首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Control of the permeability to oxygen is critical for the function of symbiotic nitrogen fixation in legume nodules. The inner cortex (IC) seems to be a primary site for this regulation. In alfalfa (Medicago sativa) nodules, expression of the Msca1 gene encoding a carbonic anhydrase (CA) was previously found to be restricted to the IC. We have now raised antibodies against recombinant Msca1 protein and used them, together with antibodies raised against potato leaf CA, to demonstrate the presence of two forms of CA in mature nodules. Each antibody recognizes a different CA isoform in nodule tissues. Immunolocalization revealed that leaf-related CAs were localized primarily in the nitrogen-fixing zone, whereas the Msca1 protein was restricted exclusively to the IC region, in indeterminate and determinate nodules. In alfalfa nodules grown at various O(2) concentrations, an inverse correlation was observed between the external oxygen pressure and Msca1 protein content in the IC, the site of the putative diffusion barrier. Thus Msca1 is a molecular target of physiological processes occurring in the IC cells involved in gas exchange in the nodule.  相似文献   

2.
Antiserum was prepared in rabbits against purified alfalfa (Medicago sativa L.) nodule phosphoenolpyruvate carboxylase (PEPC). Immunotitration assays revealed that the antiserum recognized the enzyme from alfalfa nodules, uninoculated alfalfa roots, and from soybean nodules. Tandem-crossed immunoelectrophoresis showed that the PEPC protein from alfalfa roots and nodules was immunologically indistinguishable. The 101 kilodalton polypeptide subunit of alfalfa nodule PEPC was identified on Western blots. The PEPC polypeptide was detected in low quantities in young alfalfa roots and nodules but was present at increased levels in mature nodules. Senescent nodules appeared to contain a reduced amount of the PEPC polypeptide. PEPC was also detected by western blot in some plant- and bacterially-conditioned ineffective alfalfa nodules but was not detected in bacteroids isolated from effective nodules. Alfalfa nodule PEPC is constitutively expressed in low levels in roots. In nodules, expression of PEPC polypeptide increases several-fold, resulting in increased PEPC activity. Antiserum prepared against the C4 PEPC from maize leaves recognized the PEPC enzyme in all legume nodules and roots tested, while the antiserum prepared against alfalfa nodule PEPC also recognized the leaf PEPC of several C4 plant species. Neither antiserum reacted strongly with any C3 leaf proteins. The molecular weight of the PEPC polypeptide from C4 leaves and legume nodules appears to be similar.  相似文献   

3.
Tissue distribution of carbonic anhydrase (CA; EC 4.2.1.1) and phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) was examined in developing soybean (Glycine max) nodules using an immunohistological approach. The data obtained indicate that in young nodules both CA and PEPC proteins are present in the parenchymatous cells, and at much lower levels, in the central nodular region. In mature nodules, high levels of CA were exclusively present in 2-3 cell layers of the inner cortical region, whereas high levels of PEPC were present both in infected and uninfected cells. Immunogold localization indicated that, in mature nodules, CA was localized in the cytoplasm of the inner cortical cells and the cell walls of the endodermal cells. These results considered together suggest that in mature nodules, CA may facilitate the diffusion of the excessive CO2, derived from the respired bacteroids, in the rhizosphere. The distribution of CA was examined in mature nodules of soybean, grown hydroponically, in either limiting or non-limiting phosphate concentrations. The data indicated that in plants growing on non-limiting phosphate concentrations, an additional strong signal was found in cortical cells surrounding the nodule vascular bundles.  相似文献   

4.
Phosphoenolpyruvate carboxylase (PEPC; EC 4-1-1-31) plays a paramount role in providing carbon for synthesis of malate and aspartate in alfalfa (Medicago sativa L.) root nodules. PEPC protein and activity levels are highly enhanced in N2-fixing alfalfa nodules. To ascertain the relationship between the cellular location of PEPC and root nodule metabolism, enzyme localization was evaluated by immunogold cytochemistry using alfalfa nodule PEPC antibodies. Gold labelling patterns in effective nodules showed that PEPC is a cytosolic enzyme and is distributed relatively equally in infected and uninfected cells of the nodule symbiotic zone. A high amount of labelling was also observed in pericycle cells of the nodule vascular system. Labelling was also detected within inner cortical cells, but the density was reduced by 60%. When Lotus corniculatus was transformed with a chimeric gene consisting of the 5′-upstream region of the PEPC gene fused to β-glucuronidase (GUS), GUS staining in nodules was consistent with immunogold localization patterns. The occurrence of PEPC in both infected and uninfected cells of the symbiotic zone of effective nodules coupled to the reduced amounts in ineffective nodules suggests a direct role for this enzyme in supporting N2-fixation. PEPC localization in the uninfected, interstitial cells of the symbiotic zone indicates that these cells may also have a role in nodule carbon metabolism. Moreover, the association of PEPC with the nodule vascular system implies a role for the enzyme in the transport of assimilates to and from the shoot.  相似文献   

5.
The study of the effect of periplasmic glucan isolated from the root-nodule bacterium Sinorhizobium meliloti CXM1-188 on the symbiosis of another strain (441) of the same root-nodule bacterium with alfalfa plants showed that this effect depends on the treatment procedure. The pretreatment of alfalfa seedlings with glucan followed by their bacterization with S. meliloti 441 insignificantly influenced the nodulation parameters of symbiosis (the number of root nodules and their nitrogen-fixing activity) but induced a statistically significant increase in the efficiency of symbiosis (expressed as the masses of the alfalfa overground parts and roots). At the same time, the pretreatment of S. meliloti 441 cells with glucan brought about a considerable decrease in the nodulation parameters of symbiosis (the number of root nodules and their nitrogen-fixing activity decreased by 2.5–11 and 7 times, respectively). These data suggest that the stimulating effect of rhizobia on host plants may be due not only to symbiotrophic nitrogen fixation but also to other factors. Depending on the experimental conditions, the treatment of alfalfa plants with glucan and their bacterization with rhizobial cells enhanced the activity of peroxidase in the alfalfa roots and leaves by 10–39 and 12–27%, respectively.  相似文献   

6.
7.
8.
Phosphoenolpyruvate carboxylase (PEPC) plays a key role in N2 fixation and ammonia assimilation in legume root nodules. The enzyme can comprise up to 2% of the soluble protein in root nodules. We report here the isolation and characterization of a cDNA encoding the nodule-enhanced form of PEPC. Initially, a 2945 bp partial-length cDNA was selected by screening an effective alfalfa nodule cDNA library with antibodies prepared against root nodule PEPC. The nucleotide sequence encoding the N-terminal region of the protein was obtained by primer-extension cDNA synthesis and PCR amplification. The complete amino acid sequence of alfalfa PEPC was deduced from these cDNA sequences and shown to bear striking similarity to other plant PEPCs. Southern blots of alfalfa genomic DNA indicate that nodule PEPC is a member of a small gene family. During the development of effective root nodules, nodule PEPC activity increases to a level that is 10- to 15-fold greater than that in root and leaf tissue. This increase appears to be the result of increases in amount of enzyme protein and PEPC mRNA. Ineffective nodules have substantially less PEPC mRNA, enzyme protein and activity than do effective nodules. Maximum expression of root nodule PEPC appears to be related to two signals. The first signal is associated with nodule initiation while the second signal is associated with nodule effectiveness. Regulation of root nodule PEPC activity may also involve post-translational processes affecting enzyme activity and/or degradation.  相似文献   

9.
Two cDNA clones coding for α-type carbonic anhydrases (CA; EC 4.2.1.1) in the nitrogen-fixing nodules of the model legume Lotus japonicus were identified. Functionality of the full-length proteins was confirmed by heterologous expression in Escherichia coli and purification of the encoded polypeptides. The developmental expression pattern of LjCAA1 and LjCAA2 revealed that both genes code for nodule enhanced carbonic anhydrase isoforms, which are induced early during nodule development. The genes were slightly to moderately down-regulated in ineffective nodules formed by mutant Mesorhizobium loti strains, indicating that these genes may also be involved in biochemical and physiological processes not directly linked to nitrogen fixation/assimilation. The spatial expression profiling revealed that both genes were expressed in nodule inner cortical cells, vascular bundles and central tissue. These results are discussed in the context of the possible roles of CA in nodule carbon dioxide (CO(2)) metabolism.  相似文献   

10.
Alfalfa (Medicago sativa L.) plants were inoculated with Sinorhizobium meliloti Tn-5 mutants featuring various nitrogen-fixing effectiveness and then grown in sand culture to study relations between CO2 exchange, plant productivity, and nitrogen fixation. At the flowering stage, the relationship between nitrogen fixation and photosynthesis of whole alfalfa plants was described with the logarithmic curve. At the same stage of plant development, a close relationship was observed between nitrogen fixation rate and plant weight; this relationship showed a trend toward saturation at high rates of nitrogen fixation. The increase in nitrogenase activity of root nodules was accompanied by stimulation of root respiration; the relation of respiration to nitrogen-fixing activity was manifested stronger than its relation to the total root weight. It is concluded that highly effective strains of root nodule bacteria can realize their potential only in combination with complementary plant genotypes featuring active photosynthesis that provides a balanced supply of assimilates for both the symbiotic apparatus and growth processes in the macrosymbiont.  相似文献   

11.
12.
The dependence of alfalfa (Medicago sativa L.) root and nodule nonphotosynthetic CO2 fixation on the supply of currently produced photosynthate and nodule nitrogenase activity was examined at various times after phloem-girdling and exposure of nodules to Ar:O2. Phloemgirdling was effected 20 hours and exposure to Ar:O2 was effected 2 to 3 hours before initiation of experiments. Nodule and root CO2 fixation rates of phloem-girdled plants were reduced to 38 and 50%, respectively, of those of control plants. Exposure to Ar:O2 decreased nodule CO2 fixation rates to 45%, respiration rates to 55%, and nitrogenase activities to 51% of those of the controls. The products of nodule CO2 fixation were exported through the xylem to the shoot mainly as amino acids within 30 to 60 minutes after exposure to 14CO2. In contrast to nodules, roots exported very little radioactivity, and most of the 14C was exported as organic acids. The nonphotosynthetic CO2 fixation rate of roots and nodules averaged 26% of the gross respiration rate, i.e. the sum of net respiration and nonphotosynthetic CO2 assimilation. Nodules fixed CO2 at a rate 5.6 times that of roots, but since nodules comprised a small portion of root system mass, roots accounted for 76% of the nodulated root system CO2 fixation. The results of this study showed that exposure of nodules to Ar:O2 reduced nodule-specific respiration and nitrogenase activity by similar amounts, and that phloem-girdling significantly reduced nodule CO2 fixation, nitrogenase activity, nodule-specific respiration, and transport of 14C photoassimilate to nodules. These results indicate that nodule CO2 fixation in alfalfa is associated with N assimilation.  相似文献   

13.
Localization of carbonic anhydrase in legume nodules   总被引:2,自引:0,他引:2  
Extracts of the central infected zone and the surrounding cortex of nodules from Lupinus angustifolius L., Vigna unguiculata L. (Walp), Pisum sativum L., Phaseolus vulgaris L., Vicia faba L. and Medicago sativa L. contained significant activities of carbonic anhydrase (CA). Immunoassay of extracts using antisera to a putative nodule CA (Msca1) cloned from M. sativa also indicated expression in both tissue types. Quantitative confocal microscopy using laser scanning imaging and a fluorescent CA‐specific probe (5‐dimethylaminonaphthalene‐1‐sulfonamide [DNSA]) localized expression to the infected cells in the central zone tissue and a narrow band of 2–3 files of cells in the cortical tissue that corresponded to the inner cortex. In the infected cells, the enzyme activity was distributed evenly in the cytosol, but in the inner cortical cells, it was restricted to the periphery – possibly to the plasma membrane or cell wall. The functions of CA in these two tissues are considered in relation to the carbon metabolism of nodules and the participation of the inner cortex in the regulation of gaseous diffusive resistance.  相似文献   

14.
15.
16.
17.
Previous researchers found that formation and function of nitrogen-fixing nodules on legume roots were severely inhibited by addition of exogenous ethylene. Nodule formation by Rhizobium meliloti on Medicago sativa was stimulated twofold when the ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG) was added with the inoculum. Stimulation of nodule formation by AVG showed a similar concentration dependence as inhibition of ethylene biosynthesis, suggesting that the primary action of AVG is the inhibition of ethylene biosynthesis. When AVG was added 2 to 3 days after inoculation, the number of nodules formed was still increased. On a per plant basis, however, the average nitrogen fixation was unchanged by AVG treatment and was independent of nodule number.  相似文献   

18.
With untransformed rice cv. Kitaake as control, the characteristics of carbon assimilation and photoprotection of a transgenic rice line over-expressing maize phosphoenolpyruvate carboxylase (PEPC) were investigated. The PEPC activity in untransformed rice was low, but the activity was stimulated under high irradiance or photoinhibitory condition. PEPC in untransformed rice contributed by about 5–10 % to photosynthesis, as shown by the application of the specific inhibitor 3,3-dichloro-2-(dihydroxyphosphinoylmethyl)propenoate (DCDP). When maize PEPC gene was introduced into rice, transgenic rice expressed high amount of maize PEPC protein and had high PEPC activity. Simultaneously, the activity of carbonic anhydrase (CA) transporting CO2 increased significantly. Thus the photosynthetic capacity increased greatly (50 %) under high CO2 supply. In CO2-free air, CO2 release in the leaf was less. In addition, PEPC transgenic rice was more tolerant to photoinhibition. Treating by NaF, an inhibitor of phosphatase, showed that in transgenic rice more phosphorylated light-harvesting chlorophyll a/b-binding complexes (LHC) moved to photosystem 1 (PS1) protecting thus PS2 from photo-damage. Simultaneously, the introduction of maize PEPC gene could activate or induce activities of the key enzymes scavenging active oxygen, such as superoxide dismutase (SOD) and peroxidase (POD). Hence higher PS2 photochemical efficiency and lower superoxygen anion (O2 ·−) generation and malonyldiadehyde (MDA) content under photoinhibition could improve protection from photo-oxidation.  相似文献   

19.

Background  

Sinorhizobium meliloti is a symbiotic nitrogen-fixing bacterium that elicits nodules on roots of host plants Medicago sativa. During nodule formation bacteria have to withstand oxygen radicals produced by the plant. Resistance to H2O2 and superoxides has been extensively studied in S. meliloti. In contrast resistance to organic peroxides has not been investigated while S. meliloti genome encodes putative organic peroxidases. Organic peroxides are produced by plants and are highly toxic. The resistance to these oxygen radicals has been studied in various bacteria but never in plant nodulating bacteria.  相似文献   

20.
Effective (N2-fixing) alfalfa (Medicago sativa L.) and plant-controlled ineffective (non-N2-fixing) alfalfa recessive for the in1 gene were compared to determine the effects of the in1 gene on nodule development, acetylene reduction activity (ARA), and nodule enzymes associated with N assimilation and disease resistance. Effective nodule ARA reached a maximum before activities of glutamine synthetase (GS), glutamate synthase (GOGAT), aspartate aminotransferase (AAT), asparagine synthetase (AS), and phosphoenolpyruvate carboxylase (PEPC) peaked. Ineffective nodule ARA was only 5% of effective nodule ARA. Developmental profiles of GS, GOGAT, AAT, and PEPC activities were similar for effective and ineffective nodules, but activities in ineffective nodules were lower and declined earlier. Little AS activity was detected in developing ineffective nodules. Changes in GS, GOGAT, AAT, and PEPC activities in developing and senescent effective and ineffective nodules generally paralleled amounts of immunologically detectable enzyme polypeptides. Effective nodule GS, GOGAT, AAT, AS, and PEPC activities declined after defoliation. Activities of glutamate dehydrogenase, malate dehydrogenase, phenylalanine ammonia lyase, and caffeic acid-o-methyltransferase were unrelated to nodule effectiveness. Maximum expression of nodule N-assimilating enzymes appeared to require the continued presence of a product associated with effective bacteroids that was lacking in in1 effective nodules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号