首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Cyanobacteria Microcystis aeruginosa and Cylindrospermopsis raciborskii are two harmful species which co-occur and successively dominate in freshwaters globally. Within-species strain variability affects cyanobacterial population responses to environmental conditions, and it is unclear which species/strain would dominate under different environmental conditions. This study applied a Monte Carlo approach to a phytoplankton dynamic growth model to identify how growth variability of multiple strains of these two species affects their competition.Pairwise competition between four M. aeruginosa and eight C. raciborskii strains was simulated using a deterministic model, parameterized with laboratory measurements of growth and light attenuation for all strains, and run at two temperatures and light intensities. 17 000 runs were simulated for each pair using a statistical distribution with Monte Carlo approach.The model results showed that cyanobacterial competition was highly variable, depending on strains present, light and temperature conditions. There was no absolute ‘winner’ under all conditions as there were always strains predicted to coexist with the dominant strains, which were M. aeruginosa strains at 20 °C and C. raciborskii strains at 28 °C. The uncertainty in prediction of species competition outcomes was due to the substantial variability of growth responses within and between strains. Overall, this study demonstrates that within-species strain variability has a potentially large effect on cyanobacterial population dynamics, and therefore this variability may substantially reduce confidence in predicting outcomes of phytoplankton competition in deterministic models, that are based on only one set of parameters for each species or strain.  相似文献   

2.
Phosphorus loading plays an important role in the occurrence of cyanobacterial blooms and understanding how this nutrient affects the physiology of cyanobacteria is imperative to manage these phenomena. Microcystis aeruginosa and Raphidiopsis raciborskii are cyanobacterial species that form potentially toxic blooms in freshwater ecosystems worldwide. Blooms comprise numerous strains with high trait variability, which can contribute to the widespread distribution of these species. Here, we explored the intraspecific variability in response to phosphorus depleted conditions (P-) testing five strains of each species. Strains could be differentiated by cell volume or genetic profiles except for those of the same species, sampling location and date, though these presented differences in their response to (P-). Although differently affected by (P-) over 10 days, all strains were able to grow and maintain photosynthetic activity. For most M. aeruginosa and R. raciborskii strains growth rates were not significantly different comparing (P+) and (P-) conditions. After ten days in (P-), only one M. aeruginosa strain and two R. raciborskii strains showed reduction in biovolume yield as compared to (P+) but in most strains chlorophyll-a concentrations were lower in (P-) than in (P+). Reduced photosystem II efficiency was found for only one R. raciborskii strain while all M. aeruginosa strains were affected. Only two M. aeruginosa and one R. raciborskii strain increased alkaline phosphatase activity under (P-) as compared to (P+). Variation in P-uptake was also observed but comparison among strains yielded homogeneous groups comprised of representatives of both species. Comparing the response of each species as a whole, the (P-) condition affected growth rate, biovolume yield and chlorophyll yield. However, these parameters revealed variation among strains of the same species to the extent that differences between M. aeruginosa and R. raciborskii were not significant. Taken together, these results do not support the idea that R. raciborskii, as a species, can withstand phosphorus limitation better than M. aeruginosa and also point that the level of intraspecific variation may preclude generalizations based on studies that use only one or few strains.  相似文献   

3.
The biological role of cyanobacteria secondary metabolites is relatively unknown although several possible hypotheses have been discussed. In the following study the effect of cylindrospermopsin (CYN) and metabolites of non-CYN producing Cylindrospermopsis raciborskii strain on growth, alkaline phosphatase (ALP) activity and microcystin-LR (MC-LR) production in Microcystis aeruginosa was evaluated. Higher concentrations of CYN (10 and 50 μg L−1) induced toxicity effects demonstrated by significant growth inhibition and M. aeruginosa cell necrosis. Lower concentrations of CYN (1 and 5 μg L−1) slightly decreased growth rates but significantly up-regulated ALP activity. Moreover, under all studied CYN concentrations MC-LR production strongly decreased. Spent C. raciborskii medium mimicked the CYN action by inducing strong inhibition of M. aeruginosa growth and MC-LR production and through up-regulation of ALP activity. On the other hand, spent M. aeruginosa medium did not affect C. raciborskii growth and no alterations in ALP activity were observed. Co-culturing of these two species resulted in an increase of C. raciborskii contribution at the expense of M. aeruginosa. From the results we conclude that CYN can be involved in interspecific competition in cyanobacteria and that non-CYN producing C. raciborskii strains may produce a hitherto unknown bioactive compound(s) which can mimic CYN action.  相似文献   

4.
谢晓玲  周蓉  邓自发 《生态学报》2014,34(5):1224-1234
研究了铜绿微囊藻(Microcystis aeruginosa)和斜生栅藻(Scenedesmus obliquus)低温和低光照限制后的超补偿效应,以及共培养条件下的竞争效应。结果表明,低温和低光照均显著抑制微藻的生长发育,但低温对铜绿微囊藻的抑制效应更强,而斜生栅藻则对低光胁迫更敏感。经过低光和低温培养后,铜绿微囊藻和斜生栅藻在恢复正常培养时藻细胞密度短期内都表现出超补偿增长效应,但不同藻类超补偿模式不同,斜生栅藻补偿生长时间不超过1周,而铜绿微囊藻的补偿效应可以持续10天;此外,统计结果表明铜绿微囊藻细胞密度对低温限制解除表现出更显著的补偿生长,斜生栅藻则在低光解除后表现出更强的超补偿效应。微藻叶绿素a指标在光恢复条件下都表现出显著的补偿效应,但温度恢复过程中叶绿素a含量与藻密度增长不同步,低温胁迫对恢复正常培养后微藻叶绿素a的形成产生了一定的负效应;铜绿微囊藻产毒株(912)在两种恢复模式下脱氢酶活性显著高于对照,产毒株(912)脱氢酶活性的补偿响应明显高于其它两种材料。共培养实验结果表明斜生栅藻同铜绿微囊藻产毒株(912)相比处于竞争劣势,而在同无毒株(469)的共培实验中,尽管连续正常培养情况下两者竞争能力差异不显著,但在恢复培养条件下斜生栅藻竞争能力显著高于后者。因此产毒型铜绿微囊藻低温和低光后的补偿生长效应以及对斜生栅藻的竞争优势可能是蓝藻爆发的内源性机制之一。  相似文献   

5.
This study focuses on the role of wind exposure and storm events, in interaction with trophic status and temperature, on the competition between two species: Microcystis aeruginosa and a typical green alga. It is based on a water column model containing ecological and fluid mechanic features including mixing and shear stress at the bottom. This model addresses for the first time the impact of storm events (inducing sediment and nutrient resuspension) on algal dynamics. Simulations with realistic environmental forcings were performed with different sets of wind, temperature, and trophic conditions. With normal temperatures, conditions for dominance and bloom formation of M. aeruginosa in summer are restricted to hypertrophic waters with low wind exposure. Higher wind exposure (above 2 m s?1) impairs the formation blooms even in favorable trophic conditions and enhances the dominance of green algae. Hotter temperatures allow the dominance of M. aeruginosa for lower phosphorus conditions and higher wind exposure and lead to the exclusion of green algae for high phosphorus content and low wind exposure. Nevertheless, high wind exposure (above 3 m s?1) still prevents dense bloom formation and allows the coexistence of both species. Storm events bring two counterbalancing features: sediment and nutrient resuspension. The first leads to a decrease of phytoplankton density in response to high turbidity, and the second leads to an increase and better maintenance of M. aeruginosa blooms due to high phosphorus concentration released in the water. This result depends on the timing of the event and on general wind exposure as phosphorus release only benefits M. aeruginosa if exposure to wind is low.  相似文献   

6.
The physiological differences for three bloom-forming cyanobacteria (Cylindrospermopsis raciborskii, Microcystis aeruginosa, and Aphanizomenon flos-aquae) were investigated. In comparison with M. aeruginosa and A. flos-aquae, C. raciborskii exhibited a significantly higher concentration of carotenoids, higher values in maximum photosynthesis rate (Pm), apparent photosynthetic efficieny (a), and maximum electron transport rate (ETRmax) during the growth period. In addition, higher extracellular alkaline phosphatase activities and lower light compensation point (Ic) were also detected in C. raciborskii (p < 0.05, ANOVA). Therefore, it is suggested that the higher photosynthetic activities, more effective uptake and utilization to phosphate, and low light requirements might play important roles in the occurrence and invasive behavior of C. raciborskii.  相似文献   

7.
Competition for food is generally thought to exert a strong evolutionary pressure, driving trophic niche separation, either by specialization and/or by widening the choice of potential food resources. Harpacticoid copepods are common inhabitants of phytal assemblages, where several closely related species of the so-called phytal dwelling families often co-occur. However, direct competition among phytal harpacticoids has been thought to be unlikely, due to the abundant and continuously available food supplies. We conducted a series of field and laboratory studies to assess the role of competition in the abundance distribution of two closely related harpacticoid species, Mesochra rapiens and M. aestuari. We found that the abundance of both species co-varied on several seaweed species in the northern Baltic Sea, during a 3-month period. Stable isotope ratios in the green alga Cladophora glomerata field samples indicated different resource utilization of the two species, both in fresh and deteriorated C. glomerata, and in drifting algae. We tested in the laboratory if resource utilization was different between the species in sympatry and allopatry. We used enriched stable carbon isotope ratios (13C/12C) of the diatom Phaeodactylum tricornutum to trace the uptake in both species. Results from these experiments showed a much higher assimilation by M. aestuari in sympatry with M. rapiens, while the latter species showed a higher assimilation in allopatry. Our results show that while there is no apparent competition for resources between these two species in the field, there seems to be an asymmetric reaction when in sympatry and provided one single resource in the laboratory. We suggest that M. rapiens may facilitate assimilation by M. aestuari and discuss the mechanisms by which this may take place.  相似文献   

8.
This study presents a genetic characterization of 27 potentially toxic cyanobacterial strains isolated from seven reservoirs located in the north and centre of Tunisia. These strains belonged mainly to Microcystis aeruginosa, Cylindrospermopsis raciborskii and Planktothrix agardhii species. Their toxicological potential was evaluated by molecular biology tools, which showed that none of the isolated strains carried segments of the gene cluster responsible for the production of cylindrospermopsin and saxitoxin. The majority of Microcystis isolates were able to synthesize microcystin, since they presented the six characteristic segments of the microcystin synthetase mcy cluster (mcyA, -B, -C, -D, -E and -G). This was further confirmed by MALDI-TOF analysis that showed the presence of eight microcystin variants, including microcystin-LR. The taxonomic identification of the strains was assessed based on the variability of the 16S rRNA gene sequences. Furthermore, the 16S-23S rRNA ITS sequences of Microcystis isolates and rpoC1 sequences of Cylindrospermopsis strains were also used in the phylogenetic analysis.  相似文献   

9.
10.
Ponto-Caspian gammarids have invaded European waters, affecting local communities by predation and competition. Their ranges and dispersal rates vary across Europe, which may result from their interspecific interactions, accelerating or reducing migrations. We checked this hypothesis by testing interference competition among co-occurring invaders: Dikerogammarus villosus, D. haemobaphes and Pontogammarus robustoides. We used 140-cm long tanks (gravel substratum), divided into seven compartments. We introduced 25 “residents” into the outermost compartment, separated with a barrier. After 1 h, we introduced 25 “intruders”. After the next 1 h, we removed the barrier and the gammarids dispersed in the tank. After 4 or 20 h, we counted the gammarids in the compartments. We tested all pairwise species combinations and single-species controls. Dikerogammarus villosus displaced other species (P. robustoides only after 4 h) and reduced its own motility after 20 h in their presence. Pontogammarus robustoides stimulated the short-time migrations of D. villosus intruders and of D. haemobaphes. As P. robustoides migrated spontaneously much more than Dikerogammarus spp., its impact decreased after longer time. Dikerogammarus haemobaphes stimulated the short-time movement of P. robustoides intruders but reduced the long-time relocation of this species. In general, gammarid dispersal increased in the presence of stronger competitors (D. villosus and P. robustoides, especially residents) and decreased in response to weaker competitors (D. haemobaphes). Thus, competitive interactions may affect dispersal of invasive gammarids and contribute to the fastest spread of the weakest competitor, D. haemobaphes observed in the field, whereas the strongest species, D. villosus was the latest newcomer in many novel areas.  相似文献   

11.
The photosynthetic responses of Microcystis aeruginosa, Scenedesmus obliquus, and Cyclotella meneghiniana to temperature and light regimes were investigated. M. aeruginosa had a higher specific growth rate at 30°C than at 14 and 20°C. Its specific growth rate was the maximum among the three species at 30°C. This suggests that M. aeruginosa could predominate in a water body having high temperature. When exposed to high light, M. aeruginosa showed lower maximal photosystem II (PSII) quantum yield (ΦM), operational PSII quantum yield ( $ \Phi_{\text{M}}^{\prime } $ ), and active reaction centers per excited cross section (RC/CSm) than S. obliquus and C. meneghiniana. Moreover, after 2?h low light recovery at 14°C and 20°C, the recovery of ΦM, $ \Phi_{\text{M}}^{\prime } $ and RC/CSm in M. aeruginosa were less than the other two species. This indicates that the capacity of high light adaptation of M. aeruginosa is the lowest among the studied species at 14–20°C. When exposed to high light, C. meneghiniana had higher ΦM and $ \Phi_{\text{M}}^{\prime } $ lost and induced higher nonphotochemical quenching at 14–20°C. This suggests that C. meneghiniana developed a higher resistance to high light under low growth temperatures. M. aeruginosa showed the lowest light compensation point among these three species, which indicates that it could utilize low light more efficiently than the other two species. Cyclic electron flow around PSII may play a role in the photoprotective mechanism of all these three species.  相似文献   

12.
The freshwater cyanobacterium Cylindrospermopsis raciborskii spreads from tropical to temperate regions worldwide. This entails acclimation to varied light and temperature conditions. We studied the thermal and light acclimation of the photosynthetic machinery of C. raciborskii by monitoring alteration of the chlorophyll a and carotenoid content in German strains of C. raciborskii, in African and Australian strains of C. raciborskii, and in German strains of Aphanizomenon gracile, a native cyanobacterium belonging to the same order (Nostocales). Our results showed that temperate and tropical C. raciborskii strains did not differ in pigment acclimation to light and temperature. In contrast, the ratio of photoprotective carotenoids (namely the carotenoid glycoside 4-hydroxymyxol glycoside [aphanizophyll]) to chlorophyll a increased significantly more in C. raciborskii in comparison with A. gracile (1) with decreasing temperatures from 20 to 10°C and a moderate light intensity of 80?µmol photons m?2?s?1 and (2) with increasing light intensities at a suboptimal temperature of 15°C, compared to 20°C. We conclude that below 20°C photoinhibition is avoided by greater photoprotection in the invasive species C. raciborskii compared to the native species A. gracile.  相似文献   

13.
We studied the growth and photosynthetic characteristics of a toxic (CS506) and a nontoxic strain (CS509) of the bloom‐forming cyanobacterium Cylindrospermopsis raciborskii grown under identical experimental conditions. When exposed to light‐saturating growth conditions (100 μmol photons · m?2 · s?1), values for maximal photosynthetic capacity (Pmax) and maximum quantum yield (Fv/Fm) indicated that both strains had an equal ability to process captured photons and deliver them to PSII reaction centers. However, CS506 grew faster than CS509. This was consistent with its higher light requirement for saturation of photosynthesis (Ik). Greater shade tolerance of CS509 was indicated by its higher ability to harvest light (α), lower photosynthetic light compensation point (Ic), and higher chlorophyll a to biovolume ratio. Strain‐specific differences were found in relation to non‐photochemical quenching, effective absorption cross‐sectional area of PSIIα‐centers (σPSIIα), and the antenna connectivity parameter of PSIIα (JconPSIIα). These findings highlighted differences in the transfer of excitation from phycobilisome/PSII to PSI, on the dependence on different pigments for light harvesting and on the functioning of the PSII reaction centers between the two strains. The results of this study showed that both performance and composition of the photosynthetic apparatus are different between these strains, though with only two strains examined we cannot attribute the performance of strain 506 to its ability to produce cylindrospermopsins. The emphasis on a strain‐specific light adaptation/acclimation is crucial to our understanding of how different light conditions (both quantity and quality) can trigger the occurrence of different C. raciborskii strains and control their competition and/or dominance in natural ecosystems.  相似文献   

14.
Cylindrospermopsis raciborskii is a species of freshwater, bloom-forming cyanobacterium. C. raciborskii produces toxins, including cylindrospermopsin (hepatotoxin) and saxitoxin (neurotoxin), although non toxin-producing strains are also observed. In spite of differences in toxicity, C. raciborskii strains comprise a monophyletic group, based upon 16S rRNA gene sequence identities (greater than 99%). We performed phylogenetic analyses; 16S rRNA gene and 16S-23S rRNA gene internally transcribed spacer (ITS-1) sequence comparisons, and genomic DNA restriction fragment length polymorphism (RFLP), resolved by pulsed-field gel electrophoresis (PFGE), of strains of C. raciborskii, obtained mainly from the Australian phylogeographic cluster. Our results showed no correlation between toxic phenotype and phylogenetic association in the Australian strains. Analyses of the 16S rRNA gene and the respective ITS-1 sequences (long L, and short S) showed an independent evolution of each ribosomal operon. The genes putatively involved in the cylindrospermopsin biosynthetic pathway were present in one locus and only in the hepatotoxic strains, demonstrating a common genomic organization for these genes and the absence of mutated or inactivated biosynthetic genes in the non toxic strains. In summary, our results support the hypothesis that the genes involved in toxicity may have been transferred as an island by processes of gene lateral transfer, rather than convergent evolution.  相似文献   

15.
Microcystins are cyanobacterial hepatotoxins, and are produced by nonribosomal enzyme complexes, mcy gene cluster. In this study, we report on whole mcy gene clusters from two Korean strains of M. aeruginosa that were blooming in Lake Paldang (FCY-26) and Geum river (FCY-28). Their specific gene locus, amino acid information, and sub-cluster orientation were also characterized in both strains. Both gene clusters are of 55 kb, and also each length, number and the arrangement are identical. Their sequence analysis revealed a cluster of 10 genes (mcyA, B, C, D, E, F, G, H, I, and J) involved in the biosynthesis of microcystin, and mcyABC and mcyDEFGHIJ formed two polycistronic operon structures that are transcribed bidirectionally from a central promoter region between mcyA and mcyD. The analysis of SNPs provided different nucleotide composition and amino acid variations in two Korean strains of M. aeruginosa. This approach is useful to develop genetic indicators identifying toxic cyanobacteria and their cyanotoxins, and helpful for a better understanding of the diversities of mcy gene clusters, the biosynthesis of microcystin, and the mediation of environmental parameters causing algal blooming and HABs.  相似文献   

16.
Cyanobacterial blooms are found in many freshwater ecosystems around the world, but the effect of environmental factors on their growth and the proportion of species still require more investigation. In this study, the physiological responses of bloom‐forming cyanobacteria M icrocystis aeruginosa FACHB912, M icrocystis flos‐aquae FACHB1028 and P seudanabaena sp. FACHB1282 to iron deficiency were investigated. Their specific growth rates were found to decrease as the available iron concentration decreased. At low available iron concentrations of 1 × 10?7 M (pFe 21.3) and 5 × 10?8 M (pFe 21.6), M . aeruginosa had the lowest specific growth rate among three studied species. The cell sizes of M . flos‐aquae and Pseudanabaena sp. were significantly smaller under the lowest iron concentration. The chlorophyll a content of the three species decreased at the lowest iron concentration. The maximal relative electron transport rate, photosynthetic efficiency, and light‐saturation parameter of M . aeruginosa were lower than the other two cyanobacteria at pFe 21.3. Therefore, M . aeruginosa was the least able to adapt to iron deficiency. Under iron deficiency, the functional absorption cross‐section of PSII and electron transport rate on the acceptor side of PSII decreased in M . aeruginosa, while the connectivity factor between individual photosynthetic units increased in M . flos‐aquae, and the electron transport rate on the acceptor side of PSII and between PSII and PSI decreased in P seudanabaena sp. The ability to store iron was highest in M . flos‐aquae, followed by P seudanabaena sp. and M . aeruginosa. Thus, these results provide necessary information for detecting the role of iron in the succession of cyanobacterial species in Lake Taihu, the third largest freshwater lake in China, because all three species were isolated from this lake.  相似文献   

17.
Candida metapsilosis is a rarely-isolated, opportunistic pathogen that belongs to a clade of pathogenic yeasts known as the C. parapsilosis sensu lato species complex. To gain insight into the recent evolution of C. metapsilosis and the genetic basis of its virulence, we sequenced the genome of 11 clinical isolates from various locations, which we compared to each other and to the available genomes of the two remaining members of the complex: C. orthopsilosis and C. parapsilosis. Unexpectedly, we found compelling genomic evidence that C. metapsilosis is a highly heterozygous hybrid species, with all sequenced clinical strains resulting from the same past hybridization event involving two parental lineages that were approximately 4.5% divergent in sequence. This result indicates that the parental species are non-pathogenic, but that hybridization between them formed a new opportunistic pathogen, C. metapsilosis, that has achieved a worldwide distribution. We show that these hybrids are diploid and we identified strains carrying loci for both alternative mating types, which supports mating as the initial mechanism for hybrid formation. We trace the aftermath of this hybridization at the genomic level, and reconstruct the evolutionary relationships among the different strains. Recombination and introgression -resulting in loss of heterozygosis- between the two subgenomes have been rampant, and includes the partial overwriting of the MTLa mating locus in all strains. Collectively, our results shed light on the recent genomic evolution within the C. parapsilosis sensu lato complex, and argue for a re-definition of species within this clade, with at least five distinct homozygous lineages, some of which having the ability to form hybrids.  相似文献   

18.
ABSTRACT

Raphidiopsis (Cylindrospermopsis) raciborskii is one of the most studied potentially harmful cyanobacteria. Single environmental factors such as increased temperature or light are reported to be promoters of R. raciborskii growth, but the interaction of two or more promoting factors is less understood. The performance of two strains of R. raciborskii (MVCC19, Uruguayan and LP1, Brazilian) were evaluated under acclimation and temperature shifts (25–32°C) in combination with two transitions from phosphorus (P) sufficiency to limiting growth conditions. When subjected to transition from high P sufficiency to a P-limiting state, strains were able to grow only at the warmer temperature if previously acclimated. The MVCC19 strain showed higher specific growth rates and a shorter growth phase than LP1. Morphological differences were also found: the MVCC19 strain produced shorter filaments, while the LP1 strain increased in length and the number of cells per filament. The results show the positive effect of high temperature on the ability of R. raciborskii to withstand P-limiting conditions, which may confer resilience of populations to periods of severe nutrient limitation in warm lakes. This finding contributes to the understanding of the success of this species in diverse environmental conditions. The effect of temperature on the tolerance of nutrient deficiency and the performance of strains under lake conditions suggests the need for a drastic reduction in nutrient loads to avoid R. raciborskii dominance in warmer lakes.  相似文献   

19.
We studied acclimation patterns in leaf dry mass per area (MA), nitrogen (NA) and chlorophyll (ζA) content per area, and chlorophyll to nitrogen ratio (ζ/N) along vertical light gradients in natural temperate mixed herbaceous canopy and deciduous tree canopy. In the deciduous tree canopy, all leaves are formed at approximately the same time, and the light gradient during the rest of the growing season reflects the differences in light availability during leaf development, whereas in the herbaceous canopy, leaf production continues during most of the growing season and major changes in light conditions occur after leaf maturation. MA and NA increased strongly with increasing current light availability (ID) in the tree canopy. In the herbaceous canopy, MA and NA were generally unrelated to ID. Depending on species, the correlation between chlorophyll content per leaf area (ζA) and ID was positive, negative, or non-significant. Path analyses revealed two opposite effects of ID on the amount of leaf chlorophyll. In the tree canopy, increasing ID enhanced ζA through changes in MA and NA, whereas the direct effect of light was negative in both canopies. The overall correlation network between foliage structural and chemical traits and the relationships with ID were significantly stronger in the tree canopy, suggesting limited re-acclimation potential in the mixed herbaceous canopy. Within-species acclimation patterns reflected the patterns within the main functional types. These data demonstrate that the relationships of current light availability vs. leaf dry mass per area, leaf nitrogen and chlorophyll contents, and chlorophyll to nitrogen ratio differ among multi-species herbaceous canopies and deciduous tree canopies due to contrasting canopy development.  相似文献   

20.
This paper provided insight into the influence of iron on the growth of Microcystis aeruginosa strains related to different phenotypes of this species. In this research it was intended to compare the growth, pigment composition, photosynthetic efficiency and extracellular polysaccharides production of unicellular and colonial strains of M. aeruginosa. A significantly growth inhibition under iron-limited condition on unicellular M. aeruginosa was noted, whereas the colonial strain could maintain a steady growth along with the culture time. This observation was reconfirmed by the content of chlorophyll a. Compared with unicellular strain; the colonial strain exhibited a higher PSII maximum light energy transformation, photosynthetic oxygen evolution and extracellular polysaccharides (EPS) production in iron-limited condition. Further, in order to gain more information about the accessibility of iron in the two phenotypic Microcystis, we found the two strains could produce hydroxamate-type siderophores, the content of siderophores produced by the colonial strain was more than those in unicellular strain under the iron-limited condition. It was interpreted as an adaptation to the dilute environment. Our results demonstrated that the colonial phenotypes possessed stronger ability to endure iron-limited condition than unicellular strain by higher pigment contents, higher photosynthetic activities, higher EPS production and higher siderophores secretion. It might elucidate that the colonial M. aeruginosa bloom can sustain in eutrophic reservoirs and lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号