首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In this review, we discuss the expression, regulation, downstream mechanisms, and function of stress-induced stress enzymes in mammalian oocytes, peri-implantation embryos, and the stem cells derived from those embryos. Recent reports suggest that stress enzymes mediate developmental functions during early mammalian development, in addition to the homeostatic functions shared with somatic cells. Stress-induced enzymes appear to insure that necessary developmental events occur: many of these events may occur at a slower rate, although some may occur more rapidly. Developmental events induced by stress may be mediated by a single dominant enzyme, but there are examples of responses that require the integration of more than one stress enzyme. The discussion focuses on the consequences of stress as a function of duration and magnitude, and this includes an emerging understanding of the threshold levels of duration and magnitude that lead to pathology. Other topics discussed are the reversibility of the developmental as well as homeostatic consequences of stress, the further problems with readaptation after stress subsides, and the mechanisms and functions of stress enzymes during early mammalian development. The analyses are done with specific concern for their practical impact in assisted reproductive technology (ART) and stem cell technologies.  相似文献   

2.
Wu G  Song Y  Zheng X  Jiang Z 《Tissue & cell》2011,43(4):246-253
We aimed to investigate the application of adipose-derived stromal cells in the treatment of stress urinary incontinence (SUI). Animal models of stress urinary incontinence were established with Sprague-Dawley female rats by complete cutting of the pudendal nerve. Rat adipose-derived stromal cells were isolated, cultured and successfully transplanted into animal models. Effects of stem cell transplantation were evaluated through urodynamic testing and morphologic changes of the urethra and surrounding tissues before and after transplantation. Main urodynamic outcome measures were measured. Intra-bladder pressure and leak point pressure were measured during filling phase. Morphologic examinations were performed. Transplantation of adipose-derived stem cells significantly strengthened local urethral muscle layers and significantly improved the morphology and function of sphincters. Urodynamic testing showed significant improvements in maximum bladder capacity, abdominal leak point pressure, maximum urethral closure pressure, and functional urethral length. Morphologic changes and significant improvement in urination control were consistent over time. It was concluded that periurethral injection of adipose-derived stromal cells improves function of the striated urethral sphincter, resulting in therapeutic effects on SUI. Reconstruction of the pelvic floor through transplantation of adipose-derived cells is a minimally invasive and effective treatment for SUI.  相似文献   

3.
Oxidative stress, a hallmark of ageing, inhibits the osteogenic differentiation of bone marrow‐derived mesenchymal stem cells in long bone. The dysfunction of the cellular antioxidant defence system is a critical cause of oxidative stress, but the mechanism of the decline of antioxidant defence in senescent stem cells remains elusive. Here, we found that EZH2, an epigenetic regulator of histone methylation, acted as a suppressor of the antioxidative defence system in BMSCs from the femur. The increased EZH2 led to a decrease in the levels of antioxidant enzymes and exaggerated oxidative damage in aged BMSCs, resulting in the defect of bone formation and regeneration. Mechanistically, EZH2 enhanced the modification of H3K27me3 on the promoter of Foxo1 and suppressed its function to activate the downstream genes in antioxidant defence. Moreover, epigenetic therapy targeting EZH2‐mediated H3K27me3 modification largely recovered the antioxidant defence in BMSCs and attenuate oxidative damage, leading to the recovery of the osteogenesis in old BMSCs. Taken together, our findings revealed novel crosstalk between histone epigenetic modification and oxidative stress during stem cell ageing, suggesting a possibility of epigenetic therapy in the recovery of BMSCs senescence and treatment of age‐related bone disease.  相似文献   

4.
Sirtuin3 (SIRT3) is an important member of the sirtuin family of protein deacetylases that is localized to mitochondria and linked to lifespan extension in organisms ranging from yeast to humans. As aged cells have less regenerative capacity and are more susceptible to oxidative stress, we investigated the effect of ageing on SIRT3 levels and its correlation with antioxidant enzyme activities. Here, we show that severe oxidative stress reduces SIRT3 levels in young human mesenchymal stromal/stem cells (hMSCs). Overexpression of SIRT3 improved hMSCs resistance to the detrimental effects of oxidative stress. By activating manganese superoxide dismutase (MnSOD) and catalase (CAT), SIRT3 protects hMSCs from apoptosis under stress. SIRT3 expression, levels of MnSOD and CAT, as well as cell survival showed little difference in old versus young hMSCs under normal growth conditions, whereas older cells had a significantly reduced capacity to withstand oxidative stress compared to their younger counterparts. Expression of the short 28 kD SIRT3 isoform was higher, while the long 44 kD isoform expression was lower in young myocardial tissues compared with older ones. These results suggest that the active short isoform of SIRT3 protects hMSCs from oxidative injury by increasing the expression and activity of antioxidant enzymes. The expression of this short isoform decreases in cardiac tissue during ageing, leading to a reduced capacity for the heart to withstand oxidative stress.  相似文献   

5.
6.
Dicot leaf growth is characterized by partly transient tip-to-base gradients of growth processes, structure and function. These gradients develop dynamically and interact with dynamically developing stress conditions like drought. In Ricinus communis plants growing under well-watered and drought conditions growth rates peaked during the late night and minimal values occurred in the late afternoon. During this diurnal course the leaf base always showed much higher rates than the leaf tip. The amplitude of this diurnal course decreased when leaves approached maturity and during drought stress without any significant alteration of the diurnal pattern and it increased during the first days after rewatering. Unique relationships between leaf size and cytological structure were observed. This provided the framework for the analysis of changes in assimilation, transpiration and dark respiration, chlorophyll, protein, carbohydrate, and amino acid concentrations, and of activities of sink-source-related enzymes at the leaf tip and base during leaf development in well-watered and drought-stressed plants. Gas exchange was dominated by physiological rather than by anatomical properties (stomatal density). Tip-to-base gradients in carbohydrate concentrations per dry weight and sink-source-related enzymes were absent, whereas significant gradients were found in amino acid concentrations per dry weight. During drought stress, growing leaves developed source function at smaller leaf size, before specific physiological adaptations to drought occurred. The relevance of the developmental status of individual leaves for the drought-stress response and of the structural changes for the biochemical composition changes is discussed.  相似文献   

7.
In songbirds, developmental stress affects song learning and production. Altered hypothalamic–pituitary–adrenal (HPA) axis function resulting in elevated corticosterone (CORT) may contribute to this effect. We examined whether developmental conditions affected the association between adult song and HPA axis function, and whether nutritional stress before and after nutritional independence has distinct effects on song learning and/or vocal performance. Zebra finches (Taeniopygia guttata) were raised in consistently high (HH) or low (LL) food conditions until post-hatch day (PHD) 62, or were switched from high to low conditions (HL) or vice versa (LH) at PHD 34. Song was recorded in adulthood. We assessed the response of CORT to handling during development and to dexamethasone (DEX) and adrenocorticotropic hormone (ACTH) challenges during adulthood. Song learning and vocal performance were not affected by nutritional stress at either developmental stage. Nutritional stress elevated baseline CORT during development. Nutritional stress also increased rate of CORT secretion in birds that experienced stress only in the juvenile phase (HL group). Birds in the LL group had lower CORT levels after injection of ACTH compared to the other groups, however there was no effect of nutritional stress on the response to DEX. Thus, our findings indicate that developmental stress can affect HPA function without concurrently affecting song.  相似文献   

8.
Enolase enzymes are abundantly expressed, cytosolic carbon-oxygen lyases known for their role in glucose metabolism. Recently, enolase has been shown to possess a variety of different regulatory functions, beyond glycolysis and gluconeogenesis, associated with hypoxia, ischemia, and Alzheimer's disease (AD). AD is an age-associated neurodegenerative disorder characterized pathologically by elevated oxidative stress and subsequent damage to proteins, lipids, and nucleic acids, appearance of neurofibrillary tangles and senile plaques, and loss of synapse and neuronal cells. It is unclear if development of a hypometabolic environment is a consequence of or contributes to AD pathology, as there is not only a significant decline in brain glucose levels in AD, but also there is an increase in proteomics identified oxidatively modified glycolytic enzymes that are rendered inactive, including enolase. Previously, our laboratory identified α-enolase as one the most frequently up-regulated and oxidatively modified proteins in amnestic mild cognitive impairment (MCI), early-onset AD, and AD. However, the glycolytic conversion of 2-phosphoglycerate to phosphoenolpyruvate catalyzed by enolase does not directly produce ATP or NADH; therefore it is surprising that, among all glycolytic enzymes, α-enolase was one of only two glycolytic enzymes consistently up-regulated from MCI to AD. These findings suggest enolase is involved with more than glucose metabolism in AD brain, but may possess other functions, normally necessary to preserve brain function. This review examines potential altered function(s) of brain enolase in MCI, early-onset AD, and AD, alterations that may contribute to the biochemical, pathological, clinical characteristics, and progression of this dementing disorder.  相似文献   

9.
10.
11.
Cold stress is a significant threat for plant productivity and impacts on plant distribution and crop production, particularly so when it occurs during the growth phase. A developmental stage at risk is that of flowering, since a single stress event during sensitive stages, such as the full‐bloom stage of fruit trees can be fatal for reproductive success. Although pollen development and fertilization are widely viewed as the most critical reproductive phases, the development and function of female reproductive tissues, which in Angiosperms are embedded in the gynoecium, are also affected by cold stress. Today however, we have essentially no understanding of the cold stress response pathways that act during floral organogenesis. In this review, we briefly summarize our current knowledge of cold stress signalling modules active in vegetative tissues that may provide a framework of general principles also transferable to female reproductive tissues. We then align these signalling cascades with those that govern gynoecium development to identify factors that may act in both processes and could thereby contribute to cold stress responses in female reproductive tissues.  相似文献   

12.
蛋白质组学是后基因组时代研究的热点领域之一,自从蛋白质组这个概念被提出以来,其研究一直受到广泛关注,其研究技术也有了极大地进步。植物时刻都面临各种非生物胁迫,包括干旱、冷、盐、金属等,在长期进化过程中,植物形成独特的机制来响应逆境,然而目前对于植物如何适应逆境的分子机制尚未完全阐明。因此蛋白质组学作为一种强有力的研究技术手段,将为研究植物响应胁迫的分子机制提供理论支撑。介绍了蛋白质组学的产生背景、研究技术手段及植物在各种胁迫条件下的蛋白质组学研究、植物亚细胞器的蛋白质组学研究状况,同时对植物蛋白质组学的发展前景进行了展望。  相似文献   

13.
14.
There is increasing evidence that exposure to stress during development can have sustained effects on animal phenotype and performance across life-history stages. For example, developmental stress has been shown to decrease the quality of sexually selected traits (e.g. bird song), and therefore is thought to decrease reproductive success. However, animals exposed to developmental stress may compensate for poor quality sexually selected traits by pursuing alternative reproductive tactics. Here, we examine the effects of developmental stress on adult male reproductive investment and success in the zebra finch (Taeniopygia guttata). We tested the hypothesis that males exposed to developmental stress sire fewer offspring through extra-pair copulations (EPCs), but invest more in parental care. To test this hypothesis, we fed nestlings corticosterone (CORT; the dominant avian stress hormone) during the nestling period and measured their adult reproductive success using common garden breeding experiments. We found that nestlings reared by CORT-fed fathers received more parental care compared with nestlings reared by control fathers. Consequently, males fed CORT during development reared nestlings in better condition compared with control males. Contrary to the prediction that developmental stress decreases male reproductive success, we found that CORT-fed males also sired more offspring and were less likely to rear non-genetic offspring compared with control males, and thus had greater overall reproductive success. These data are the first to demonstrate that developmental stress can have a positive effect on fitness via changes in reproductive success and provide support for an adaptive role of developmental stress in shaping animal phenotype.  相似文献   

15.
Heat stress can inhibit follicular development in dairy cows, and thus can affect their reproductive performance. Follicular granulosa cells can synthesize estrogen, that affects the development and differentiation of follicles by apoptosis. Heme oxygenase 1 (HO-1/heat shock protein 32) plays an antiapoptotic and cytoprotective role in various cells during stress-induced apoptosis, but little is known about its definitive function in bovine (ovarian) granulosa cells (bGCs). In our study, the roles and mechanism of HO-1 on the heat stress-induced apoptosis of bGCs were studied. Our results show that the expression of HO-1 was significantly increased under heat stress. Moreover, HO-1 silencing increased apoptosis, whereas its overexpression dampened apoptosis by regulating the expression of Bax/Bcl-2 and the levels of cleaved caspase-3. In addition, HO-1 can also play a cytoprotective role by affecting estrogen levels and decomposing heme to produce biologically active metabolite carbon monoxide (CO). Meanwhile, CO significantly increased the level of HO-1, decreased Bax/Bcl-2 levels, and inhibited the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. The apoptosis of ovarian GCs can affect the secretion of estrogen and lead to disorder of the ovarian microenvironment, thus affecting the normal function of the ovary. Our results indicate that HO-1 acts as a cytoprotective enzyme and plays a protective role in heat-induced apoptosis of bGCs. In conclusion, HO-1 and its metabolite CO inhibit the apoptosis of bGCs induced by heat stress through the ERK1/2 pathway. The results of this study provide a valuable clue for improving the fertility of heat stressed cows in summer.  相似文献   

16.
Cytokinin oxidase/dehydrogenase (EC 1.5.99.12) specific activity was determined in leaves and roots of two P. sativum cultivars (cv. Scinado and cv. Manuela) during vegetative development and the effect of UV-B irradiation or elevated temperature was assessed. The measurement of CKX activity during development showed localisation of this enzyme to roots. The reduction in CKX activity in leaves after UV-B irradiation and the increased levels of the enzyme in high temperature-treated plants suggests that the enzymes from the CKX gene family have a different expression during stress responses provoked by different factors and probably are tissue specific. Differences regarding cytokinin oxidase/dehydrogenase activity stress response were observed between the two pea cultivars.  相似文献   

17.
植物细胞活性氧种类、代谢及其信号转导   总被引:6,自引:0,他引:6  
越来越明显的证据表明,植物体十分活跃的产生着活性氧并将之作为信号分子、进而控制着诸如细胞程序性死亡、非生物胁迫响应、病原体防御和系统信号等生命过程,而不仅是传统意义上的活性氧是有氧代谢的附产物。日益增多的证据显示,由脱落酸、水杨酸、茉莉酸与乙烯以及活性氧所调节的激素信号途径,在生物和非生物胁迫信号的“交谈”中起重要作用。活性氧最初被认为是动物吞噬细胞在宿主防御反应时所释放的附产物,现在的研究清楚的表明,活性氧在动物和植物细胞信号途径中均起作用。活性氧可以诱导细胞程序性死亡或坏死、可以诱导或抑制许多基因的表达,也可以激活上述级联信号。近来生物化学与遗传学研究证实过氧化氢是介导植物生物胁迫与非生物胁迫的信号分子,过氧化氢的合成与作用似乎与一氧化氮有关系。过氧化氢所调节的下游信号包括钙“动员”、蛋白磷酸化和基因表达等。  相似文献   

18.
Stress-induced regulatory networks coordinated with a procaryotic developmental program were revealed by two-dimensional gel analyses of global gene expression. Four developmental stages were identified by their distinctive protein synthesis patterns using principal component analysis. Statistical analyses focused on five stress stimulons (induced by heat, cold, salt, ethanol, or antibiotic shock) and their synthesis during development. Unlike other bacteria, for which various stresses induce expression of similar sets of protein spots, in Streptomyces coelicolor heat, salt, and ethanol stimulons were composed of independent sets of proteins. This suggested independent control by different physiological stress signals and their corresponding regulatory systems. These stress proteins were also under developmental control. Cluster analysis of stress protein synthesis profiles identified 10 different developmental patterns or "synexpression groups." Proteins induced by cold, heat, or salt shock were enriched in three developmental synexpression groups. In addition, certain proteins belonging to the heat and salt shock stimulons were coregulated during development. Thus, stress regulatory systems controlling these stimulons were implicated as integral parts of the developmental program. This correlation suggested that thermal shock and salt shock stress response regulatory systems either allow the cell to adapt to stresses associated with development or directly control the developmental program.  相似文献   

19.
Climate change represents a significant environmental challenge to human welfare. One of many negative impacts may be on animal reproduction. Elevated ambient temperature unfavourably influences reproductive processes in mammals. High temperature can affect reproductive processes such as follicle development and may alter follicular fluid concentrations of amino acids, fatty acids, minerals, enzymes, antioxidants defence and growth factors. These impacts may lead to inferior oocyte competence and abnormal granulosa cell (GCs) function. Mammalian oocytes are enclosed by GCs that secret hormones and signalling molecules to promote oocyte competence. GCs are essential for proper follicular development, oocyte maturation, ovulation, and luteinization. Many environmental stressors, including thermal stress, affect GC function and alter oocyte development and growth. Several studies documented a link between elevated ambient temperature and increased generation of cellular reactive oxygen species (ROS). ROS can damage DNA, reduce cell proliferation, and induce apoptosis in GCs, thus altering oocyte development. Additionally, thermal stress induces upregulation of thermal shock proteins, such as HSP70 and HSP90. This review provides an update on the influence of thermal stress on GCs of mammals. Discussions include impacts to steroidogenesis (estradiol and progesterone), proliferation and cell cycle transition, apoptosis, oxidative stress (ROS), antioxidants related genes, heat shock proteins (HSPs) and endoplasmic reticulum responses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号