首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of geldanamycin (GA), a specific inhibitor of heat-shock protein Hsp90, on the synthesis of Hsp70 and Hsp90 and thermotolerance of Arabidopsis thaliana seedlings has been studied. Incubation of seedlings with GA under normal conditions induced synthesis of these stress proteins. Treatment of seeds with the Hsp90 inhibitor resulted in elevated constitutive levels of Hsp70 and Hsp90 in seedlings, as well as increased induction of their synthesis under heat shock. The GA effect increased with its concentration. Hsp up-regulation promoted thermotolerance of seedlings. The findings suggest autoregulation of heatshock protein synthesis and regulation of plant tolerance by Hsp90.  相似文献   

2.
Gong WJ  Golic KG 《Genetics》2006,172(1):275-286
The heat-shock response is a programmed change in gene expression carried out by cells in response to environmental stress, such as heat. This response is universal and is characterized by the synthesis of a small group of conserved protein chaperones. In Drosophila melanogaster the Hsp70 chaperone dominates the profile of protein synthesis during the heat-shock response. We recently generated precise deletion alleles of the Hsp70 genes of D. melanogaster and have used those alleles to characterize the phenotypes of Hsp70-deficient flies. Flies with Hsp70 deletions have reduced thermotolerance. We find that Hsp70 is essential to survive a severe heat shock, but is not required to survive a milder heat shock, indicating that a significant degree of thermotolerance remains in the absence of Hsp70. However, flies without Hsp70 have a lengthened heat-shock response and an extended developmental delay after a non-lethal heat shock, indicating Hsp70 has an important role in recovery from stress, even at lower temperatures. Lack of Hsp70 also confers enhanced sensitivity to a temperature-sensitive lethal mutation and to the neurodegenerative effects produced by expression of a human polyglutamine disease protein.  相似文献   

3.
Mechanisms to reduce the cellular levels of mutant huntingtin (mHtt) provide promising strategies for treating Huntington disease (HD). To identify compounds enhancing the degradation of mHtt, we performed a high throughput screen using a hippocampal HN10 cell line expressing a 573-amino acid mHtt fragment. Several hit structures were identified as heat shock protein 90 (Hsp90) inhibitors. Cell treatment with these compounds reduced levels of mHtt without overt toxic effects as measured by time-resolved Förster resonance energy transfer assays and Western blots. To characterize the mechanism of mHtt degradation, we used the potent and selective Hsp90 inhibitor NVP-AUY922. In HdhQ150 embryonic stem (ES) cells and in ES cell-derived neurons, NVP-AUY922 treatment substantially reduced soluble full-length mHtt levels. In HN10 cells, Hsp90 inhibition by NVP-AUY922 enhanced mHtt clearance in the absence of any detectable Hsp70 induction. Furthermore, inhibition of protein synthesis with cycloheximide or overexpression of dominant negative heat shock factor 1 (Hsf1) in HdhQ150 ES cells attenuated Hsp70 induction but did not affect NVP-AUY922-mediated mHtt clearance. Together, these data provided evidence that direct inhibition of Hsp90 chaperone function was crucial for mHtt degradation rather than heat shock response induction and Hsp70 up-regulation. Co-immunoprecipitation experiments revealed a physical interaction of mutant and wild-type Htt with the Hsp90 chaperone. Hsp90 inhibition disrupted the interaction and induced clearance of Htt through the ubiquitin-proteasome system. Our data suggest that Htt is an Hsp90 client protein and that Hsp90 inhibition may provide a means to reduce mHtt in HD.  相似文献   

4.
Eukaryotic and prokaryotic cells have been shown to respond to physical and chemical stress by the induction of proteins called heat shock proteins. Heat shock protein 70 (Hsp70), is the most ubiquitous of these proteins. Although heat shock proteins are generally thought to protect cells from physiologically stressful stimuli, it cannot be assumed that this is so, because several cases exist in which thermotolerance is acquired without the production of heat shock proteins, and in several other cases the hyperproduction of these heat shock proteins does not produce thermotolerance. In this study we show that unfertilized mouse oocytes are sensitive to elevated temperatures, and that the synthesis of Hsp70 cannot be induced in these oocytes. Furthermore, our data demonstrate that the expression of Hsp70 in mouse oocytes is sufficient for the acquisition of thermotolerance. Mouse oocytes were injected with mRNA for Hsp70, and the viability of these oocytes was determined after heating. The number of viable oocytes was significantly higher in the group injected with Hsp70 mRNA and then heated compared with oocytes injected with Hsp70 antisense mRNA and sham-injected controls treated in an identical manner. No significant differences in the number of viable oocytes were found between the group that had been injected with Hsp70 mRNA, heated, and then allowed to recover for 3 hr and the group maintained at 37 degrees C throughout.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Apart from energy generation, mitochondria perform a signalling function determining the life and death of a cell under stress exposure. In the present study we have explored patterns of heat-induced synthesis of Hsp101, Hsp70, Hsp17.6 (class I), Hsp17.6 (class II) and Hsp60, and the development of induced thermotolerance in Arabidopsis thaliana cell culture under conditions of mitochondrial dysfunction. It was shown that treatment by mitochondrial inhibitors and uncouplers at the time of mild heat shock downregulates HSP synthesis, which is important for induced thermotolerance in plants. The exposure to elevated temperature induced an increase in cell oxygen consumption and hyperpolarization of the inner mitochondrial membrane. Taken together, these facts suggest that mitochondrial functions are essential for heat-induced HSP synthesis and development of induced thermotolerance in A. thaliana cell culture, suggesting that mitochondrial-nuclear cross-talk is activated under stress conditions. Treatment of Arabidopsis cell culture at 50 degrees C initiates a programmed cell death determined by the time course of viability decrease, DNA fragmentation and cytochrome c release from mitochondria. As treatment at 37 degrees C protected Arabidopsis cells from heat-induced cell death, it may be suggested that Hsp101, Hsp70 and small heat-shock proteins, the synthesis of which is induced under these conditions, are playing an anti-apoptotic role in the plant cell. On the other hand, drastic heat shock upregulated mitochondrial Hsp60 synthesis and induced its release from mitochondria to the cytosol, indicating a pro-apoptotic role of plant Hsp60.  相似文献   

6.
The stress response of PC12 cells was characterized by evaluating the production of heat shock proteins of the 70 kDa (Hsp70), 60 kDa (Hsp60) and 90 kDa (Hsp90) families by western blot analysis. Induction of Hsp synthesis was elicited by brief exposure to elevated temperatures or by addition of ethanol to the cultures. Normal PC12 cells responded to stress with rapid up-regulation of Hsp70 and Hsp60 production. However, fully differentiated PC12 cells (induced by nerve growth factor, NGF) failed to produce Hsp70 or Hsp60 in response to heat or ethanol treatment. The disappearance of the heat shock response of the cells was directly related to the extent of neuronal differentiation. The cellular levels of the constitutive proteins, Hsc70 and Hsp90, were not altered by differentiation of the cells. Production of Hsps was restored in the differentiated cells by removal of NGF which coincided with the loss of neurite expression and retraction of processes.  相似文献   

7.
《The Journal of cell biology》1996,134(6):1375-1386
Hsp78, a member of the family of Clp/Hsp100 proteins, exerts chaperone functions in mitochondria of S. cerevisiae which overlap with those of mitochondrial Hsp70. In the present study, the role of Hsp78 under extreme stress was analyzed. Whereas deletion of HSP78 does not affect cell growth at temperatures up to 39 decrees C and cellular thermotolerance at 50 degrees C, Hsp78 is crucial for maintenance of respiratory competence and for mitochondrial genome integrity under severe temperature stress (mitochondrial thermotolerance). Mitochondrial protein synthesis is identified as a thermosensitive process. Reactivation of mitochondrial protein synthesis after heat stress depends on the presence of Hsp78, though Hsp78 does not confer protection against heat-inactivation to this process. Hsp78 appears to act in concert with other mitochondrial chaperone proteins since a conditioning pretreatment of the cells to induce the cellular heat shock response is required to maintain mitochondrial functions under severe temperature stress. When expressed in the cytosol, Hsp78 can substitute for the homologous heat shock protein Hsp104 in mediating cellular thermotolerance, suggesting a conserved mode of action of the two proteins. Thus, proteins of the Clp/Hsp100-family located in the cytosol and within mitochondria confer compartment-specific protection against heat damage to the cell.  相似文献   

8.
To test the role of the heat shock protein hsp70 in induced thermotolerance and in the regulation of the heat-shock response, we established cell lines with altered expression of the Hsp70 gene. Underexpressing cells were created by transformation with antisense Hsp70 genes, and overexpressing cells by transformation with extra copies of the wild-type gene. Expression at normal temperatures was achieved by placing Hsp70 coding sequences under the control of the metallothionein promoter. Cells that expressed mutant hsp70s were created by transforming cells with deletion and frameshift mutations. The results indicate that hsp70 plays a major role in both thermotolerance and regulation. Surprisingly, they also indicate that these functions can be separated. Overexpression affected thermotolerance more than regulation; underexpression affected regulation more than thermotolerance. A carboxyl-terminal deletion of Hsp70 had a severe dominant-negative effect on thermotolerance but only a minor effect on regulation; an amino-terminal deletion strongly affected regulation but not thermotolerance. A model that explains these observations is presented.  相似文献   

9.
Heat shock results in inhibition of general protein synthesis. In thermotolerant cells, protein synthesis is still rapidly inhibited by heat stress, but protein synthesis recovers faster than in naive heat-shocked cells, a phenomenon known as translational thermotolerance. Here we investigate the effect of overexpressing a single heat shock protein on cap-dependent and cap-independent initiation of translation during recovery from a heat shock. When overexpressing alphaB-crystallin or Hsp27, cap-dependent initiation of translation was protected but no effect was seen on cap-independent initiation of translation. When Hsp70 was overexpressed however, both cap-dependent and -independent translation were protected. This finding indicates a difference in the mechanism of protection mediated by small or large heat shock proteins. Phosphorylation of alphaB-crystallin and Hsp27 is known to significantly decrease their chaperone activity; therefore, we tested phosphorylation mutants of these proteins in this system. AlphaB-crystallin needs to be in its non-phosphorylated state to give protection, whereas phosphorylated Hsp27 is more potent in protection than the unphosphorylatable form. This indicates that chaperone activity is not a prerequisite for protection of translation by small heat shock proteins after heat shock. Furthermore, we show that in the presence of 2-aminopurine, an inhibitor of kinases, among which is double-stranded RNA-activated kinase, the protective effect of overexpressing alphaB-crystallin is abolished. The synthesis of the endogenous Hsps induced by the heat shock to test for thermotolerance is also blocked by 2-aminopurine. Most likely the protective effect of alphaB-crystallin requires synthesis of the endogenous heat shock proteins. Translational thermotolerance would then be a co-operative effect of different heat shock proteins.  相似文献   

10.
11.
Aged organisms exhibit a greatly decreased ability to induce the major heat shock protein, Hsp72, in response to stresses, a phenomenon that can also be observed in cell cultures (Heydari AR, Takahashi R, Gutsmann A, You S and Richardson A (1994) Hsp70 and aging. Experientia 50: 1092–1098). Hsp72 was shown to protect cells from a variety of stresses. The protective function of Hsp72 has been commonly ascribed to its chaperoning ability. However, recently we showed that Hsp72 protects cells from heat shock by suppression of a stress-kinase JNK, an essential component of the heat-induced apoptotic pathway (Gabai VL, Meriin AB, Mosser DD, Caron AW, Rits S, Shifrin VI and Sherman MY (1997) Hsp70 prevents activation of stress kinases. A novel pathway of cellular thermotolerance. J Biol Chem 272: 18033–18037). Here we demonstrate that because of the diminished inducibility of Hsp72 in aged cells, Hsp72-mediated control of JNK signaling pathway is compromised. This results in increased rate of apoptotic cell death following heat shock. We show that forced expression of Hsp72 in aged cells from an adenovirus-based vector completely suppresses activation of JNK by heat shock and consequently protects from heat-induced apoptosis. We also demonstrate for the first time that it is possible to restore endogenous expression of Hsp72 in aged cells. This can be achieved by treatment with the proteasome inhibitor MG132. Induction of Hsp72 in aged cells under these conditions leads to suppression of JNK activation by a heat shock and restoration of thermotolerance manifested in a lower rate of apoptosis.  相似文献   

12.
The unactivated steroid receptors are chaperoned into a conformation that is optimal for binding hormone by a number of heat shock proteins, including Hsp90, Hsp70, Hsp40, and the immunophilin, FKBP52 (Hsp56). Together with its partner cochaperones, cyclophilin 40 (CyP40) and FKBP51, FKBP52 belongs to a distinct group of structurally related immunophilins that modulate steroid receptor function through their association with Hsp90. Due to the structural similarity between the component immunophilins, FKBP52 and cyclophilin 40, we decided to investigate whether CyP40 is also a heat shock protein. Exposure of MCF-7 breast cancer cells to elevated temperatures (42 degrees C for 3 hours) resulted in a 75-fold increase in CyP40 mRNA levels, but no corresponding increase in CyP40 protein expression, even after 7 hours of heat stress. The use of cycloheximide to inhibit protein synthesis revealed that in comparison to MCF-7 cells cultured at 37 degrees C, those exposed to heat stress (42 degrees C for 3 hours) displayed an elevated rate of degradation of both CyP40 and FKBP52 proteins. Concomitantly, the half-life of the CyP40 protein was reduced from more than 24 hours to just over 8 hours following heat shock. As no alteration in CyP40 protein levels occurred in cells exposed to heat shock, an elevated rate of degradation would imply that CyP40 protein was synthesized at an increased rate, hence the designation of human CyP40 as a heat shock protein. Application of heat stress elicited a marked redistribution of CyP40 protein in MCF-7 cells from a predominantly nucleolar localization, with some nuclear and cytoplasmic staining, to a pattern characterized by a pronounced nuclear accumulation of CyP40, with no distinguishable nucleolar staining. This increase in nuclear CyP40 possibly resulted from a redistribution of cytoplasmic and nucleolar CyP40, as no net increase in CyP40 expression levels occurred in response to stress. Exposure of MCF-7 cells to actinomycin D for 4 hours resulted in the translocation of the nucleolar marker protein, B23, from the nucleolus, with only a small reduction in nucleolar CyP40 levels. Under normal growth conditions, MCF-7 cells exhibited an apparent colocalization of CyP40 and FKBP52 within the nucleolus.  相似文献   

13.
14.
15.
Heat-shocked Xenopus embryos have an unusually complex heat shock response. The dominant heat shock protein (Hsp) has a relative molecular mass (Mr) of 62,000 D (Hsp62). Affinity-purified IgGs against the glycolytic enzyme pyruvate kinase (PK; EC 2.7.1.40) specifically immunoprecipitated Hsp62 from extracts of embryos that had been heat-shocked at 37°C for 30 min. Thus, Hsp62 and pyruvate kinase are immunologically cross-reacting. Electrophoretic separation of PK isoforms suggests that heat-shocked Xenopus embryos increase synthesis of an isoform of PK. Thermal denaturation studies suggest that this isoform has enhanced thermal stability. The identification of PK as an Hsp is discussed within the context of a physiological requirement for elevated levels of anaerobic glycolysis in heatstressed cells as a vital component of the acquisition of thermotolerance. © 1993Wiley-Liss, Inc.  相似文献   

16.
A single hyperthermic exposure can render cells transiently resistant to subsequent high temperature stresses. Treatment of rat embryonic fibroblasts with cycloheximide for 6 h after a 20-min interval at 45 degrees C inhibits protein synthesis, including heat shock protein (hsp) synthesis, and results in an accumulation of hsp 70 mRNA, but has no effect on subsequent survival responses to 45 degrees C hyperthermia. hsp 70 mRNA levels decreased within 1 h after removal of cycloheximide but then appeared to stabilize during the next 2 h (3 h after drug removal and 9 h after heat shock). hsp 70 mRNA accumulation could be further increased by a second heat shock at 45 degrees C for 20 min 6 h after the first hyperthermic exposure in cycloheximide-treated cells. Both normal protein and hsp synthesis appeared increased during the 6-h interval after hyperthermia in cultures which received two exposures to 45 degrees C for 20 min compared with those which received only one treatment. No increased hsp synthesis was observed in cultures treated with cycloheximide, even though hsp 70 mRNA levels appeared elevated. These data indicate that, although heat shock induces the accumulation of hsp 70 mRNA in both normal and thermotolerant cells, neither general protein synthesis nor hsp synthesis is required during the interval between two hyperthermic stresses for Rat-1 cells to express either thermotolerance (survival resistance) or resistance to heat shock-induced inhibition of protein synthesis.  相似文献   

17.
18.
The thermotolerance of a species or of an ecotype is important for determining its habitat range and vigour, and considerable research has focused on identifying underlying physiological, biochemical and genetic bases of thermotolerance traits. Rates of protein synthesis in tissues when organisms experience a sudden heat stress as occurs on rare hot days may be important to avoid heat-induced paralysis and to survive. While natural variation in Drosophila melanogaster thermotolerance has been associated with heat-shock gene expression, little attention has been given to examining the thermo-protective role of protein synthesis generally. Using two independently derived sets of single-pair mating lines, we characterised variation in rates of protein synthesis in dissected ovarian tissues, both before and after a heat shock applied at different severities in the two sets. In both sets of lines heat-shocked protein synthesis rates were negatively associated with the increase in heat knockdown tolerance after hardening. These associations occurred in a different sex in each set. Variation in rates of Hsp70 synthesis failed to associate with levels of heat tolerance or general protein synthesis. Our results suggest heritable variation in the rate of protein synthesis following heat stress, independently of Hsp70 variation, contributes to heat tolerance variation in this species.  相似文献   

19.
20.
The subject of the present study is the influence of mercury on association of rat liver glucocorticoid receptor (GR) with heat shock proteins Hsp90 and Hsp70. The glucocorticoid receptor heterocomplexes with Hsp90 and Hsp70 were immunopurified from the liver cytosol of rats administered with different doses of mercury. The amounts of co-immunopurified apo-receptor, Hsp90 and Hsp70 were then determined by quantitative Western blotting. The ratio between the amount of heat shock protein Hsp90 or Hsp70 and the amount of apo-receptor within immunopurified heterocomplexes was found to increase in response to mercury administration. On the other hand, the levels of Hsp90 and Hsp70 in hepatic cytosol remained unaltered. The finding that mercury stimulates association of the two heat shock proteins with the glucocorticoid receptor, rendering the cytosolic heat shock protein levels unchanged, suggests that mercury affects the mechanisms controlling the assembly of the receptor heterocomplexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号