首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of root temperature on growth and yield of rockwool-grown tomato plants infected with Phytophthora cryptogea was investigated. Measurements of shoot and root growth were taken at high (25oC) and low (15oC) root temperatures during the generative phase of growth. The growth of roots of healthy and P. cryptogea-infected tomato plants in rockwool blocks was higher in plants grown with roots at 25oC than at 15oC after 60 days and a similar effect was found in slabs after 98 days. Under sub-optimal conditions for growth the disease became severe when root temperatures were low. Growth of roots was greatest when roots were maintained at a high temperature in combination with an ambient air temperature of c. 15oC and the response was greater in cv. Counter than cvs Calypso and Marathon. Water-soluble carbohydrates of roots were higher in those produced in blocks than slabs and were reduced by infection compared to healthy plants with roots at 15oC and 25oC. Reduced transpiration rates were found 17 days after inoculation in symptomless plants grown at a root temperature of 25oC. Infection, regardless of the temperature of the roots or cultivar, led to reduced stem growth. The plants grown at 25oC were taller than those with a root temperature of 15oC. After 9 wk of harvest, the cumulative fruit yields in infected cvs Counter and Calypso grown at 25oC were comparable to that in healthy plants grown at either temperature and cumulative fruit numbers followed a similar pattern. High root temperatures led to delayed fruit ripening between weeks 3–10 and a larger number of unripe fruit. The weight of unripe fruit from infected plants grown at 25oC at the terminal harvest was higher than from healthy plants with roots maintained at 15oC.  相似文献   

2.
Bacterial wilt, caused by Ralstonia solanacearum , is responsible for severe losses in tomato crops in the world. In the present study, the effect of temperature, cultivars of tomato, injury of root system and inoculums load of R. solanacearum to cause bacterial wilt disease under control conditions was undertaken. Three strains UTT-25, HPT-3 and JHT-5 of R. solanacearum were grown at 5–40?°C in vitro to study, the effect of temperature on the growth of bacteria and maximum growth was found at 30?°C after 72?h in all the strains. Twenty-one days old seedlings of two cultivars of tomato i.e. N-5 (moderately resistant) and Pusa Ruby (highly susceptible) were transplanted into the pots and inoculated with R. solanacearum strain UTT-25 (5 × 108?cfu/ml), mechanically injured and uninjured roots of the plant. The plants were allowed to grow at 20, 25, 30 and 35?°C at National Phytotron Facility, IARI, New Delhi to study the effect of temperature on intensity of bacterial wilt disease. Maximum wilt disease intensity was found 98.73 and 95.9 % in injured roots of Pusa Ruby and N-5 cultivars of tomato at 35?°C on 11th days of inoculation, respectively. However, no wilt disease was observed in both the cultivars at 20?°C up to 60?days. For detection of R. solanacearum from asymptomatic tomato plants, hrpB-based sequence primers (Hrp_rs2F and Hrp_rs2R) amplified at 323?bp was used in bio-PCR to detect R. solanacearum from crown, mid part of stem and upper parts of the plant. Another experiment was conducted to find out the inoculum potential of R. solanacearum strain UTT-25 to cause bacterial wilt in susceptible cultivar Pusa Ruby. The bacteria were inoculated at concentration of bacterial suspension 10 to 1010?cfu/ml in injured and uninjured roots of the plants separately and injured root accelerated wilt incidence and able to cause wilt disease 63.3% by 100?cfu/ml of R. solanacearum, while no disease appeared at 10?cfu/ml on the 11th day of inoculation in injured and uninjured roots of the plant.  相似文献   

3.
Lolium perenne L. cv. 23 (perennial ryegrass) plants were grown in flowing solution culture and acclimatized over 49 d to low root temperature (5°C) prior to treatment at root temperatures of 3, 5, 7 and 9°C for 41 d with common air temperature of 20/15°C day/night and solution pH 5·0. The effects of root temperature on growth, uptake and assimilation of N were compared with N supplied as either NH4 or NO3 at 10 mmol m?3. At any given temperature, the relative growth rate (RGR) of roots exceeded that of shoots, thus the root fraction (Rf) increased with time. These effects were found in plants grown with the two N sources. Plants grown at 3 and 5°C had very high dry matter contents as reflected by the fresh weight: freeze-dried weight ratio. This ratio increased sharply, especially in roots at 7 and 9°C. Expressed on a fresh weight basis, there was no major effect of root temperature on the [N] of plants receiving NHJ but at any given temperature, the [N] in plants grown with NHJ was significantly greater than in those grown with NO3. The specific absorption rate (SAR) of NH+4 was greater at all temperatures than SAR-NO3. In plants grown with NH+, 3–5% of the total N was recovered as NH+4, whereas in those grown with NO?3 the unassimilated NO?3 rose sharply between 7 and 9°C to become 14 and 28% of the total N in shoots and roots, respectively. The greater assimilation of NH+4 lead to concentrations of insoluble reduced N (= protein) which were 125 and 20% greater, in roots and shoots, respectively, than in NO?3-grown plants. Plants grown with NH+4 had very much greater glutamine and asparagine concentrations in both roots and shoots, although other amino acids were more similar in Concentration to those in NO?3 grown plants. It is concluded that slow growth at low root temperature is not caused by restriction of the absorption or assimilation of either NH+4 or NO?3. The additional residual N (protein) in NH+4 grown plants may serve as a labile store of N which could support growth when external N supply becomes deficient.  相似文献   

4.
M. Zeroni  J. Gale 《Plant and Soil》1987,104(1):93-98
Rose plants (Rosa hybrida ‘Sonia’=‘Sweet Promise’) were grown in heated (minimum night temperature 17°C), and unheated greenhouses with or without root heating to 21°C. These trials covered 6 growth cycles extending over two winter seasons. In the heated greenhouse, root heating did not increase yield, flower quality or plant development. In the unheated greenhouse, root-heated plants grew as well as those in the air-heated greenhouse as long as the air temperature did not fall below 6°C. When minimum night temperatures fell below 6°C, growth, yield and quality were reduced, irrespective of root temperature. Daytime plant water relations were studied in plants growing at 6 different root temperatures in the unheated greenhouse. Leaf resistance to water diffusion was lowest at optimal root temperature. Total leaf water potential was not significantly affected by root temperature.  相似文献   

5.
Abstract Lolium perenne L. cv. S23 was grown in flowing culture solution, pH 5, in which the concentrations of NH4+, NO3? and K+ were frequently monitored and adjusted to set values. In a pre-experimental period, plants were acclimatized to a regime in which roots were treated at 5°C with shoots at 25°C. The root temperature was then changed to one of the following, 3, 7, 9, 11, 13, 17 or 25°C, while air temperature remained at 25°C. When root temperature was increased from 5X, the relative growth rate of roots increased immediately while that of shoots changed much less for a period of approximately 9 d (phase 1). Thus, the root: shoot ratio increased, but eventually approached a new, temperature-dependent, steady value (phase 2). The fresh: freeze-dried weight ratio (i.e. water content) in shoots (and roots) increased during the first phase of morphological adjustment (phase 1). In both growth phases and at all temperatures, plants absorbed more NH4+ than NO4+, the tendency being extreme at temperatures below 9° where more than 85% of the N absorbed was NH4+. Plants at different root temperatures, growing at markedly different rates, had very similar concentrations of total N in their tissues (cells) on a fresh weight basis, despite the fact that they derived their N with differing preference for NH4+. Specific absorption rates for NH4+, NOx?, K+ and H2PO4? showed very marked dependence on root temperature in phase 1, but ceased to show this dependence once a steady state root: shoot ratio had been established in phase 2. The results indicate the importance of relative root size in determining ion fluxes at the root surface. At higher temperatures where the root system was relatively large, ‘demand’ per unit root was low, whereas at low temperatures roots were small relative to shoots and ‘demand’ was high enough to offset the inhibitory effects of low temperature on transport processes.  相似文献   

6.
Summary Effects of root temperature on the growth and morphology of roots were measured in oilseed rape (Brassica napus L.) and barley (Hordeum vulgare L.). Plants were grown in flowing solution culture and acclimatized over several weeks to a root temperature of 5°C prior to treatment at a range of root temperatures between 3 and 25°C, with common shoot temperature. Root temperature affected root extension, mean radius, root surface area, numbers and lengths of root hairs. Total root length of rape plants increased with temperature over the range 3–9°C, but was constant at higher temperatures. Root length of barley increased with temperature in the range 3–25°C, by a factor of 27 after 20 days. Root radii had a lognormal distribution and their means decreased with increasing temperature from 0.14 mm at 3°C to 0.08 mm at 25°C. The density of root hairs on the root surface increased by a factor of 4 in rape between 3 and 25°C, but in barley the highest density was at 9°C. The contribution of root hairs to total root surface area was relatively greater in rape than in barley. The changes in root system morphology may be interpreted as adaptive responses to temperature stress on nutrient uptake, providing greater surface area for absorption per unit root weight or length.  相似文献   

7.
Some plants have the ability to maintain similar respiratory rates (measured at the growth temperature), even when grown at different temperatures, a phenomenon referred to as respiratory homeostasis. The underlying mechanisms and ecological importance of this respiratory homeostasis are not understood. In order to understand this, root respiration and plant growth were investigated in two wheat cultivars (Triticum aestivum L. cv. Stiletto and cv. Patterson) with a high degree of homeostasis, and in one wheat cultivar (T. aestivum L. cv. Brookton) and one rice cultivar (Oryza sativa L. cv. Amaroo) with a low degree of homeostasis. The degree of homeostasis (H) is defined as a quantitative value, which occurs between 0 (no acclimation) and 1 (full acclimation). These plants were grown hydroponically at constant 15 or 25 °C. A good correlation was observed between the rate of root respiration and the relative growth rates (RGR) of whole plant, shoot or root. The plants with high H showed a tendency to maintain their RGR, irrespective of growth temperature, whereas the plants with low H grown at 15 °C showed lower RGR than those grown at 25 °C. Among several parameters of growth analysis, variation in net assimilation rate per shoot mass (NARm) appeared to be responsible for the variation in RGR and rates of root respiration in the four cultivars. The plants with high H maintained their NARm at low growth temperature, but the plants with low H grown at 15 °C showed lower NARm than those grown at 25 °C. It is concluded that respiratory homeostasis in roots would help to maintain growth rate at low temperature due to a smaller decrease in net carbon gain at low temperature. Alternatively, growth rate per se may control the demand of respiratory ATP, root respiration rates and sink demands of photosynthesis. The contribution of nitrogen uptake to total respiratory costs was also estimated, and the effects of a nitrogen leak out of the roots and the efficiency of respiration on those costs are discussed.  相似文献   

8.
Factorial effects of photoperiod (6, 12 and 18 h) and root-zone temperatures (9, 15 and 21°C) on the growth and mineral nutrient concentration and partitioning in maize (Zea mays L.) were investigated. Strong interactions were observed between photoperiod and root-zone temperature on the growth and concentration of numerous mineral elements in the plant tops and roots. For example, a threefold increase in photoperiod (from 6 to 18 h) did not affect the growth of tops or roots if the root-zone temperature was 9°C but increased them each by eightfold if the root-zone temperature was 21°C. On the other hand, raising the root-zone temperature from 9 to 21°C increased the growth of tops and root each by ca. threefold when plants were grown with 6 h of light. At 18 h photoperiod, however, plant growth was increased 20- to 30-fold by the same rise in the root-zone temperature. The concentrations of different mineral elements in the roots and tops were affected quite differently by the interacting effects of photoperiod and root-zone temperature. In general, increasing the photoperiod at a given root-zone temperature decreased the concentrations of elements while increasing the root-zone temperature at a given photoperiod increased the concentrations of most elements in both roots and tops. The exceptions were K and B which reacted opposite to each other: K concentration in both tops and roots was relatively insensitive to photoperiod but very sensitive to root-zone temperature and the reverse was true for boron. The relative insensitivity of plant growth to increased day length as long as the roots are subjected to suboptimal (low) soil temperatures may have survival significance and point to the predominant role of root temperature over that of day length in the early growth of maize. A possible mechanism by which photoperiod and root-zone temperature might interactively alter the nutrient uptake by the roots is discussed.  相似文献   

9.
The effects of low temperature on the synthesis and stability of the 32 kDa D1 protein of photosystem II were investigated in chloroplasts isolated from maize (Zea mays cv. LG11) leaves. The synthesis of D1 by intact chloroplasts in vitro was strongly dependent on temperature; the Q10 for the initial rate of incorporation of [35S]-methionine into D1 was ca. 2.6 over the range 13–25°C. The synthesis of other thylakoid polypeptides exhibited a similar temperature dependence, whilst synthesis of stromal proteins was considerably less temperature-dependent, with the exception of two polypeptides of ca. 56 and 59.5 kDa. The stability of newly-synthesized D1 in the thylakoid membranes was dependent both on the temperature at which the plants were grown and on the temperature during the pulse-labelling period when the protein was synthesized. In chloroplasts isolated from maize leaves grown at 25°C, D1 that was synthesized and assembled at 25 °C in vitro was rapidly degraded during the chase period. At lower chase temperatures the protein was more stable. When chloroplasts from 25°C-grown leaves were pulse-labelled at 13°C, the stability of D1 was markedly enhanced at all temperatures during the chase period. This effect was even more pronounced in chloroplasts isolated from plants grown at 14°C. The implications of these results are discussed with regard to the ability of maize to recover from photoinhibitory damage at low temperatures.  相似文献   

10.
The 8 days old seedlings of pea (cv. Ilowiecki) and maize (cv. Alma F1) were subjected to differentiated aeration conditions (control — with pore water tension about 15 kPa and flooded treatment) for 12 days at three soil temperatures (7, 15 and 25 °C). The shoots were grown at 25 °C while the soil temperature was differentiated by keeping the cylinders with the soil in thermostated water bath of the appropriate temperature. Lowering the root temperature with respect to the shoot temperature caused under control (oxic) conditions a decrease of the root penetration depth, their mass and porosity as well as a decrease of shoot height, their mass and chlorophyll content; the changes being more pronounced in maize as compared to the pea plants. Flooding the soil diminished the effect of temperature on the investigated parameters; the temperature effect remaining significant only in the case of shoot biomass and root porosity of pea plants. Root porosity of pea plants ranged from 2 to 4 % and that of maize plants — from 4 to 6 % of the root volume. Flooding the soil caused an increase in the root porosity of the pea plants in the entire temperature range and in maize roots at lower temperatures by about 1 % of the root volume. Flooding the soil caused a decrease of root mass and penetration depth as well as a decrease of plant height, biomass and leaf chlorophyll content.  相似文献   

11.
Abstract Changes in the net uptake rate of K+ and in the average tissue concentration of K+ were measured over 14 d in response to changes in root temperature with oilseed rape (Brassica napus L. cv. Bien venu) and barley (Hordeum vulgare L. cv. Atem). Plants were grown in flowing nutrient solutions containing 2.5 mmol m?3 K+ and were acclimatized over 49 d (rape) or 28 d (barley) to low root temperature (5°C) prior to steady–state treatments at root temperatures between 3 °C and 25 °C, with common air temperature. Uptake of K+ was monitored continuously over 14 d and nitrogen was supplied as NH4++ NO?3 or NH+4 or NO?3. Unit absorption rates of K+ increased with time and with root temperature up to Day 4 or 5 following the change in root temperature. Thereafter they usually approached steady-state, with Q10? 2.0 between 7 °C and 17°C, although rates became similar between 7 °C and 13°C. Uptake of K+ by rape plants was invariably greater under NO?3 nutrition compared with NH+4. The percentage K+ in the plant dry matter increased with temperature from 2% at 3 °C to 4% at 25 °C in rape, but there was less effect of temperature on the average concentrations of K+ in the plant fresh weight or plant water content. Concentrations of K+ in the leaf water fraction of rape plants decreased with increasing root temperature, but in barley they increased with increasing root temperature. Concentrations of K+ in the root water fraction were relatively stable with respect to root temperature. The results are discussed in terms of compensatory changes in K+ uptake following a change in root temperature and the relationships between growth, shoot: root ratio and K+ composition of the plant.  相似文献   

12.
We investigated the extent to which leaf and root respiration (R) differ in their response to short‐ and long‐term changes in temperature in several contrasting plant species (herbs, grasses, shrubs and trees) that differ in inherent relative growth rate (RGR, increase in mass per unit starting mass and time). Two experiments were conducted using hydroponically grown plants. In the long‐term (LT) acclimation experiment, 16 species were grown at constant 18, 23 and 28 °C. In the short‐term (ST) acclimation experiment, 9 of those species were grown at 25/20 °C (day/night) and then shifted to a 15/10 °C for 7 days. Short‐term Q10 values (proportional change in R per 10 °C) and the degree of acclimation to longer‐term changes in temperature were compared. The effect of growth temperature on root and leaf soluble sugar and nitrogen concentrations was examined. Light‐saturated photosynthesis (Asat) was also measured in the LT acclimation experiment. Our results show that Q10 values and the degree of acclimation are highly variable amongst species and that roots exhibit lower Q10 values than leaves over the 15–25 °C measurement temperature range. Differences in RGR or concentrations of soluble sugars/nitrogen could not account for the inter‐specific differences in the Q10 or degree of acclimation. There were no systematic differences in the ability of roots and leaves to acclimate when plants developed under contrasting temperatures (LT acclimation). However, acclimation was greater in both leaves and roots that developed at the growth temperature (LT acclimation) than in pre‐existing leaves and roots shifted from one temperature to another (ST acclimation). The balance between leaf R and Asat was maintained in plants grown at different temperatures, regardless of their inherent relative growth rate. We conclude that there is tight coupling between the respiratory acclimation and the temperature under which leaves and roots developed and that acclimation plays an important role in determining the relationship between respiration and photosynthesis.  相似文献   

13.
To understand how root growth responds to temperature, we used kinematic analysis to quantify division and expansion parameters in the root of Arabidopsis thaliana. Plants were grown at temperatures from 15 to 30 °C, given continuously from germination. Over these temperatures, root length varies more than threefold in the wild type but by only twofold in a double mutant for phytochrome‐interacting factor 4 and 5. For kinematics, the spatial profile of velocity was obtained with new software, Stripflow. We find that 30 °C truncates the elongation zone and curtails cell production, responses that probably reflect the elicitation of a common pathway for handling severe stresses. Curiously, rates of cell division at all temperatures are closely correlated with rates of radial expansion. Between 15 to 25 °C, root growth rate, maximal elemental elongation rate, and final cell length scale positively with temperature whereas the length of the meristem scales negatively. Non‐linear temperature scaling characterizes meristem cell number, time to transit through either meristem or elongation zone, and average cell division rate. Surprisingly, the length of the elongation zone and the total rate of cell production are temperature invariant, constancies that have implications for our understanding of how the underlying cellular processes are integrated.  相似文献   

14.
Two pea (Pisum sativum L.) cultivars and a kidney bean (Phaseolus vulgaris L.) cultivars were grown in water cultures at different diurnal temperatures (15, 20, 24, 27, 30°C) or at 10°C night temperature combined with various day temperatures (20, 24, 27, 33 or 35°C) in the root medium. The inoculated plants were, more sensitive to the extreme temperatures than the plants supplied with combined nitrogen (KNO3). The middle-European pea cv. Violetta was adapted to somewhat higher root temperatures than the northern one cv. Torsdag II, the latter showing better growth at lower temperatures, when the plants were inoculated with the same Finnish Rhizobinm strain (HA1). Especially at optimum day temperatures the nitrogen fixation and consequently the dry weights of the inoculated plants were greatly increased when the night temperature was lowered. The optimum temperature for the growth of free-living Rhizobium strains (HA1 and H43) for peus was found to be 25°C and that of a strain (P103) for beans somewhat higher. Effective nitrogen fixation by nodulated legumes without a supply of combined nitrogen is achieved only when the optimum temperature range for root function is very close to the optimum for the rhizobia.  相似文献   

15.
The effect of low root temperature on the growth and K requirements of young tomato (Lycopersicon esculentum Mill. cv Sonatine) plants was investigated. When K was supplied in solution at high concentration (5 mM), lowering the temperature of the root system from 25° to 15°C reduced the relative growth rate so that after ten days plant dry weight was 60% and leaf area 44% of that of controls maintained at 25°C. Shoot: root dry weight ratio was initially increased by cooling, but declined to 84% of controls after ten days. In spite of these changes in shoot: root ratio the concentration of K in whole plants, expressed on the basis of tissue water, was stable throughout the experiment and was significantly higher than that of controls. Further, the critical concentration of K for shoots (the concentration in the shoot associated with 90% maximum growth) was also increased at root temperatures of 15° and 30°C compared with 24°C. It is suggested that the higher concentration of K at low root temperature may reflect a real increase in requirement for the element at the physiological level. Preliminary measurements of the solute potential demonstrated a less osmotically active sap in leaves of root-cooled plants, thus there may be a greater reliance on K as an osmoticum in these individuals. When supplies of K limited growth, root-cooling had no effect on any of the parameters determining the efficiency of its use; the minimum concentration to which roots could deplete the solution of K was identical for cooled and control plants and at the same stage of visible deficiency there was no significant difference in the efficiency ratio (mg DW, mg-1 K) or utilization efficiency (mg DW mM -1 K), in spite of large differences in the partitioning of dry matter.  相似文献   

16.
The shoots of cultivated tomato (Lycopersicon esculentum cv. T5) wilt if their roots are exposed to chilling temperatures of around 5 °C. Under the same treatment, a chilling‐tolerant congener (Lycopersicon hirsutum LA 1778) maintains shoot turgor. To determine the physiological basis of this differential response, the effect of chilling on both excised roots and roots of intact plants in pressure chambers were investigated. In excised roots and intact plants, root hydraulic conductance declined with temperature to nearly twice the extent expected from the temperature dependence of the viscosity of water, but the response was similar in both species. The species differed markedly, however, in stomatal behaviour: in L. hirsutum, stomatal conductance declined as root temperatures were lowered, whereas the stomata of L. esculentum remained open until the roots reached 5 °C, and the plants became flaccid and suffered damage. Grafted plants with the shoots of one genotype and roots of another indicated that the differential stomatal behaviour during root chilling has distinct shoot and root components.  相似文献   

17.
Liu A  Wang B  Hamel C 《Mycorrhiza》2004,14(2):93-101
Temperature has a strong influence on the activity of living organisms. This study, involving two indoor experiments, evaluated the effects of root zone temperature (10, 15 and 23°C) on the formation and development of arbuscular mycorrhizae (AM). In the first trial, greenhouse-grown sorghum [Sorghum bicolor (L.) Moench] was either colonized by Glomus intraradices Schenck & Smith or left non-mycorrhizal. Root length, root and shoot weight and root colonization were measured after 5, 10 and 15 weeks of plant growth. Although suboptimal root zone temperatures reduced growth in both mycorrhizal and non-mycorrhizal plants, mycorrhizal plants were larger than non-mycorrhizal plants after 15 weeks at 15 and 23°C. At suboptimal root zone temperatures, mycorrhizal inoculation sometimes slightly reduced root development. AM colonization was more affected than root growth at suboptimal root zone temperatures. Colonization was markedly reduced at 15°C compared with 23°C, and almost completely inhibited at 10°C. The second experiment was conducted in vitro using transformed carrot (Daucus carota L.) roots supporting G. intraradices. Mycelium length and spore number were measured weekly for 15 weeks. Spore metabolic activity (iodonitrotetrazolium reduction), root length and percentage root colonization were measured after 15 weeks. G. intraradices sporulation was reduced at temperatures below 23°C, while spore metabolic activity was significantly reduced only at 10°C. Root length and in particular percentage colonization were decreased at suboptimal temperatures. A negative interaction between AM hyphal growth and root growth resulting in reduced probability of contact at suboptimal root zone temperatures is proposed to explain the greater reduction observed in root colonization than in root and hyphal growth.  相似文献   

18.
The potential of an in vitro technique to study root‐knot nematode infection on banana roots was investigated. Regenerated banana plants were placed horizontally on Gamborg B5 (GB5)‐medium and incubated under a light‐dark regime of 16h‐8h. Temperature fluctuated between 24 and 33 °C. Banana roots were inoculated with Meloidogyne incognita race 1 coming from roots of a transgenic tomato (Lycopersicon esculentum cv. Moneymaker) grown on GB5‐medium at 28 °C in complete darkness. Root‐knots appeared on primary and secondary banana roots two to seven days after nematode inoculation. After 28 days, egg masses protruded through the cortex and two days later juveniles hatched and reinfected banana roots. This method holds promise for dynamic studies of banana root infection with root‐knot nematodes.  相似文献   

19.
20.
Brassica rapa plants were exposed for a 52 h period (as pretreatment) to a differential temperature (DT) between roots (5°C) and shoots (20°C), while control plants were maintained with both shoot and roots at 20°C (warm grown = WG). Measured at 20°C, volume flow of xylem exudate from roots of DT plants was enhanced compared with that from WG plants, while transpiration flows were similar in pretreated and control plants. Both transpiration and exudation flows were dependent upon shoot/root ratio. Differences in the volume flow of exudate were principally related to increases in root hydraulic conductance. Anion fluxes (notably nitrate) into xylem exudate of DT plants were significantly greater than those into exudate of WG plants. This enhancement of nitrate flow from the pretreated roots was associated with a two-fold increase in nitrate uptake rate. The relationship of the cold-induced change in nitrate uptake capacity with shoot/root ratio is discussed in terms of control of nitrate absorption by shoot sink strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号