首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Analytical study of large-scale nonlinear neural circuits is a difficult task. Here we analyze the function of neural systems by probing the fuzzy logical framework of the neural cells' dynamical equations. Al- though there is a close relation between the theories of fuzzy logical systems and neural systems and many papers investigate this subject, most investigations focus on finding new functions of neural systems by hybridizing fuzzy logical and neural system. In this paper, the fuzzy logical framework of neural cells is used to understand the nonlinear dynamic attributes of a common neural system by abstracting the fuzzy logical framework of a neural cell. Our analysis enables the educated design of network models for classes of computation. As an example, a recurrent network model of the primary visual cortex has been built and tested using this approach.  相似文献   

2.
A unified neural network model termed standard neural network model (SNNM) is advanced. Based on the robust L(2) gain (i.e. robust H(infinity) performance) analysis of the SNNM with external disturbances, a state-feedback control law is designed for the SNNM to stabilize the closed-loop system and eliminate the effect of external disturbances. The control design constraints are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms (e.g. interior-point algorithms) to determine the control law. Most discrete-time recurrent neural network (RNNs) and discrete-time nonlinear systems modelled by neural networks or Takagi and Sugeno (T-S) fuzzy models can be transformed into the SNNMs to be robust H(infinity) performance analyzed or robust H(infinity) controller synthesized in a unified SNNM's framework. Finally, some examples are presented to illustrate the wide application of the SNNMs to the nonlinear systems, and the proposed approach is compared with related methods reported in the literature.  相似文献   

3.
基于径向基函数神经网络的心电图ST段形态识别   总被引:4,自引:0,他引:4  
心电图的ST段是指QRS波的终点至T波的起点间的一个子波,其时间长度与心率有关,对ST段形态的识别有助于分析ST段变化的原因和确定缺血的部位。将模糊逻辑系统与神经网络相结合,利用基于自适应模糊系统的径向基函数神经网络对心电信号ST段的形态识别进行了研究。该网络比BP网络学习进度快,具有增量学习的能力,它能够识别学习外的新模式。研究取得了较好的识别结果。  相似文献   

4.
In this paper, a novel efficient learning algorithm towards self-generating fuzzy neural network (SGFNN) is proposed based on ellipsoidal basis function (EBF) and is functionally equivalent to a Takagi-Sugeno-Kang (TSK) fuzzy system. The proposed algorithm is simple and efficient and is able to generate a fuzzy neural network with high accuracy and compact structure. The structure learning algorithm of the proposed SGFNN combines criteria of fuzzy-rule generation with a pruning technology. The Kalman filter (KF) algorithm is used to adjust the consequent parameters of the SGFNN. The SGFNN is employed in a wide range of applications ranging from function approximation and nonlinear system identification to chaotic time-series prediction problem and real-world fuel consumption prediction problem. Simulation results and comparative studies with other algorithms demonstrate that a more compact architecture with high performance can be obtained by the proposed algorithm. In particular, this paper presents an adaptive modeling and control scheme for drug delivery system based on the proposed SGFNN. Simulation study demonstrates the ability of the proposed approach for estimating the drug's effect and regulating blood pressure at a prescribed level.  相似文献   

5.
6.
害虫灾害研究的复杂性理论框架   总被引:1,自引:0,他引:1  
害虫灾害是高度复杂的大系统 ,表现出不均匀性、差异性、多样性、突发性、随机性、可预测性和周期性等复杂性特征 ,使得经典的理论和方法已不适用于害虫灾害的研究。依据复杂性科学和分形、神经网络、混沌及小波等非线性科学的发展及其近期在害虫灾害中的部分研究成果 ,该文从复杂大系统出发 ,构建了害虫灾害研究的复杂性理论框架 ,为深入研究害虫灾害的成因、机制与预测提供理论依据。  相似文献   

7.
A neural-model-based control design for some nonlinear systems is addressed. The design approach is to approximate the nonlinear systems with neural networks of which the activation functions satisfy the sector conditions. A novel neural network model termed standard neural network model (SNNM) is advanced for describing this class of approximating neural networks. Full-order dynamic output feedback control laws are then designed for the SNNMs with inputs and outputs to stabilize the closed-loop systems. The control design equations are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms to determine the control signals. It is shown that most neural-network-based nonlinear systems can be transformed into input-output SNNMs to be stabilization synthesized in a unified way. Finally, some application examples are presented to illustrate the control design procedures.  相似文献   

8.
9.
Neural networks are modelling tools that are, in principle, able to capture the input-output behaviour of arbitrary systems that may include the dynamics of animal populations or brain circuits. While a neural network model is useful if it captures phenomenologically the behaviour of the target system in this way, its utility is amplified if key mechanisms of the model can be discovered, and identified with those of the underlying system. In this review, we first describe, at a fairly high level with minimal mathematics, some of the tools used in constructing neural network models. We then go on to discuss the implications of network models for our understanding of the system they are supposed to describe, paying special attention to those models that deal with neural circuits and brain systems. We propose that neural nets are useful for brain modelling if they are viewed in a wider computational framework originally devised by Marr. Here, neural networks are viewed as an intermediate mechanistic abstraction between 'algorithm' and 'implementation', which can provide insights into biological neural representations and their putative supporting architectures.  相似文献   

10.
A neural network model for solving constrained nonlinear optimization problems with bounded variables is presented in this paper. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points. The network is shown to be completely stable and globally convergent to the solutions of constrained nonlinear optimization problems. A fuzzy logic controller is incorporated in the network to minimize convergence time. Simulation results are presented to validate the proposed approach.  相似文献   

11.
An artificial neural network with a two-layer feedback topology and generalized recurrent neurons, for solving nonlinear discrete dynamic optimization problems, is developed. A direct method to assign the weights of neural networks is presented. The method is based on Bellmann's Optimality Principle and on the interchange of information which occurs during the synaptic chemical processing among neurons. The neural network based algorithm is an advantageous approach for dynamic programming due to the inherent parallelism of the neural networks; further it reduces the severity of computational problems that can occur in methods like conventional methods. Some illustrative application examples are presented to show how this approach works out including the shortest path and fuzzy decision making problems.  相似文献   

12.
Recurrent wavelet neural network (RWNN) has the advantages such as fast learning property, good generalization capability and information storing ability. With these advantages, this paper proposes an RWNN-based adaptive control (RBAC) system for multi-input multi-output (MIMO) uncertain nonlinear systems. The RBAC system is composed of a neural controller and a bounding compensator. The neural controller uses an RWNN to online mimic an ideal controller, and the bounding compensator can provide smooth and chattering-free stability compensation. From the Lyapunov stability analysis, it is shown that all signals in the closed-loop RBAC system are uniformly ultimately bounded. Finally, the proposed RBAC system is applied to the MIMO uncertain nonlinear systems such as a mass-spring-damper mechanical system and a two-link robotic manipulator system. Simulation results verify that the proposed RBAC system can achieve favorable tracking performance with desired robustness without any chattering phenomenon in the control effort.  相似文献   

13.
Recent neuropsychological research has begun to reveal that neurons encode information in the timing of spikes. Spiking neural network simulations are a flexible and powerful method for investigating the behaviour of neuronal systems. Simulation of the spiking neural networks in software is unable to rapidly generate output spikes in large-scale of neural network. An alternative approach, hardware implementation of such system, provides the possibility to generate independent spikes precisely and simultaneously output spike waves in real time, under the premise that spiking neural network can take full advantage of hardware inherent parallelism. We introduce a configurable FPGA-oriented hardware platform for spiking neural network simulation in this work. We aim to use this platform to combine the speed of dedicated hardware with the programmability of software so that it might allow neuroscientists to put together sophisticated computation experiments of their own model. A feed-forward hierarchy network is developed as a case study to describe the operation of biological neural systems (such as orientation selectivity of visual cortex) and computational models of such systems. This model demonstrates how a feed-forward neural network constructs the circuitry required for orientation selectivity and provides platform for reaching a deeper understanding of the primate visual system. In the future, larger scale models based on this framework can be used to replicate the actual architecture in visual cortex, leading to more detailed predictions and insights into visual perception phenomenon.  相似文献   

14.
表面肌电信号(Surface Electromyography,sEMG)是通过相应肌群表面的传感器记录下来的一维时间序列非平稳生物电信号,不但反映了神经肌肉系统活动,对于反映相应动作肢体活动信息同样重要。而模式识别是肌电应用领域的基础和关键。为了在应用基于表面肌电信号模式识别中选取合适算法,本文拟对基于表面肌电信号的人体动作识别算法进行回顾分析,主要包括模糊模式识别算法、线性判别分析算法、人工神经网络算法和支持向量机算法。模糊模式识别能自适应提取模糊规则,对初始化规则不敏感,适合处理s EMG这样具有严格不重复的生物电信号;线性判别分析对数据进行降维,计算简单,但不适合大数据;人工神经网络可以同时描述训练样本输入输出的线性关系和非线性映射关系,可以解决复杂的分类问题,学习能力强;支持向量机处理小样本、非线性的高维数据优势明显,计算速度快。比较各方法的优缺点,为今后处理此类问题模式识别算法选取提供了参考和依据。  相似文献   

15.
In the present study, a new neural network-based terminal sliding mode technique is proposed to stabilize and synchronize fractional-order chaotic ecological systems in finite-time. The Chebyshev neural network is implemented to estimate unknown functions of the system. Moreover, through the proposed Chebyshev neural network observer, the effects of external disturbances are fully taken into account. The weights of the Chebyshev neural network observer are adjusted based on adaptive laws. The finite-time convergence of the closed-loop system, which is a new concept for ecological systems, is proven. Then, the dependency of the system on the value of the fractional time derivatives is investigated. Lastly, the proposed control scheme is applied to the fractional-order ecological system. Through numerical simulations, the performance of the developed technique for synchronization and stabilization are assessed and compared with a conventional method. The numerical simulations strongly corroborate the effective performance of the proposed control technique in terms of accuracy, robustness, and convergence time for the unknown nonlinear system in the presence of external disturbances.  相似文献   

16.
The article presents modeling of daily average ozone level prediction by means of neural networks, support vector regression and methods based on uncertainty. Based on data measured by a monitoring station of the Pardubice micro-region, the Czech Republic, and optimization of the number of parameters by a defined objective function and genetic algorithm a model of daily average ozone level prediction in a certain time has been designed. The designed model has been optimized in light of its input parameters. The goal of prediction by various methods was to compare the results of prediction with the aim of various recommendations to micro-regional public administration management. It is modeling by means of feed-forward perceptron type neural networks, time delay neural networks, radial basis function neural networks, ε-support vector regression, fuzzy inference systems and Takagi–Sugeno intuitionistic fuzzy inference systems. Special attention is paid to the adaptation of the Takagi–Sugeno intuitionistic fuzzy inference system and adaptation of fuzzy logic-based systems using evolutionary algorithms. Based on data obtained, the daily average ozone level prediction in a certain time is characterized by a root mean squared error. The best possible results were obtained by means of an ε-support vector regression with polynomial kernel functions and Takagi–Sugeno intuitionistic fuzzy inference systems with adaptation by means of a Kalman filter.  相似文献   

17.
Nonlinear type system identification models coupled with white noise stimulation provide an experimentally convenient and quick way to investigate the often complex and nonlinear interactions between the mechanical and neural elements of reflex limb control systems. Previous steady state analysis has allowed the neurons in such systems to be categorised by their sensitivity to position, velocity or acceleration (dynamics) and has improved our understanding of network function. These neurons, however, are known to adapt their output amplitude or spike firing rate during repetitive stimulation and this transient response may be more important than the steady state response for reflex control. In the current study previously used system identification methods are developed and applied to investigate both steady state and transient dynamic and nonlinear changes in the neural circuit responsible for controlling reflex movements of the locust hind limbs. Through the use of a parsimonious model structure and Monte Carlo simulations we conclude that key system dynamics remain relatively unchanged during repetitive stimulation while output amplitude adaptation is occurring. Whilst some evidence of a significant change was found in parts of the systems nonlinear response, the effect was small and probably of little physiological relevance. Analysis using biologically more realistic stimulation reinforces this conclusion.  相似文献   

18.
Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including ‘random’ and ‘4Q’ (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the ‘4Q’ cultures presented absolutely different activities, and the robot controlled by the ‘4Q’ network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.  相似文献   

19.
20.
This paper demonstrates how knowledge can be extracted from evolving spiking neural networks with rank order population coding. Knowledge discovery is a very important feature of intelligent systems. Yet, a disproportionally small amount of research is centered on the issue of knowledge extraction from spiking neural networks which are considered to be the third generation of artificial neural networks. The lack of knowledge representation compatibility is becoming a major detriment to end users of these networks. We show that a high-level knowledge can be obtained from evolving spiking neural networks. More specifically, we propose a method for fuzzy rule extraction from an evolving spiking network with rank order population coding. The proposed method was used for knowledge discovery on two benchmark taste recognition problems where the knowledge learnt by an evolving spiking neural network was extracted in the form of zero-order Takagi-Sugeno fuzzy IF-THEN rules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号