首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Chemical Composition of Bleeding Xylem Sap from Kiwifruit Vines   总被引:5,自引:0,他引:5  
A study of the chemical composition and charge balance was madeof bleeding xylem sap collected from excised one-year-old extensionshoots of healthy, Mn-deficient, Mn-toxic and Zn-deficient kiwifruitvines (Actinidia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson)immediately prior to leafburst. The exudates were analysed formacronutrient cations and anions, trace elements, amino acids,organic acids and sugars. Major charged species measured wereCa (13.3 mM), K (8.9 mM), Mg (5.6 mM), malate (12.5 mM) andphosphate (5.8 mM). Glutamine (12 mM) was the predominant Ncarrier identified, accounting for 58 per cent of the totalN followed by NO2-N (4.5 per cent), NH4+-N (3.5 per cent)and arginine-N (2.9 per cent). Approximately 22 per cent ofthe N was in a hydrolysable proteinaceous fraction comprisingmainly glutamine and glutamate. Eighteen free proteinaceousamino acids were idetified in sap, the most abundant being glutamine,glutamic acid, valine, isoleucine and phenylalanine. Computersimulation of the chemical composition predicted that in additionto hydrated cations, ion pairs formed between inorganic components(SO42–, HPO42–, H2PO4) and cations (Ca2+,Mg2+, Mn2+), plus metal-organic ligand complexes (Ca Malate,Zn Malate, FeCit, CuHis, CuGln) are important species involvedin translocation. The solubility product of hydroxyapatite wasexceeded in all exudates although in vitro precipitation wasnot observed. To achieve electroneutrality with the componentsmeasured, however, formation of precipitate precursors (hydroxyapatitenuclei) had to be assumed. Irregularities in Mn nutrition (butnot Zn) were clearly indicated by the elemental compositionof exudate suggesting the use of sap analysis as a possiblepre-season indicator of nutritional status for this species. Actinidia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson, kiwifruit, xylem sap composition, trace metals, amino acids, organic acids  相似文献   

2.
Apoplastic pH of intact leaves of Vicia faba as influenced by light   总被引:3,自引:0,他引:3  
The fluorochrome FITC-dextran was used to measure the effectof light on the apoplastic pH of intact Vicia faba leaves withthe ratio imaging technique. In darkadapted leaves the apoplasticpH varied depending on the leaf between 5.2 and 5.9. Red light(660 nm, 4–12 W m–2) leads to multiphasic responses:in the first seconds an alkalinization ({small tilde}0.3 pHunits), and thereafter an acidification of the leaf apoplast({small tilde}0.4 pH units) were observed. Both effects couldbe inhibited by DCMU. While variation of CO2 concentration revealedno effect on light-induced apoplastic pH changes, a decreasein O2 concentration decreased the effect. On the basis of ourdata it is suggested that the influence of photosynthesis onplasmalemma H+ ATPase is responsible for the observed effects,rather than altered CO2 uptake. Key words: Leaf apoplast, apoplastic pH, light, ratio imaging, pH-sensitive fluorescent dye, Vicia fab  相似文献   

3.
Soluble sugars were extracted by low speed centrifugation fromthe apoplast of leaves of barley (Hordeum distichum L.) infiltratedwith water. Infection of the leaf with the brown rust fungus(Puccinia hordeii) resulted in a reduction in the concentrationof sucrose, glucose and fructose in the apoplast. Sugars werepresent in an apoplastic space occupying 12 and 17 cm3 m–2of leaf area in healthy and infected tissue, respectively. Uptakeof hexoses by intercellular hyphae is suggested as a cause ofthis reduction. The pH of apoplastic sap extracted from rust-infectedleaves was increased to pH 7·3 from pH 6·6 incontrols. The effect of a reduced apoplastic sugar pool andincreased pH on export from infected leaves is discussed. Key words: Apoplast, barley (Hordeum distichum L.), brown rust (Puccinia hordeii Otth.), pH, sucrose, hexose  相似文献   

4.
Cucumber (Cucumis sativus L.) seedlings were grafted onto cucumber-(CG) or figleaf gourd- (FG, Cucurbita ficifolia Bouché)seedlings in order to determine the effect of solution temperature(12, 22, and 32°C) on the mineral composition of xylem sapand the plasma membrane K+-Mg++-ATPase activities of the roots.Low solution temperature (12°C) lowered the concentrationof NO3 and H2PO4 in xylem sap of CG plants butnot of FG plants. Concentrations of K+, Ca++ and Mg++ in xylemsap were less affected than anions by solution temperature.The plasma membrane of FG plants grown in 12°C solutiontemperature showed the highest K+- Mg++-ATPase activity at allATP concentrations up to 3 mM and at low reaction temperatureup to 12°C, indicating resistance of figleaf gourd to lowroot temperature. (Received December 27, 1994; Accepted March 10, 1995)  相似文献   

5.
Ion and saccharide concentrations in the upper and lower partsof the laminar pulvinus of the primary leaf of Phaseolus vulgariswere measured in relation to the circadian movement. Concentrations of K+, Na+, Ca2+, Mg2+, Cl, organic acid,NO3, H2PO4, fructose and fructose-yielding saccharidesin the pulvinus were 75–120, 0.3–0.7, 5–8,6–12, 40–60, 60–73, 19–35, 2–9and 1–5 mM, respectively, and the osmotic pressure ofthe pulvinus was considered to be due to these ions. The cell volume in the expanding part was larger than that inthe contracting part. The change of the cell volume alteredthe molar concentration in the cell sap and therefore the amountof solutes actually transported from the upper to the lowerpart and vice versa was estimated from the concentration expressedin moles per gram of dry weight. Results showed that K+, Cl, organic acid (or H+) andNO3 moved from the upper to lower parts or vice versain the pulvinus in relation to its deformation, keeping theelectroneutrality among those ions, whereas Ca2+ and Mg2+ didnot move. The difference in the K+ concentration between theupper and lower parts when the leaf was up or down amountedto 30% of the whole osmotic pressure. This lead to the conclusionthat the endogenous clock-controlled unequal distribution ofK+, Cl, organic acid (or H+) and NO3 in the pulvinuscould be the force for the circadian leaf movement. (Received August 7, 1979; )  相似文献   

6.
Bowling, D. J. F. 1987. Measurement of the apoplastic activityof K+ and Cl in the leaf epidermis of Commelina communisin relation to stomatal activity.–J. exp. Bot. 38: 1351–1355. Ionic activity of K+ and Cl in the apoplast of the lowerepidermis of the leaf of Commelina communis was measured usingion selective micro-electrodes. Large gradients across the stomatalcomplex were observed which were related to stomatal aperture.On stomatal closure the activity of K+ and Cl in theapoplast of the guard cell rose from 3·0 mol m–3to 100 mol m–3 and 33 mol m–3 respectively. It wasconcluded that the apoplast is an important pathway for iontransport between the cells. Key words: Stomata, ionic activity, leaves, apoplast  相似文献   

7.
The tetraammonium salt of the K+ binding fluorescent dye benzofuranisophthalate (PBFI) was used to investigate the influence ofpotassium nutrition (0.1–2.1 mol m–3) on apoplasticK+ inVicia faba leaves by means of ratio imaging. As a referencethe infiltration-centrifugation method was used. Both methodsreflected the influence of K+ supply on apoplastic K+ concentration.The abaxial leaf side revealed significantly higher K+ concentrations(20-25 mol m–3) than the adaxial side (5–8 mol m–3).Application of CCCP led to an immediate increase in apoplasticK+ demonstrating the reliability of the PBFI method. Key words: Vicia faba, leaf, apoplast, K+, PBFI, ratio imaging, ratiometric fluorescence microscopy  相似文献   

8.
Diurnal K+ and Anion Transport in Phaseolus Pulvinus   总被引:1,自引:0,他引:1  
Diurnal movement of Phaseolus leaf is caused by deformationof the laminar pulvinus located at the joint of the leaf bladeand the petiole. The plants were cultured in solutions withvarious ion compositions, and changes of K+, Na+, Ca2+, Mg2+,Cl, NO3– and P1 concentrations both in the upperand lower parts of the laminar pulvinus were measured. Culturein 10 mM KCl solution caused an increase in K+ and Clconcentrations both in the upper and lower parts without anysignificant change in the concentration of NO3; culturein 10 mM KNO3 solution caused an increase in K+ and NO3concentration without any significant change in the concentrationof Cl; and culture in 10 mM KH2PO4 solution caused anincrease in K+ and P1 concentrations without any significantchange in the concentrations of NO3- and Cl. K+ moved from the upper to lower parts or from the lower toupper parts diurnally in all plants cultured in any solutionmentioned above. The main inorganic anion that accompanied thisK+ movement was Cl in KCl solution, and NO3 inKNO3 solution. When the seedlings were cultured in distilledwater or in KH2PO4 solution, neither Cl NO3 norP1 accompanied this K+ movement. In these cases, mainly H+ and/ororganic anions are supposed to move in exchange for and/or incombination with K+ movement. (Received November 8, 1982; Accepted June 13, 1983)  相似文献   

9.
In hydroponically grown Lycopersicon esculentum (L.) Mill. cv.F144 the site of NO3 reduction and assimilation withinthe plant was shifted from the shoot to the root by salinity.Uptake of NO3 from the root solution was strongly inhibitedby salinization. Consequently, NO3 concentrations inthe leaf, stem and root tissues as well as the nitrate reductaseactivities of the leaves were lower in salinized than in controlplants. Lower NO3, but higher reduced-N, concentrationswere observed in the xylem sap as a result of the enhanced participationof the root in NO3 reduction in salinized plants. Lowerstem K+ concentrations and leaf malate concentrations were foundin salinized compared to control plants which indicates reducedfunctioning of the K+–shuttle in the salinized plants. Incorporation of inorganic carbon by the root was determinedby supplying a pulse of NaH14CO3 followed by extraction andseparation of the labelled products on ion exchange resins.The rate of H14CO3 incorporation was c. 2-fold higherin control than in salinized plants. In salinized plants theproducts of H14CO3 incorporation within the roots werediverted into amino acids, while the control plants divertedrelatively more 14C into organic acids. Products of inorganiccarbon incorporation in the roots of salinized plants providean anaplerotic source of carbon for assimilation of reducedNO3 into amino acids, while in control plants the productswere predominantly organic acids as part of mechanisms to maintainionic balance in the cells and in the xylem sap. Key words: Tomato, nitrate, PEPc, respiration, salinity  相似文献   

10.
Wolterbeek, H. Th. and De Bruin, M. 1986. The import and redistributionof several cations and anions in tomato leaves.—J. exp.Bot. 37: 331–340. The upward movements in the xylem and redistribution from theleaf of Na+ , K+ , Rb+, Cs+ and four anions were examined insub-systems of tomato plants (Lycopersicon esculentum, Mill.cv. Tiny Tim). There was a delay with respect to the redistributionof newly imported elements from the source leaf of about 16–20h for all four alkali ions. This is considerably less than theapparent delay for the anions Sb(SO4) WO42– Mo7O246–and AsO43– The prolonged delay for the anions is suggestedto be a consequence of metabolic transformation in the leaf.Reduction of the source-sink activity ratio did not decreasethe delay period from the source leaf, but apparently causedincreased Na+ transfer from the xylem. It is concluded thatthe application of a detailed mathematical descnption of upwardelement movement has considerable potential possibilities forunderstanding circulation of nutrients in the plant. Key words: Alkali ions, anions, xylem, phloem, redistribution, tomato  相似文献   

11.
Ion Composition of the Chara Internode   总被引:2,自引:0,他引:2  
Ion compositions of the cytoplasm and the vacuole of Chara australiswere analyzed according to Kishimoto and Tazawa (1964) and Kiyosawa(1979a). The ions in the cytoplasm and the vacuole analyzedwere K+, Na+, Ca2+, Mg2+, Cl, NO3 and H2PO4.Assuming that the volume of the cytoplasm Vp is 10% of thatof the whole cell V, the concentrations of K+, Na+, Ca2+, Mg2+,Cl, NO3 and H2PO4 in the cytoplasm averaged70, 15, 13, 4.6, 31, 2.2 and 16 mM, respectively. If the volumeof the cytoplasm was assumed to be 5% of that of the whole cell,their averaged concentrations were 139, 31, 25, 9.2, 62, 4.4and 33 mM, respectively. The averaged ion compositions of thecell sap were K+, 111; Na+, 47; Ca2+, 4.4; Mg2+, 8.9; Cl,91; NO3, 3.3 and H2PO4, 6.0 mM. These values,taking the concentrations and the charges of the protein (Kiyosawa1979b) and amino acids (Sakano and Tazawa 1984) into accountand assuming the presence of some uni- or oligovalent anionsand/or small nonelectrolyte molecules, could explain fairlywell both the electroneutrality and the osmotic pressure ofthe cell, except when Vp/V = 5%. (Received May 18, 1987; Accepted September 29, 1987)  相似文献   

12.
Apoplastic potassium activities (ak) in leaves of Commelinacommunis L., Vicia faba L. and Pisum sativum L. var. argenteumwere recorded with neutral-carrier-based, potassium-sensitivemicro-electrodes. Measurements were carried out in 0.3–1.4nl volumes contiguous with the extracellular space of attachedleaves and were held for periods of 7–68 min. Mean steady-stateaK values recorded from all three species were below 50 µM.Similar potassium activities were attained, regardless of theinitial values obtained after washing with distilled water orpotassium additions, and the activities recorded showed onlyminimal dependence on the relative vapour pressure difference.Tissue capacity for K+ absorption was increased 15–30-foldin the presence of added Ca2+. By contrast, cyanide reducedboth the initial rate of potassium absorption by the tissuesand their apparent capacity for the cation. These observationsindicate that the free potassium pool in the leaf apoplast issignificantly smaller than has previously been assumed. Theresults contradict the notion that high concentrations of potassiumaccumulate locally as a result of transpiration, and may indicatethe presence in the leaf tissues of potassium transport activitysensitive to Ca2+ and dependent on metabolism. Key words: Apoplastic potassium activity, Transpiration/K+ transport, Guard cells  相似文献   

13.
Plants of Lupinus albus L., cv. Ultra, were grown hydroponicallywith NO3-nutrition for 51 d under control (0.05 mol m–3Na+ and 10 mol m–3 Cl) and saline (40 mol m–3NaCI) conditions. Plants were harvested 41 and 51 d after germinationand analysed for content and net increment of C, N and the mineralcations K+, Na+, Mg2+, and Ca2+ and the anions Cl, NOJ,malate, phosphate, and SO42–. Roots, stem interaodes,petioles and leaflets were analysed separately. During the studyperiod net photosynthesis, respiratory losses of CO2 from shootand root and the composition of the spontaneously bleeding phloemsap and the root pressure xylem exudate were also determined.Using molar ratios of C over N in the transport fluids, incrementsof C and N, and photosynthetic gains as well as respiratorylosses of C, the net flows of C and N in the xylem and phloemwere then calculated as in earlier studies (Pate, Layzell andMcNeill, 1979a). Knowing the carbon flows, the ratios of ionto carbon in the phloem sap, and ion increments in individualorgans, net flows of K+, Na+, and Cl over the study periodwere also calculated. Salt stress led to a general decrease of all partial componentsof C and N partitioning indicating that inhibitions were notdue to specific effects of NaCI salinity on photosynthesis oron NO3 uptake. However, there were differences between variouslyaged organs, and net phloem export of nitrogenous compoundsfrom ageing leaves was substantially enhanced under saline conditions.In addition, NO3reduction in the roots was specificallyinhibited. Uptake and xylem transport of K+ was more severelyinhibited than photosynthetic carbon gain or NO3 uptakeby the root. K+ transport in the phloem was even more severelyrestricted under saline conditions. Na+ and Cl flowsand uptake, on the other hand, were substantially increasedin the presence of salt and, in particular, there were thenmassive flows of Na in the phloem. The results are discussedin relation to the causes of salt sensitivity of Lupinus albus.The data suggest that both a restriction of K+ supply and astrongly increased phloem translocation of Na+ contribute tothe adverse effects of salt in this species. Restriction ofK+ supply occurs by diminished K+ uptake and even more by reducedK+ cycling within the plant. Key words: Lupinus albus, salt stress, phloem transport, xylem transport, partitioning, carbon, nitrogen, K+, Na+, CI  相似文献   

14.
The processes of NO3 uptake and transport and the effectsof NH4+ or L-glutamate on these processes were investigatedwith excised non-mycorrhizal beech (Fagus sylvatica L.) roots.NO3 net uptake followed uniphasic Michaelis-Menten kineticsin a concentration range of 10µM to 1 mM with an apparentKm of 9.2 µM and a Vmax of 366 nmol g–1 FW h–1.NH4+, when present in excess to NO3, or 10 mM L-glutamateinhibited the net uptake of NO3 Apparently, part of NO3taken up was loaded into the xylem. Relative xylem loading ofNO3 ranged from 3.21.6 to 6.45.1% of NO3 netuptake. It was not affected by treatment with NH4+ or L-glutamate.16N/13N double labelling experiments showed that NO3efflux from roots increased with increasing influx of NO3and, therefore, declined if influx was reduced by NH4+ or L-glutamateexposure. From these results it is concluded that NO3net uptake by non-mycorrhizal beech roots is reduced by NH4+or L-glutamate at the level of influx and not at the level ofefflux. Key words: Nitrate transport, net uptake, influx, efflux, ammonium, Fagus, Fagaceae  相似文献   

15.
Na+, K+ and Cl- in Xylem Sap Flowing to Shoots of NaCl-Treated Barley   总被引:7,自引:0,他引:7  
Munns, R. 1985. Na+, K+ and Cl in xylem sap flowing toshoots of NaCl-treated barley.—J. exp. Bot. 36: 1032–1042. Na+, Cl and K+ concentrations were measured in xylemsap obtained by applying pressure to the roots of decapitatedbarley plants grown at external [NaCl] of 0, 25, 50, 100, 150and 200 mol m–3. For any given NaCl treatment, ion concentrationsin the xylem sap were hyperbolically related to the flux ofwater. Ion concentrations in sap collected at very low volumefluxes (without applied pressure) were 5–10 times higherthan in sap collected at moderate fluxes (under pressure). Fora given moderate volume flux, Na+ concentration in the xylemsap, [Na+]x, was only 4.0 mol m–3 at external [NaCl] of25–150 mol m–3, and increased to 7.0 mol m–3at 200 mol m–3. [Cl-]x showed a similar pattern. Thisshows there would be little difference in the rate of uptaketo the shoot of plants at 25–150 mol m–3 externalNaCl and indicates little change even at 200 mol m-3 NaCl becausetranspiration rates would be much lower. Thus the reduced growthof the shoot of plants at high NaCl concentrations is not dueto higher uptake rates of Na+ or Cl. The fluxes of Na+, Cl and K increased non-linearlywith increasing volume flux indicating little movement of saltin the apoplast. The flux of K+ increased even when [K+]x wasgreater than external [K+], indicating that membrane transportprocesses modify the K+ concentration in the transpiration streamas it flows through the root system. Key words: -Xylem sap, Na+, K+, Cl fluxes, salinity, barley  相似文献   

16.
H+ translocation driven by NO3, NO2 and N2O reductionswith endogenous substrates in cells of Rhodopseudomonas sphaeroidesforma sp. denitrificans was investigated by the oxidant pulsemethod. Upon injection of nitrogenous oxides to anaerobic cellsin darkness, an alkaline transient in the external medium wasobserved, followed by acidification. The alkaline transientwas enhanced by carbonyl cyanide m-chlorophenylhydrazone. When a viologen dye was used as an electron donor in the presenceof 1 mM Af-ethylmaleimide and 0.1 mM 2-n-heptyl-4-hydroxyquinoline-N-oxideto preclude respiration-linked H+ extrusion, addition of KNO3,KNO2 and N2O caused only a rapid alkalinization. The H+ consumptionstoichiometries, H+/2e ratios for NO3 reductionto NO2, NO2 reduction to 1/2 N2O and N2O reductionto N2 were –1.90, –3.18 and –2.04, respectively.These values agreed well with the fact that all reductions ofnitrogenous oxides in denitrification occur on the periplasmicside of the cytoplasmic membrane. When corrected for H+ consumption in the periplasm, the H+ extrusionstoichiometries, H+/2e ratios with endogenous substratesin the presence of K+/valinomycin for NO3 reduction toNO2, NO2 reduction to 1/2 N2O and N2O reductionto N2 were 4.05, 4.95 and 6.01, respectively. (Received August 4, 1982; Accepted January 13, 1983)  相似文献   

17.
The volume and composition of the endosperm apoplast of thedeveloping wheat grain, comprising endosperm cavity and intercellularfree-space, was examined in relation to kernel growth rate andsize. Samples of the cavity sap were collected by centrifugationof kernels during the linear phase of grain growth. The cavitysap contained 10–50 mM sucrose, a small amount of hexosesbut a high concentration of oligosaccharides (up to 9 timesthat of sucrose). In comparing cvs Yandilla King and Cleveland,high growth rate was associated with high cavity sap sucroseconcentration but with low K+ concentration. K+ concentrationin the endosperm cells (124 mM) was about 5 times higher thanin the cavity sap (10–40 mM). Cavity sap pH was 6.3–6.6.The uptake of sucrose by endosperm cells was partly inhibitedby PCMBS, an inhibitor of membrane-bound carriers. Several necessaryconditions for proton cotransport during sucrose uptake by endospermcells were met. The volume of the intercellular free-space, estimated by membranepermeating (14C-mannitol, 14C-sucrose) or non-permeating (3H-PEG900)markers averaged 2.2 µl or 5–7% of the water ingrains of cvs Yandilla King, Cleveland and SUN 9E. The cavityvolume was highly variable but tended to be larger in largergrains. Pulse labelling of 14CO2 to flag leaves showed that 14C-sucrosewas the principal 14C-assimilate in the cavity sap and was convertedto insoluble compounds in the endosperm while the cavity sapoligosaccharides acquired negligible label in 6 h. Key words: Wheat, Endosperm apoplast, Sugars  相似文献   

18.
Concentrations of inorganic and organic solutes were measuredin sap extracted from individual mesophyll and epidermal cellsof the third leaf of barley. During the development of the thirdleaf plants were grown in various salt solutions (NaCl; 2, 50,100, and 150 mM, KCI; 100 mM or KNO3; 100 mM). Leaves were analysed2–4 d after full expansion. Cell-sap was extracted usinga modified pressure probe and analysed for its osmolality, concentrationsof P, Na+ K+ Ca2+, and Cl and, in some cases, of nitrate,hexoses and total amino acids. Salt treatment caused differentialchanges in the concentrations of solutes in mesophyll and epidermalcells, but did not affect the basic pattern of solute compartmentationbetween these tissues. Calcium was found at osmotically significantconcentrations only in the epidermis, whereas P and organicsolutes were almost exclusively found in the mesophyll. Chlorideand Na+ accumulated preferentially in the epidermis, althoughmesophyll concentrations also increased considerably. At 150mM external NaCl, mesophyll cells contained 302 mM Na and 167mM Cl, compared to 29 mM Na+ and 16 mM Cl in thecontrol. Mesophyll Cl levels were even higher in the100 mM KCl treatment (216 mM) where mesophyll and epidermalK+ accumulated to 424 and 491 mM, respectively. These huge increasesin mesophyll Na+ Cl and K+ were not associated with abreakdown in leaf performance since net rates of photosynthesisdecreased only by less than 20%. Under control (2 mM NaCl) conditions,solutes followed patterned gradients between the various epidermalcell types. The extent of these gradients changed with leafage. During 50 mM NaCl treatment, gradients in Cl, nitrateand malate concentrations progressively disappeared, with malateconcentrations approaching zero. Potassium and Na+ exhibitedaltered distribution profiles, whereas Ca2+ distribution wasunaffected. NaCl-dependent increases in osmolalities differedbetween cells. Exposure of plants to 150 mM NaCl caused qualitativelysimilar changes in both epidermal solute and osmolality profiles,although absolute values differed from those at 50 mM NaCl.In particular, epidermal Cl and Na+ increased to about500 mM and K+ disappeared (<<5 mM) from the vacuole ofcertain epidermal cell types completely. Key words: Barley leaf epidermis, mesophyll, salt stress, single-cell analysis, vacuolar solutes  相似文献   

19.
HOCKING  P. J. 《Annals of botany》1980,45(6):633-643
The composition of xylem sap and exudate from stem incisionsof Nicotiana glauca Grah. was compared in detail. Exudationfrom stem incisions occurred over a 5 min period in certainplants, enabling collection of 5–30 µl of sap. Therate of exudation showed an exponential decline. Exudate hada high dry matter content (170–196 mg ml–1) andhigh sugar (sucrose) levels. Xylem sap had a low pH (5.8) andexudate a pH of 7.9. Glutamine dominated the amino compoundsin xylem sap and exudate, and K+ was the major cation. Totalamino compounds in stem exudate reached 10.8 mg ml–1 whereasxylem sap contained much lower levels (0.28 mg ml–1).All mineral elements and amino compounds with the exceptionof calcium were more concentrated in stem exudate than in xylemsap. Sucrose was labelled heavily in stem exudate following pulsingof an adjacent leaf with 14CO2. A concentration gradient ofsugar (2.1 bar m–1) was recorded for stems. Levels ofsucrose, amino compounds and K+ ions in stem exudate showeda diurnal periodicity. Each commodity reached maximum concentrationat or near noon and minimum concentration about dawn. The evidencesuggests that exudate from stem incisions of N. glauca is arepresentative sample of solutes translocated in the phloem. Nicotiana glauca Grah., phloem sap, xylem sap, sucrose, amino compounds, mineral ions  相似文献   

20.
Non-selected and Na2SO-, K2SO4- or KCl-selected callus culturesof Vaccinium corymbosum L. cv. Blue Crop were grown on mediasupplemented with 0, 25 and 50 mM Na2SO4 (non-selected and Na2SO(-selectedonly), 0, 25 and 50mMK2SO4 (non-selected and K2SO4-selectedonly) or 0, 50 and 100 mM KCl (non-selected and KCl-selectedonly). On all media, growth of selected callus (on a fresh-weightor dry-weight basis) was greater than that of non-selected callus,and selected callus grew optimally on the level and type ofsalt on which it was selected. Selected callus was friable andmaintained a higher f. wt:d. wt ratio. Tissue water potentialin selected callus was more negative than in non-selected callus. Flame photometry and chloridometry showed Na+, K+ and Claccumulated in callus to concentrations equal to or greaterthan the initial concentration in the medium. Turbidometry showedthat tissue SO42- concentration was lower than the concentrationin the medium. In most cases selected callus accumulated moreNa+, Ksup, SO42– or Cl than non-selected callus.Vacuolar ion concentration was measured by electronprobe X-raymicroanalysis, and on most media selected callus had highervacuolar ion concentrations than non-selected callus. SO42–and Cl were accumulated in the vacuoles at concentrationshigher than the external medium, but vacuolar Na+ concentrationdid not reach external concentration on Na2SO4 and on potassiumsalts was maintained between 12 and 17 mM. Vacuolar K+ concentration(approx. 142–191 mM on no salt) decreased on Na2SO4 andincreased on K2SO4 and KCl. There was no precise correlation between total or specific ionaccumulation (Na+, K+, SO42– and Cl and fresh-weightyield. Results suggest that selection results in adaptationin response to decreased water potential of the medium. Vaccinium corymbosum, blueberry, electronprobe X-ray microanalysis, callus, in vitro selection, salt tolerance, KCl, K2SO4, Na2SO4  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号