首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The previously unstudied bacteriolytic enzyme L(4) was isolated from the culture liquid of the bacterium Lysobacter sp. XL1 in electrophoretically homogeneous state. The enzyme L(4) is a diaminopimelinoyl-alanine endopeptidase relative to peptidoglycan of Lysobacter sp. XL1. The enzyme is an alkaline protein of approximately 21 kD. The N-terminal amino acid sequence of the enzyme has been determined - A V V N G V N Y V Gx T T A ... The maximal activity of the enzyme was observed in 0.05 M Tris-HCl at pH 8.0 and 50-55 degrees C. The half-inactivation temperature of the enzyme is 52 degrees C. The endopeptidase L(4) is not a metalloenzyme since it is not affected by EDTA. The enzyme is inhibited by p-chloromercuribenzoic acid by 72% and by phenylmethylsulfonyl fluoride by 43%, which indicates the involvement of serine and thiol groups in its functioning.  相似文献   

2.
An enzyme exhibiting yeast-lytic activity has been isolated from the culture liquid of the bacterium Lysobacter sp. XL 1. The optimal conditions for the hydrolysis of Saccharomyces cerevisiae cells by the enzyme have been established: 0.15 M sodium acetate buffer, pH 6.0, 50 degrees C. The yeast-lytic activity of the enzyme is inhibited by EDTA, p-chloromercuribenzoate, and phenylmethylsulfonyl fluoride. According to the data of SDS-PAGE, the molecular weight of the protein is 36 kD. The enzyme hydrolyzes casein, hemoglobin, and synthetic peptide Abz-Ala-Ala-Phe-pNA, i.e. it exhibits proteolytic activity. The properties of the enzyme and its molecular weight correspond to those of a previously isolated extracellular metalloproteinase. The N-terminal amino acid sequence of the protein exhibits 67% homology with the N-terminal sequence of achromolysine of Achromobacter lyticus (EC 3.4.24.-).  相似文献   

3.
4.
The amino acid sequence of a trimethoprim-resistant dihydrofolate reductase (EC 1.5.1.3) specified by the R-plasmid R67 is described. The sequence was deduced from automatic and manual sequence analysis of the intact protein, the fragments produced by cyanogen bromide cleavage, and peptides derived from the largest cyanogen bromide fragment by digestion with trypsin, Staphylococcus aureus V8 proteus, chymotrypsin, and Lysobacter enzymogenes alpha-lytic protease. The complete sequence comprises 78 residues in a single polypeptide chain of molecular weight 8444. No evidence of heterogeneity was obtained, indicating that all subunits of the native enzyme are identical. Comparison of the sequence with that of all known dihydrofolate reductases shows no significant sequence homology.  相似文献   

5.
6.
The Gram-negative bacterium Lysobacter sp. XL1 secretes various proteins, including bacteriolytic enzymes (L1-L5), into the culture medium. These proteins are able to degrade Gram-positive bacteria. The mechanism of secretion of extracellular proteins by Lysobacter sp. XL1 has not been studied hitherto. Electron microscopic investigations revealed the phenomenon of the formation of extracellular vesicles by Lysobacter sp. XL1. These vesicles contained components of the Lysobacter sp. XL1 outer membrane, and demonstrated bacteriolytic activity against Gram-positive and Gram-negative bacteria: Staphylococcus aureus 209-P and Erwinia marcescens EC1, respectively. Western blotting analysis with antibodies to homologous bacteriolytic endopeptidases L1 and L5 showed that endopeptidase L5 was secreted into the culture medium by means of vesicles, unlike its homolog, endopeptidase L1. When inside the vesicles, endopeptidase L5 actively lysed the Gram-negative bacterium Erwinia marcescens; outside the vesicles, it lost this ability. The secretion of bacteriolytic endopeptidase L5 through the outer membrane vesicles is of great biological significance: because of this ability, Lysobacter sp. XL1 can compete in nature with both Gram-positive and Gram-negative bacteria.  相似文献   

7.
Two different peptides containing an aspartyl residue reactive with 1, 2-epoxy-3-(p-nitrophenoxy)propane (EPNP) in the acid protease from Rhizopus chinensis were isolated from a peptic digest of the EPNP-modified enzyme. One of the peptides was sequenced as Asp-Thr-Gly-Ser-Asp. The amino acid sequence had very high homology with those around the EPNP-reactive aspartyl residues in rennin (chymosin) [EC 3.4.23.4] and pepsin [EC 3.4.23.1]. The other peptide contained no methionine residue and gave the sequence: Asp-Thr-Gly-Thr-Thr-Leu. The N-terminal aspartyl residue of each peptide was deduced to be the EPNP-reactive site.  相似文献   

8.
The entire amino acid sequence of bifunctional alginate lyase from Pseudoalteromonas sp. strain No. 272 were determined by two approaches, Edman degradation of the peptides obtained from protease digestion of the enzyme protein and analysis of PCR products of the structural gene. The former resulted in incomplete amino acid sequence in the entire sequence, due to lacking of the proper peptides from the protease digestion. To compensate for this lack of sequences we applied the method of PCR of the structural gene that was initially elucidated from the primers designed from N- and C-terminal amino acid sequences of the enzyme. The results of the amino acid sequences from these two approaches showed good agreement. The enzyme consisted of 233 amino acid residues with a molecular mass of 25,549.5, including the sole W and cystine residue. The sequence homology search among the other alginate lyases from different origins indicated that they were very weakly homologous, with the exception of the sequence homology (80.3%) of Pseudoalteromonas elyakovii alginate lyase. The consensus sequence, YFKhG + Y-Q (Wong, T. Y., Preston, L. A., and Schiller, N. L. 2000. Annu. Rev. Microbiol. 54: 289–340) in the C-terminal regions was conserved. The kinetic analyses of chemical modification of some amino acid residues of the enzyme showed that W, K, and Y appeared to be important in the enzyme function.  相似文献   

9.
10.
Amino acid sequences of the human kidney cathepsins H and L   总被引:4,自引:0,他引:4  
The complete amino acid sequences of human kidney cathepsin H (EC 3.4.22.16) and human kidney cathepsin L (EC 3.4.22.15) were determined. Cathepsin H contains 230 residues and has an Mr of 25116. The sequence was obtained by sequencing the light, heavy and mini chain and the peptides produced by cyanogen bromide cleavage of the single-chain form of the enzyme. The glycosylated mini chain is a proteolytic fragment of the propeptide of cathepsin H. Human cathepsin L has 217 amino acid residues and an Mr of 23720. Its amino acid sequence was deduced from N-terminal sequences of the heavy and light chains and from the sequences of cyanogen bromide fragments of the heavy chain. The fragments were aligned by comparison with known sequences of cathepsins H and L from other species. Cathepsins H and L exhibit a high degree of sequence homology to cathepsin B (EC 3.4.22.1) and other cysteine proteinases of the papain superfamily.  相似文献   

11.
The complete amino acid sequence of cytosolic serine hydroxymethyltransferase from rabbit liver was determined. The sequence was determined from analysis of peptides isolated from tryptic and cyanogen bromide cleavages of the enzyme. Special procedures were used to isolate and sequence the C-terminal and blocked N-terminal peptides. Each of the four identical subunits of the enzyme consists of 483 residues. The sequence could be easily aligned with the sequence of Escherichia coli serine hydroxymethyltransferase. The primary structural homology between the rabbit and E. coli enzymes is about 42%. The importance of the primary and predicted secondary structural homology between the two enzymes is discussed.  相似文献   

12.
A cDNA clone encoding ascorbate peroxidase (AP, EC 1.11.1.11) was isolated from a phage gt11 library of cDNA fromArabidopsis thaliana by immunoscreening with monoclonal antibodies against the enzyme, and then sequenced. The cDNA insert hybridized to a 1.1 kb poly(A)+ RNA from leaves ofA thaliana. Genomic hybridization suggests that the cDNA obtained here corresponds to a single-copy gene. The N-terminal amino acid sequence ofArabidopsis AP was determined by protein sequencing of the immunochemically purified enzyme, and proved to be homologous to the N-terminal amino acid sequence of the chloroplastic AP of spinach. The predicted amino acid sequence of the mature AP ofA. thaliana, deduced from the nucleotide sequence, consists of 249 amino acid residues, which is 34% homologous with cytochromec peroxidase of yeast, but less homologous with other plant peroxidases. Amino acid residues at the active site of yeast cytochromec peroxidase are conserved in the amino acid sequence ofArabidopsis AP. The poly(dG-dT) sequence, which is a potential Z-DNA-forming sequence, was found in the 3 untranslated region of the cDNA.  相似文献   

13.
We report the sequences of full-length cDNAs for the nuclear genes encoding the chloroplastic and cytosolic fructose-1,6-bisphosphate aldolase (EC 4.1.2.13) from spinach. A comparison of the deduced amino-acid sequences with one another and with published cytosolic aldolase sequences of other plants revealed that the two enzymes from spinach share only 54% homology on their amino acid level whereas the homology of the cytosolic enzyme of spinach with the known sequences of cytosolic aldolases of maize, rice and Arabidopsis range from 67 to 92%. The sequence of the chloroplastic enzyme includes a stroma-targeting N-terminal transit peptide of 46 amino acid residues for import into the chloroplast. The transit peptide exhibits essential features similar to other chloroplast transit peptides. Southern blot analysis implies that both spinach enzymes are encoded by single genes.  相似文献   

14.
Complete sequence determination of gene 18 encoding the tail sheath protein was carried out mainly by the Maxam-Gilbert method. Approximately 40 peptides contained in a tryptic digest and a lysyl endopeptidase digest of gp 18 were isolated by reversed-phase high-performance liquid chromatography. All the peptides were identified along the nucleotide sequence of gene 18 based on the amino acid compositions. These peptides cover 88% of the total primary structure. Furthermore, the amino acid sequences of 9 of the 40 peptides were determined by a gas-phase protein sequencer; one of them turned to be the N-terminal one. The C-terminal peptide in the tryptic digest was isolated from the unadsorbed fraction of affinity chromatography on immobilized anhydrotrypsin and the amino acid sequence was also determined. Thus, the complete primary structure of gp 18 was determined; it has 658 amino acid residues and a molecular weight of 71,160.This article was presented during the proceedings of the International Conference on Macromolecular Structure and Function, held at the National Defence Medical College, Tokorozawa, Japan, December 1985.  相似文献   

15.
Amino acid sequences were determined for the six peptides from cyanogen bromide hydrolysis of cytoplasmic aspartate aminotransferase. These peptides accounted for 177 amino acid residues of the enzyme. Partial sequence of N-terminal peptide accounting for 212 amino acid residues of enzyme was also determined.  相似文献   

16.
Enterobacter sp. G-1 is a bacterium isolated previously as a chitinase-producing bacterium. We found this bacterium also produced N-acetylglucosaminidase and characterized that in this study. Extracellular N-acetylglucosaminidase of 92.0 kDa was purified near homogeneity by 8.57-fold from Enterobacter sp. G-1. The optimum temperature and the optimum pH of the purified N-acetylglucosaminidase was 45 degrees C and 6.0, respectively. The N-terminal amino acid sequence of 23 residues of N-acetylglucosaminidase was identified. Based on the N-terminal sequence, we amplified pieces of the DNA fragments by PCR. Using these PCR products as probes, we screened the genomic library and successfully isolated the entire N-acetylglucosaminidase gene (designated nag1) from Enterobacter sp. G-1. The nucleotide sequence of the nag1 gene was found to consist of 2,655 bp encoding a protein of 885 amino acid residues. Comparison of the deduced amino acid sequence from the nag1 gene found 97.3% identity with chitobiase from Serratia marcescens, 54.4% identity with N,N'-diacetylchitobiase from Vibrio harveyi, and 42.7% identity with N-acetylglucosaminidase (ExoI) from Vibrio furnissii. Enzymatic activity assay of N-acetylglucosaminidase indicated stronger activity toward PNP-GlcNAc than PNP-(GlcNAc)2 or PNP-(GlcNAc)3.  相似文献   

17.
The gene encoding NADP(+)-dependent L: -1-amino-2-propanol dehydrogenase (AADH) of Rhodococcus erythropolis MAK154 was cloned and sequenced. A 780-bp nucleotide fragment was confirmed to be the gene encoding AADH by agreement of the N-terminal and internal amino acid sequences of the purified AADH. The gene (aadh) codes a total of 259 amino acid residues, and the deduced amino acid sequence shows similarity to several short-chain dehydrogenase/reductase family proteins. An expression vector, pKKAADH, which contains the full length aadh was constructed. Escherichia coli cells possessing pKKAADH exhibited a 10.4-fold increase in specific activity as to catalysis of the reduction of (S)-1-phenyl-2-methylaminopropan-1-one (MAK), as compared with that of R. erythropolis MAK154 induced by 1-amino-2-propanol (1 mg/ml). Coexpression of aadh with a cofactor regeneration enzyme (glucose dehydrogenase) gene was also performed, and a system for sufficient production of d-pseudoephedrine from racemic MAK was constructed.  相似文献   

18.
The gene encoding the fructosyl-amine oxidase (FAOD) from the marine yeast Pichia sp. N1-1 was cloned and expressed in Escherichia coli. Partial amino acid sequence analysis of the Pichia sp. N1-1 FAOD allowed the design of oligonucleotide primers for the amplification of the gene by inverse polymerase chain reaction. The FAOD gene was found to be devoid of introns and to encode a 48-kDa protein composed of 429 amino acid residues. The FAD-binding consensus sequence GXGXXG and the FAD covalent attachment-site cysteine residue have been identified within the predicted amino acid sequence. Comparisons with the amino acid sequences of other eukaryotic FAODs showed only 30% to 40% identities, establishing that the isolated Pichia N1-1 gene encodes a unique FAOD. Recombinant FAOD expression levels in E. coli reached 0.48 U/mg of soluble protein, which is considerably greater than native expression levels by inducing Pichia sp. N1-1 with fructosyl-valine (f-Val). The kinetic properties of the recombinant enzyme were almost indistinguishable from those of the native enzyme. We previously reported on the construction of a number of effective Pichia sp. N1-1 FAOD-based biosensors for measuring f-Val, a model compound for glycated hemoglobin. The further development of these biosensor systems can now greatly benefit from protein engineering and recombinant expression of the FAOD from Pichia N1-1.Note: The previous online version (January 20, 2005) of this article appeared with the legends of Figures 1 and 2 transposed. This version contains the figures with their appropriate legends.  相似文献   

19.
The gene encoding the fructosyl-amino acid oxidase (fructosyl-alpha-L-amino acid: oxygen oxidoreductase (defructosylating); EC 1.5.3) of Corynebacterium sp. 2-4-1 was cloned and expressed in Escherichia coli. The gene consists of 1,116 nucleotides and encodes a protein of 372 amino acids with a predicted molecular mass of 39,042. The open reading frame was confirmed as the gene of the fructosyl-amino acid oxidase by comparison with the N-terminal amino acid sequence of the purified fructosyl-amino acid oxidase from Corynebacterium sp. 2-4-1. The sequence of the AMP-binding motif, GXGXXG, was found in the deduced N-terminal region. The amino acid sequence of the fructosyl-amino acid oxidase showed no similarity to that of fungal fructosyl-amino acid oxidases. In addition, substrate specificities of this fructosyl-amino acid oxidase were different from those of other fructosyl-amino acid oxidases. The fructosyl-amino acid oxidase of Corynebacterium sp. 2-4-1 is an enzyme that has unique substrate specificity and primary structure in comparison with fungal fructosyl-amino acid oxidases.  相似文献   

20.
Aspartate aminotransferase (EC 2.6.1.1) was purified to homogeneity from cell extracts of a newly isolated thermophilic bacterium, Bacillus sp. strain YM-2. The enzyme consisted of two subunits identical in molecular weight (Mr, 42,000) and showed microheterogeneity, giving two bands with pIs of 4.1 and 4.5 upon isoelectric focusing. The enzyme contained 1 mol of pyridoxal 5'-phosphate per mol of subunit and exhibited maxima at about 360 and 415 nm in absorption and circular dichroism spectra. The intensities of the two bands were dependent on the buffer pH; at neutral or slightly alkaline pH, where the enzyme showed its maximum activity, the absorption peak at 360 nm was prominent. The enzyme was specific for L-aspartate and L-cysteine sulfinate as amino donors and alpha-ketoglutarate as an amino acceptor; the KmS were determined to be 3.0 mM for L-aspartate and 2.6 mM for alpha-ketoglutarate. The enzyme was most active at 70 degrees C and had a higher thermostability than the enzyme from Escherichia coli. The N-terminal amino acid sequence (24 residues) did not show any similarity with the sequences of mammalian and E. coli enzymes, but several residues were identical with those of the thermoacidophilic archaebacterial enzyme recently reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号