首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We question the biogenicity of putative bacterial and cyanobacterial 'microfossils' from 3465 Ma Apex cherts of the Warrawoona Group in Western Australia. They are challenged on the basis of integrated multidisciplinary evidence obtained from field and fabric mapping plus new high-resolution research into their context, sedimentology, filament morphology, 'septation' and arrangement. They cannot be distinguished from (and are reinterpreted as) secondary artefacts of amorphous carbon that formed during devitrification of successive generations of carbonaceous hydrothermal dyke vein quartz. Similar structures occur within associated carbonaceous volcanic glass. The null hypothesis of an abiotic or prebiotic origin for such ancient carbonaceous matter is sustained until mutually supporting contextural, morphological and geochemical evidence for a bacterial rather than abiotic origin is forthcoming.  相似文献   

2.
The 3.4‐Ga Strelley Pool Formation (SPF) at the informally named ‘Waterfall Locality’ in the Goldsworthy greenstone belt of the Pilbara Craton, Western Australia, provides deeper insights into ancient, shallow subaqueous to possibly subaerial ecosystems. Outcrops at this locality contain a thin (<3 m) unit of carbonaceous and non‐carbonaceous cherts and silicified sandstones that were deposited in a shallow‐water coastal environment, with hydrothermal activities, consistent with the previous studies. Carbonaceous, sulfide‐rich massive black cherts with coniform structures up to 3 cm high are characterized by diverse rare earth elements (REE) signatures including enrichment of light [light rare earth elements (LREE)] or middle rare earth elements and by enrichment of heavy metals represented by Zn. The massive black cherts were likely deposited by mixing of hydrothermal and non‐hydrothermal fluids. Coniform structures in the cherts are characterized by diffuse laminae composed of sulfide particles, suggesting that unlike stromatolites, they were formed dominantly through physico‐chemical processes related to hydrothermal activity. The cherts yield microfossils identical to previously described carbonaceous films, small and large spheres, and lenticular microfossils. In addition, new morphological types such as clusters composed of large carbonaceous spheroids (20–40 μm across each) with fluffy or foam‐like envelope are identified. Finely laminated carbonaceous cherts are devoid of heavy metals and characterized by the enrichment of LREE. This chert locally contains conical to domal structures characterized by truncation of laminae and trapping of detrital grains and is interpreted as siliceous stromatolite formed by very early or contemporaneous silicification of biomats with the contribution of silica‐rich hydrothermal fluids. Biological affinities of described microfossils and microbes constructing siliceous stromatolites are under investigation. However, this study emphasizes how diverse the microbial community in Paleoarchean coastal hydrothermal environment was. We propose the diversity is at least partially due to the availability of various energy sources in this depositional environment including reducing chemicals and sunlight.  相似文献   

3.
Microfossils have been detected in several formations of the McArthur Group (about 1600 m.y. old), in petrological thin sections and in macerations. Some of these occur associated with a lead-zinc ore body; others have been found in well-preserved dolomites and cherts. The variety of microfossils observed is considerable, and their state of preservation is good. Large numbers of singlecelled, colonial and multicellular organisms occur; in the latter, at least one clear case of cell differentiation can be demonstrated. Some of the organisms are morphologically comparable with blue-green algae such as the Chroococaceae, but, unlike the well-known Bitter Springs microflora, the assemblage is notably poor in filamentous algae. The filaments that do occur are not septate, and may represent discarded blue-green algal sheaths. Many of the microorganisms are extremely small in size, and in some cases, colonial structures composed of large numbers of 1 m diameter cells are present, that may represent bacterial remains. Most of the microfossils occur in stromatolitic cherts, but the lead-zinc orebody from which some were obtained is a fine-grained dolomitic shale.Stratigraphically, this new assemblage occurs in sediments of age intermediate between the well-known Gunflint Chert assemblage and the equally well-known Bitter Springs flora. The level of organization of the microfossils represents a great advance on the of the Gunflint Chert microfossils, in that demonstrably colonial and large multicellular microorganisms occur, as well as cells of a relatively large size. No convincing evidence for the presence of nuclei or nuclear membranes has yet been found in McArthur Group microorganisms, but the large size and organizational complexity of some of the structures suggests that the origin of the eukaryotic cell may occur rather earlier in geologic times than previous indications have suggested.  相似文献   

4.
Organic radicals in artificially carbonized biomass dominated by oxygenic and non-oxygenic photosynthetic bacteria, Microcoleus chthonoplastes-like and Chloroflexus-like bacteria respectively, were studied by Electron Paramagnetic Resonance (EPR) spectroscopy. The two bacteria species were sampled in mats from a hypersaline lake. They underwent accelerated ageing by cumulative thermal treatments to induce progressive carbonization of the biological material, mimicking the natural maturation of carbonaceous material of Archean age. For thermal treatments at temperatures higher than 620 °C, a drastic increase in the EPR linewidth is observed in the carbonaceous matter from oxygenic photosynthetic bacteria and not anoxygenic photosynthetic bacteria. This selective EPR linewidth broadening reflects the presence of a catalytic element inducing formation of radical aggregates, without affecting the molecular structure or the microstructure of the organic matter, as shown by Raman spectroscopy and Transmission Electron Microscopy. For comparison, we carried out an EPR study of organic radicals in silicified carbonaceous rocks (cherts) from various localities, of different ages (0.42 to 3.5 Gyr) and having undergone various degrees of metamorphism, i.e. various degrees of natural carbonization. EPR linewidth dispersion for the most primitive samples was quite significant, pointing to a selective dipolar broadening similar to that observed for carbonized bacteria. This surprising result merits further evaluation in the light of its potential use as a marker of past bacterial metabolisms, in particular oxygenic photosynthesis, in Archean cherts.  相似文献   

5.
6.
This study presents multiple sulphur isotope (32S, 33S, 34S, 36S) data on pyrites from silicified volcano-sedimentary rocks of the Paleoarchean Onverwacht Group of the Barberton greenstone belt, South Africa. These rocks include seafloor cherts and felsic conglomerates that were deposited in shallow marine environments preserving a record of atmospheric and biogeochemical conditions on the early Earth. A strong variation in mass independent sulphur isotope fractionation (MIF-S) anomalies is found in the cherts, with Δ33S ranging between −0.26‰ and 3.42‰. We explore possible depositional and preservational factors that could explain some of this variation seen in MIF-S. Evidence for microbial activity is recorded by the c. 3.45 Ga Hooggenoeg Formation Chert (HC4) preserving a contribution of microbial sulphate reduction (−Δ33S and –δ34S), and a c. 3.33 Ga Kromberg Formation Chert (KC5) recording a possible contribution of microbial elemental sulphur disproportionation (+Δ33S and –δ34S). Pyrites from a rhyo-dacitic conglomerate of the Noisy Formation do not plot along a previously proposed global Felsic Volcanic Array, and this excludes short-lived pulses of intense felsic volcanic gas emissions as the dominant control on Archean MIF-S. Rather, we suggest that the MIF-S signals measured reflect dilution during marine deposition, early diagenetic modification, and mixing with volcanic/hydrothermal S sources. Given the expanded stratigraphic interval (3.47–3.22 Ga) now sampled from across the Barberton Supergroup, we conclude that large MIF-S exceeding >4‰ is atypical of Paleoarchean near-surface environments on the Kaapvaal Craton.  相似文献   

7.
Roll-up structures (Roll-ups) are sedimentary structures formed by the desiccation-mediated curling of a surface, cohesive layer into a subcylindrical, coiled shape. Their origin in terrestrial environments has been attributed to the shrinking effect of argillaceous components, while microbes are thought to be the curling agent in intertidal marine settings. Roll-ups also exist in terrestrial environments and the rock record, but their genesis is unclear. Proving a biogenic origin of terrestrial roll-ups would make them excellent biosignatures to track ancient life on land. In this study, we tested the biogenicity of modern roll-ups from arid terrestrial environments, showing that, regardless of their geographic location and textural properties, they invariably contained large and distinct cyanobacterial populations compared to adjacent, non-rolled surface soil. Cyanobacterial populations inhabiting these roll-ups were genetically diverse, but consistently dominated by filamentous, non-heterocystous forms. We could also recreate roll-ups artificially by desiccating clay and organic polysaccharide slurries on sandy substrates, and show that clay roll-ups were less prone to re-form after wetting-and-drying cycles and less resistant to erosion than organically bound or naturally occurring ones. All this evidence suggests that fossil roll-ups found in ancient terrestrial deposits are biogenic features.  相似文献   

8.
Cell evolution and Earth history: stasis and revolution   总被引:17,自引:0,他引:17  
This synthesis has three main parts. The first discusses the overall tree of life and nature of the last common ancestor (cenancestor). I emphasize key steps in cellular evolution important for ordering and timing the major evolutionary innovations in the history of the biosphere, explaining especially the origins of the eukaryote cell and of bacterial flagella and cell envelope novelties. Second, I map the tree onto the fossil record and discuss dates of key events and their biogeochemical impact. Finally, I present a broad synthesis, discussing evidence for a three-phase history of life. The first phase began perhaps ca 3.5 Gyr ago, when the origin of cells and anoxic photosynthesis generated the arguably most primitive prokaryote phylum, Chlorobacteria (= Chloroflexi), the first negibacteria with cells bounded by two acyl ester phospholipid membranes. After this 'chlorobacterial age' of benthic anaerobic evolution protected from UV radiation by mineral grains, two momentous quantum evolutionary episodes of cellular innovation and microbial radiation dramatically transformed the Earth's surface: the glycobacterial revolution initiated an oxygenic 'age of cyanobacteria' and, as the ozone layer grew, the rise of plankton; immensely later, probably as recently as ca 0.9 Gyr ago, the neomuran revolution ushered in the 'age of eukaryotes', Archaebacteria (arguably the youngest bacterial phylum), and morphological complexity. Diversification of glycobacteria ca 2.8 Gyr ago, predominantly inhabiting stratified benthic mats, I suggest caused serial depletion of 13C by ribulose 1,5-bis-phosphate caboxylase/oxygenase (Rubisco) to yield ultralight late Archaean organic carbon formerly attributed to methanogenesis plus methanotrophy. The late origin of archaebacterial methanogenesis ca 720 Myr ago perhaps triggered snowball Earth episodes by slight global warming increasing weathering and reducing CO2 levels, to yield runaway cooling; the origin of anaerobic methane oxidation ca 570 Myr ago reduced methane flux at source, stabilizing Phanerozoic climates. I argue that the major cellular innovations exhibit a pattern of quantum evolution followed by very rapid radiation and then substantial stasis, as described by Simpson. They yielded organisms that are a mosaic of extremely conservative and radically novel features, as characterized by De Beer's phrase 'mosaic evolution'. Evolution is not evenly paced and there are no real molecular clocks.  相似文献   

9.
All organic remains known from the Archean are in such a poor state of preservation, that their biogenicity has been repeatedly doubted. Structures of unquestionable organismic origin have been recently detected in cherts of the Onverwacht group in South Africa. The finds are preserved in a detailed three-dimensional condition. A radiometric age of more than 3 350 mio. y. for the stratum is indicated. With this date, the finds represent the oldest certain evidences of life on earth. Moreover the well-preserved details yield information on the principles of structure and growth of a primeval organism. The body is interpreted as a ramificational system of tiny droplike subunits and appears to be constructed according to the principle of consequent homonomy. It seems possible, that the finds represent an initial form of organismic evolution. With this statement and with the data presently known from the early tellural evolution, it seems possible and credible that life originated on Earth.  相似文献   

10.
The study of the earliest traces of life on Earth can be complicated by abiotically formed biomorphs. We report here the finding of clustered micrometer-sized filaments of iron- and calcium-rich garnets associated with carbonaceous matter in an agate amygdale from a 2.7-billion-year-old basalt of the Maddina Formation, Western Australia. The distribution of carbonaceous matter and the mineral phases composing the filaments were analyzed using a combination of confocal laser scanning microscopy, laser-Raman micro-spectroscopy, focused ion beam sectioning and transmission electron microscopy. The results allow consideration of possible biogenic and abiotic processes that produced the filamentous structures. The filaments have a range of sizes, morphologies and distributions similar to those of certain modern iron-mineralized filamentous bacteria and some ancient filamentous structures interpreted as microfossils. They also share a high morphological similarity with tubular structures produced by microbial boring activity. However, the microstructures and the distribution of carbonaceous matter are more suggestive of an abiotic origin for the filaments. They are characteristic features of trails produced by the displacement of inclusions associated with local dissolution of their silica matrix. Organic compounds found in kerogen or bitumen inclusions may have contributed significantly to the dissolution of the quartz (or silica gel) matrix driving filamentous growth. Discriminating the products of such abiotic organic-mediated processes from filamentous microfossils or microbial borings is important to the interpretation of the scarce Precambrian fossil record and requires investigation down to the nanoscale.  相似文献   

11.

Micrometer sized stromatolitic structures called Frutexites are features observed in samples from the deep subsurface, and hot-spring environments. These structures are comprised of fine laminations, columnar morphology, and commonly consist of iron oxides, manganese oxides, and/or carbonates. Although a biological origin is commonly invoked, few reports have shown direct evidence of their association with microbial activity. Here, we report for the first time the occurrence of subsurface manganese-dominated Frutexites preserved within carbonate veins in ultramafic rocks. To determine the biogenicity of these putative biosignatures, we analyzed their chemical and isotopic composition using Raman spectroscopy and secondary ion mass spectroscopy (SIMS). These structures were found to contain macromolecular carbon signal and have a depleted 13C/12C carbon isotopic composition of – 35.4?±?0.50‰ relative to the entombing carbonate matrix. These observations are consistent with a biological origin for the observed Frutexites structures.

  相似文献   

12.
Extensive microbial mats colonize sandy tidal flats that form along the coasts of today's Earth. The microbenthos (mainly cyanobacteria) respond to the prevailing physical sediment dynamics by biostabilization, baffling and trapping, as well as binding. This biotic-physical interaction gives rise to characteristic microbially induced sedimentary structures (MISS) that differ greatly from both purely physical structures and from stromatolites. Actualistic studies of the MISS on modern tidal flats have been shown to be the key for understanding equivalent fossil structures that occur in tidal and shelf sandstones of all Earth ages. However, until now the fossil record of Archean MISS has been poor, and relatively few specimens have been found. This paper describes a study location that displays a unique assemblage with a multitude of exceptionally preserved MISS in the 2.9-Ga-old Pongola Supergroup, South Africa. The 'Nhlazatse Section' includes structures such as 'erosional remnants and pockets', 'multidirected ripple marks', 'polygonal oscillation cracks', and 'gas domes'. Optical and geochemical analyses support the biogenicity of microscopic textures such as filamentous laminae or 'orientated grains'. Textures resembling filaments are lined by iron oxide and hydroxides, as well as clay minerals. They contain organic matter, whose isotope composition is consistent with carbon of biological origin. The ancient tidal flats of the Nhlazatse Section record four microbial mat facies that occur in modern tidal settings as well. We distinguish endobenthic and epibenthic microbial mats, including planar, tufted, and spongy subtypes. Each microbial mat facies is characterized by a distinct set of MISS, and relates to a typical tidal zone. The microbial mat structures are preserved in situ, and are consistent with similar features constructed today by benthic cyanobacteria. However, other mat-constructing microorganisms also could have formed the structures in the Archean tidal flats.  相似文献   

13.
Bedded carbonate rocks from the 3.45 Ga Warrawoona Group, Pilbara Craton, contain structures that have been regarded either as the oldest known stromatolites or as abiotic hydrothermal deposits. We present new field and petrological observations and high‐precision REE + Y data from the carbonates in order to test the origin of the deposits. Trace element geochemistry from a number of laminated stromatolitic dolomite samples of the c. 3.40 Ga Strelley Pool Chert conclusively shows that they precipitated from anoxic seawater, probably in a very shallow environment consistent with previous sedimentological observations. Edge‐wise conglomerates in troughs between stromatolites and widespread cross‐stratification provide additional evidence of stromatolite construction, at least partly, from layers of particulate sediment, rather than solely from rigid crusts. Accumulation of particulate sediment on steep stromatolite sides in a high‐energy environment suggests organic binding of the surface. Relative and absolute REE + Y contents are exactly comparable with Late Archaean microbial carbonates of widely agreed biological origin. Ankerite from a unit of bedded ankerite–chert couplets from near the top of the stratigraphically older (3.49 Ga) Dresser Formation, which immediately underlies wrinkly stromatolites with small, broad, low‐amplitude domes, also precipitated from anoxic seawater. The REE + Y data of carbonates from the Strelley Pool Chert and Dresser Formation contrast strongly with those from siderite layers in a jasper–siderite–Fe‐chlorite banded iron‐formation from the base of the Panorama Formation (3.45 Ga), which is clearly hydrothermal in origin. The geochemical results, together with sedimentological data, strongly support: (1) deposition of Dresser Formation and Strelley Pool Chert carbonates from Archaean seawater, in part as particulate carbonate sediment; (2) biogenicity of the stromatolitic carbonates; (3) a reducing Archaean atmosphere; (4) ongoing extensive terrestrial erosion prior to ~3.45 Ga.  相似文献   

14.
New terrestrial and freshwater arthropods are described from the Windyfield cherts, a suite of silicified sinters deposited 700m north‐east of the Rhynie cherts and part of the same Early Devonian hot‐spring complex. The diverse assemblage consists of Heterocrania rhyniensis (Hirst and Maulik, 1926a), here recognized as a euthycarcinoid; scutigeromorph centipede material assigned to Crussolum sp.; the crustacean Lepidocaris; trigonotarbid arachnids; a new arthropod of myriapod affinities named Leverhulmia mariae gen. et sp. nov.; and the distinctively ornamented arthropod cuticle of Rhynimonstrum dunlopi gen. et sp. nov. The Leverhulmia animal preserves gut content identifying it as an early terrestrial detritivore. Abundant coprolites of similar composition and morphology to the gut contents of the euthycarcinoid crowd the matrix. Chert texture, faunal associations, and study of modern analogues strongly suggest that the terrestrial arthropods were ubiquitous Early Devonian forms with no particular special adaptation to localized conditions around the terrestrial hot‐spring vents. The aquatic arthropods represent biota from ephemeral cool‐water pools in the vicinity of the hot‐spring vents.  相似文献   

15.
Modern day hunter-gatherers are an obvious source of information about human life in the past. But can modern people really tell us anything about other hominids, those represented only in the fossil record? In a world of state governments and a global economy, can present-day foragers even tell us much about life before agriculture? Some behavioral ecologists think so. Their findings show (1) that foraging practices are closely related to the character and distribution of local resources, (2) that men, women and children react to foraging opportunities quite differently, and (3) that sex and age difference in these reactions have important social causes and consequences. Some results directly challenge long-held views about hunter-gatherer economics and social organization, and the scenarios of human evolution based on them.  相似文献   

16.
On the basis of phylogenetic studies and laboratory cultures, it has been proposed that the ability of microbes to metabolize iron has emerged prior to the Archaea/Bacteria split. However, no unambiguous geochemical data supporting this claim have been put forward in rocks older than 2.7–2.5 giga years (Gyr). In the present work, we report in situ Fe and S isotope composition of pyrite from 3.28‐ to 3.26‐Gyr‐old cherts from the upper Mendon Formation, South Africa. We identified three populations of microscopic pyrites showing a wide range of Fe isotope compositions, which cluster around two δ56Fe values of ?1.8‰ and +1‰. These three pyrite groups can also be distinguished based on the pyrite crystallinity and the S isotope mass‐independent signatures. One pyrite group displays poorly crystallized pyrite minerals with positive Δ33S values > +3‰, while the other groups display more variable and closer to 0‰ Δ33S values with recrystallized pyrite rims. It is worth to note that all the pyrite groups display positive Δ33S values in the pyrite core and similar trace element compositions. We therefore suggest that two of the pyrite groups have experienced late fluid circulations that have led to partial recrystallization and dilution of S isotope mass‐independent signature but not modification of the Fe isotope record. Considering the mineralogy and geochemistry of the pyrites and associated organic material, we conclude that this iron isotope systematic derives from microbial respiration of iron oxides during early diagenesis. Our data extend the geological record of dissimilatory iron reduction (DIR) back more than 560 million years (Myr) and confirm that micro‐organisms closely related to the last common ancestor had the ability to reduce Fe(III).  相似文献   

17.
Microbial sulfate reduction (MSR) is thought to have operated very early on Earth and is often invoked to explain the occurrence of sedimentary sulfides in the rock record. Sedimentary sulfides can also form from sulfides produced abiotically during late diagenesis or metamorphism. As both biotic and abiotic processes contribute to the bulk of sedimentary sulfides, tracing back the original microbial signature from the earliest Earth record is challenging. We present in situ sulfur isotope data from nanopyrites occurring in carbonaceous remains lining the domical shape of stromatolite knobs of the 2.7‐Gyr‐old Tumbiana Formation (Western Australia). The analyzed nanopyrites show a large range of δ34S values of about 84‰ (from ?33.7‰ to +50.4‰). The recognition that a large δ34S range of 80‰ is found in individual carbonaceous‐rich layers support the interpretation that the nanopyrites were formed in microbial mats through MSR by a Rayleigh distillation process during early diagenesis. An active microbial cycling of sulfur during formation of the stromatolite may have facilitated the mixing of different sulfur pools (atmospheric and hydrothermal) and explain the weak mass independent signature (MIF‐S) recorded in the Tumbiana Formation. These results confirm that MSR participated actively to the biogeochemical cycling of sulfur during the Neoarchean and support previous models suggesting anaerobic oxidation of methane using sulfate in the Tumbiana environment.  相似文献   

18.
Following Serageldin, the members of EAGLES believe that the solution to the great world problems 'requires our joint commitment as scientists to work for the benefit of the entire human family, not just the privileged minority who are lucky enough to live in the most advanced industrial societies. These tasks are enormous. But the longest journey starts with a single step. So let us start. If not us, who? If not now, when?' Now is the time for European life sciences to focus their attention on the most pressing problems facing humanity today and accept the fact that these problems are not in Europe.  相似文献   

19.
The species problem is the long-standing failure of biologists to agree on how we should identify species and how we should define the word 'species'. The innumerable attacks on the problem have turned the often-repeated question 'what are species?' into a philosophical conundrum. Today, the preferred form of attack is the well-crafted argument, and debaters seem to have stopped inquiring about what new information is needed to solve the problem. However, our knowledge is not complete and we have overlooked something. The species problem can be overcome if we understand our own role, as conflicted investigators, in causing the problem.  相似文献   

20.
Fonseca AC 《Bioethics》2011,25(8):458-462
Those who favor and those who oppose the interruption of pregnancy with anencephalic fetuses answer the question 'what is the right to life?' differently. Those in favor argue that life exists only when it is 'viable'; that is to say, when cerebral activities occur or may occur. Those who oppose it argue that it is not possible to describe 'life' as residing in a particular quality, since life 'exists from conception'. In fact, in both cases, the noun 'life' is being defined by a particular quality, either as 'viable' or as 'existing from the time of conception'. Also, simply saying that 'there is life' cannot count as a neutral answer since those who utter such a sentence employ an unspecified criterion to establish if there is life or not. There are two possible ways to investigate this controversial matter: either we look for a definition of 'life' which is neutral and objective and does not reside in a particular quality or we try to establish whether or not the search for a neutral point of view can lead to a satisfactory answer. In this article we explore the argument against the interruption of pregnancy - as defined above - in order to show 1) the impossibility of establishing a neutral point of view regarding knowledge; 2) the existence of a psychological motivation which justifies the longing for an absolute criterion for the evaluation of human actions. This psychological motivation is analyzed from a Nietzschean perspective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号