, and how this relationship is modulated by genetic polymorphisms, environmental and occupational risk factors for BC. These complex interrelationships, including direct and indirect effects of each variable, were appraised using the structural equation modeling (SEM) analysis. Within the framework of a hospital-based case/control study, study population included 199 BC cases and 213 non-cancer controls, all Caucasian males. Data were collected on lifetime smoking, coffee drinking, dietary habits and lifetime occupation, with particular reference to exposure to aromatic amines (AAs) and polycyclic aromatic hydrocarbons (PAHs). No indirect paths were found, disproving hypothesis on association between PBL DNA adducts and BC risk. DNA adducts were instead positively associated with occupational cumulative exposure to AAs (p = 0.028), whereas XRCC1 Arg 399 (p<0.006) was related with a decreased adduct levels, but with no impact on BC risk. Previous findings on increased BC risk by packyears (p<0.001), coffee (p<0.001), cumulative AAs exposure (p = 0.041) and MnSOD (p = 0.009) and a decreased risk by MPO (p<0.008) were also confirmed by SEM analysis. Our results for the first time make evident an association between occupational cumulative exposure to AAs with DNA adducts and BC risk, strengthening the central role of AAs in bladder carcinogenesis. However the lack of an association between PBL DNA adducts and BC risk advises that these snapshot measurements are not representative of relevant exposures. This would envisage new scenarios for biomarker discovery and new challenges such as repeated measurements at different critical life stages.  相似文献   

17.
The objective of this study was to investigate a relationship between indoor air pollution from heating and cooking with coal-burning stoves and from environmental tobacco smoke (ETS), and the level of urinary 1-hydroxypyrene (1-OH-PY). 1-OH-PY was analysed in children living in three areas of Silesia, a province in Poland. Urine samples were collected in winter, (1) from children exposed to ETS and smoke resulting from indoor coal-burning and (2) from control children. Airborne particulates had been sampled by use of stationary samplers by the Regional Sanitary-Epidemiological Station, Katowice throughout 12 months prior to the urine sampling. The urinary level of 1-OH-PY tended to increase in children exposed to ETS, but the increase was not significant. The concentrations of 1-OH-PY in urine of passive smokers were significantly elevated only in Bytom where an index of smoking parents of the studied children was highest as compared to other areas. Exposure to polycyclic aromatic hydrocarbons (PAH) due to domestic heating and cooking with coal-burning stoves resulted in significantly increased levels of 1-OH-PY. The results of this study indicate that the uptake of PAH due to indoor air pollution strongly affected the level of 1-OH-PY and that the main source of PAH in indoor air was the household use of coal for heating and/or cooking. When the results associated with this kind of exposure were excluded, median 1-OH-PY levels from the three examined areas assumed a pattern more similar to that of the benzo(a)pyrene (BaP) concentrations in ambient air.  相似文献   

18.
14 fiberglass-reinforced plastics (FRP) boatbuilders were compared with 9 unexposed controls with respect to several chemical specific and nonspecific biomarkers measured in peripheral blood. Biomarkers included styrene-hemoglobin adducts (styrene-Hb), sister-chromatid exchanges (SCEs), micronuclei (MN), single-strand breaks (SSBs) and N-acetoxy-2-acetylaminofluorene-induced DNA binding (NA-AAF binding) as a measure of susceptibility to DNA damage. Workers' exposures averaged 11 ppm (8-h TWA; geometric mean) and ranged from 0.6 to 44 p.p.m. Mandelic acid levels were measured in end-of-shift urine samples and reflected an average styrene exposure equivalent to 15 p.p.m. There was a large though not significant difference in levels of styrene-Hb adducts among exposed workers and controls, largely the consequence of a single heavily-exposed individual with an extremely high level of adducts. Significant differences between biomarker levels in exposed workers and controls were observed with MN, SSBs and NA-AAF binding. No significant differences were seen in mean levels of SCEs nor in the incidence of cells with a high frequency of SCEs. The data suggest that exposure to levels of styrene in occupational settings near or below the current OSHA standard (50 p.p.m.) can induce damage at the cellular/molecular level. Appropriately-selected panels of biomarkers can be useful in identifying potentially harmful exposures.  相似文献   

19.
The present study was conducted in a Chinese population to evaluate the usefulness and sensitivity of PAH-DNA adduct as a biomarker of PAH exposure, and to examine the potential effects of smoking and polymorphisms of responsive genes on DNA adduct formation induced by PAH exposure. The polymorphisms of genes examined include GSTM1, GSTT1, CYP1A1, microsomal epoxide hydrolase (mEH) and excision repair cross-complementary group 2 (ERCC2). A total of 194 subjects with a broad range of PAH exposures were recruited, including 116 occupationally exposed workers, 49 metropolitan residents and 29 suburban gardeners. A significant exposure-response relationship was observed between PAH exposure and DNA adducts in leukocytes across the entire group of subjects (p < 0.0001). The levels of PAH-DNA adducts in the subgroup with lowest occupational exposure to PAHs (< 0.1 microg BaP m(-3)) was significantly higher than that in metropolitan residents and suburban gardeners. However, no significant difference was detected between residents and gardeners, with mean BaP concentrations of 0.028 and 0.011 microg m(-3), respectively. The polymorphisms of genes examined failed to show significant effects on PAH-induced adduct formation except ERCC2 Lys751Gln genotypes. A significantly higher level of PAH-DNA adduct was found in subjects with wild-type ERCC2 than those who have either heterozygous or homozygous variant alleles (p < 0.01). Smoking, age and gender did not substantially contribute to PAH-induced DNA adduct formation in this study. The study suggests that PAH-DNA adducts may serve as a reliable biomarker of PAH exposure in occupational settings but may not be sensitive enough to be used in populations with environmental exposures to PAHs.  相似文献   

20.
Investigations on the impact of chemicals on the environment and human health have led to the development of an exposome concept. The exposome refers to the totality of exposures received by a person during life, including exposures to life-style factors, from the prenatal period to death. The exposure to genotoxic chemicals and their reactive metabolites can induce chemical modifications of DNA, such as, for example, DNA adducts, which have been extensively studied and which play a key role in chemically induced carcinogenesis. Development of different methods for the identification of DNA adducts has led to adopting DNA adductomic approaches. The ability to simultaneously detect multiple PAH-derived DNA adducts may allow for the improved assessment of exposure, and offer a mechanistic insight into the carcinogenic process following exposure to PAH mixtures. The major advantage of measuring chemical-specific DNA adducts is the assessment of a biologically effective dose. This review provides information about the occurrence of the polycyclic aromatic hydrocarbons (PAHs) and their influence on human exposure and biological effects, including PAH-derived DNA adduct formation and repair processes. Selected methods used for determination of DNA adducts have been presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号