首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
Phytoene synthase and carotene cyclase, two key enzymes in carotenoid biosynthesis, are encoded by two separate genes in bacteria and plants, but by a single bifunctional gene in fungi. The cyclase function has been demonstrated for the products of the genes crtYB from the basidiomycete Xanthophyllomyces dendrorhous, and for carRA and carRP from the zygomycetes Phycomyces blakesleeanus and Mucor circinelloides, respectively. These three genes are highly similar to al-2 from Neurospora crassa. Taking advantage of the high proportion of the final product of the carotenoid pathway that accumulates Neurospora when mycelium is illuminated at low temperature, we have isolated two mutants with a pale reddish pigmentation. Both mutants are complemented by the wild-type al-2 gene, and carry mutations in the al-2 domain to which cyclase activity has been attributed in other fungi. The mutants lack neurosporaxanthin and accumulate an unidentified reddish carotenoid, as shown by column chromatography and HPLC. The chemical and spectrophotometrical properties of this carotenoid are consistent with the absence of carotenoid cyclization, and indicate that the product of al-2 is bifunctional. The existence of a single gene responsible for phytoene synthase and carotene cyclase thus seems to be a widespread trait among filamentous fungi, as shown by the examples now known in a basidiomycete, two zygomycetes and one ascomycete.  相似文献   

3.
4.
Carotenoid formation was investigated in wild type and carotenogenic mutants of Blakeslea trispora after mating (−) and (+) strains. The highest yields of carotenoids, especially β-carotene was observed following mating. In vitro incorporation of geranylgeranyl pyrophosphate into phytoene and β-carotene corresponded to increased carotenogenesis in the mated strains. Immuno determination of phytoene synthase protein levels revealed that the amounts of this enzyme is concurrent with the increases in carotenoid content. In fungi, phytoene synthase together with lycopene cyclase are encoded by a fusion gene crtYB or carRA with two individual domains. These domains were both heterologously expressed in an independent manner and antisera raised against both. These antisera were used, to assess protein levels in mated and non-mated B. trispora. The phytoene synthase domain was detected as an individual soluble protein with a molecular weight of 40 kDa and the lycopene cyclase an individual protein of mass about 30 kDa present in the membrane fraction following sub-cellular fractionation. This result demonstrates a post-translational cleavage of the protein transcribed from a single mRNA into independent functional phytoene synthase and lycopene cyclase.  相似文献   

5.
A survey is given of the lycopene cyclase genes present in bacteria, fungi and plants where two completely unrelated types exist. One is the classical monomeric bacterial beta-cyclase gene, crtY, which may be an ancestor of crtL, the gene for a beta-cyclase in cyanobacteria. From crtL a line of evolution can be drawn to plant beta- and epsilon-cyclase genes and to the gene of capsanthin/capsorubin synthase. In Gram-positive bacteria two genes crtYc and crtYd are present. They encode two proteins which have to interact as a heterodimer for lycopene beta-cyclization. From this type of lycopene cyclase gene the fungal lycopene cyclase/phytoene synthase fusion gene evolved.  相似文献   

6.
三孢布拉氏霉菌CarRA蛋白,既有番茄红素环化酶功能活性又有八氢番茄红素合成酶功能活性,为了对CarRA蛋白进行双功能活性分析,及探测CarRA蛋白的番茄红素环化酶功能活性位点,构建了在大肠杆菌体内通过颜色互补检测两种酶活性的系统。通过重叠延伸PCR的方法克隆得到了carRA基因,并构建原核表达载体pET28a-carRA,与携带crtI/crtB/crtE基因簇的质粒pAC-LYC共转化BL21(DE3),验证番茄红素环化酶功能活性;与以pAC-LYC为基础构建的携带crtI/crtE基因簇的质粒pAC  相似文献   

7.
Phycomyces carRA gene encodes a protein with two domains. Domain R is characterized by red carR mutants that accumulate lycopene. Domain A is characterized by white carA mutants that do not accumulate significant amounts of carotenoids. The carRA-encoded protein was identified as the lycopene cyclase and phytoene synthase enzyme by sequence homology with other proteins. However, no direct data showing the function of this protein have been reported so far. Different Mucor circinelloides mutants altered at the phytoene synthase, the lycopene cyclase or both activities were transformed with the Phycomyces carRA gene. Fully transcribed carRA mRNA molecules were detected by Northern assays in the transformants and the correct processing of the carRA messenger was verified by RT-PCR. These results showed that Phycomyces carRA gene was correctly expressed in Mucor. Carotenoids analysis in these transformants showed the presence of ß-carotene, absent in the untransformed strains, providing functional evidence that the Phycomyces carRA gene complements the M. circinelloides mutations. Co-transformation of the carRA cDNA in E. coli with different combinations of the carotenoid structural genes from Erwinia uredovora was also performed. Newly formed carotenoids were accumulated showing that the Phycomyces CarRA protein does contain lycopene cyclase and phytoene synthase activities. The heterologous expression of the carRA gene and the functional complementation of the mentioned activities are not very efficient in E. coli. However, the simultaneous presence of both carRA and carB gene products from Phycomyces increases the efficiency of these enzymes, presumably due to an interaction mechanism.  相似文献   

8.
The synthesis of carotenoids begins with the formation of a phytoene from geranylgeranyl pyrophosphate, a well conserved step in all carotenogenic organisms and catalyzed by a phytoene synthase, an enzyme encoded by the crtB (spy) genes. The next step is the dehydrogenation of the phytoene, which is carried out by phytoene dehydrogenase. In organisms with oxygenic photosynthesis, this enzyme, which accomplishes two dehydrogenations, is encoded by the crtP genes. In organisms that lack oxygenic photosynthesis, dehydrogenation is carried out by an enzyme completely unrelated to the former one, which carries out four dehydrogenations and is encoded by the crtI genes. In organisms with oxygenic photosynthesis, dehydrogenation of the phytoene is accomplished by a ζ-carotene dehydrogenase encoded by the crtQ (zds) genes. In many carotenogenic organisms, the process is completed with the cyclization of lycopene. In organisms exhibiting oxygenic photosynthesis, this step is performed by a lycopene cyclase encoded by the crtL genes. In contrast, anoxygenic photosynthetic and non-photosynthetic organisms use a different lycopene cyclase, encoded by the crtY (lyc) genes. A third and unrelated type of lycopene β-cyclase has been described in certain bacteria and archaea. Fungi differ from the rest of non-photosynthetic organisms in that they have a bifunctional enzyme that displays both phytoene synthase and lycopene cyclase activity. Carotenoids can be modified by oxygen-containing functional groups, thus originating xanthophylls. Only two enzymes are necessary for the conversion of β-carotene into astaxanthin, using several ketocarotenoids as intermediates, in both prokaryotes and eukaryotes. These enzymes are a β-carotene hydroxylase (crtZ genes) and a β-carotene ketolase, encoded by the crtW (bacteria) or bkt (algae) genes. Electronic Publication  相似文献   

9.
Carotenoids have drawn much attention recently because of their potentially positive benefits to human health as well as their utility in both food and animal feed. Previous work in canola (Brassica napus) seed over-expressing the bacterial phytoene synthase gene (crtB) demonstrated a change in carotenoid content, such that the total levels of carotenoids, including phytoene and downstream metabolites like beta-carotene, were elevated 50-fold, with the ratio of beta- to alpha-carotene being 2:1. This result raised the possibility that the composition of metabolites in this pathway could be modified further in conjunction with the increased flux obtained with crtB. Here we report on the expression of additional bacterial genes for the enzymes geranylgeranyl diphosphate synthase (crtE), phytoene desaturase (crtI) and lycopene cyclase (crtY and the plant B. napus lycopene beta-cyclase) engineered in conjunction with phytoene synthase (crtB) in transgenic canola seed. Analysis of the carotenoid levels by HPLC revealed a 90% decrease in phytoene levels for the double construct expressing crtB in conjunction with crtI. The transgenic seed from all the double constructs, including the one expressing the bacterial crtB and the plant lycopene beta-cyclase showed an increase in the levels of total carotenoid similar to that previously observed by expressing crtB alone but minimal effects were observed with respect to the ratio of beta- to alpha-carotene compared to the original construct. However, the beta- to alpha-carotene ratio was increased from 2:1 to 3:1 when a triple construct consisting of the bacterial phytoene synthase, phytoene desaturase and lycopene cyclase genes were expressed together. This result suggests that the bacterial genes may form an aggregate complex that allows in vivo activity of all three proteins through substrate channeling. This finding should allow further manipulation of the carotenoid biosynthetic pathway for downstream products with enhanced agronomic, animal feed and human nutritional values.  相似文献   

10.
11.
12.
Corynebacterium glutamicum accumulates the C50 carotenoid decaprenoxanthin. Rescued DNA from transposon color mutants of this Gram-positive bacterium was used to clone the carotenoid biosynthetic gene cluster. By sequence comparison and functional complementation, the genes involved in the synthesis of carotenoids with 50 carbon atoms were identified. The genes crtE, encoding a geranylgeranyl pyrophosphate synthase, crtB, encoding a phytoene synthase, and crtI, encoding a phytoene desaturase, are responsible for the formation of lycopene. The products of three novel genes, crtYe and crtYf, with sequence similarities to heterodimeric lycopene cyclase crtYc and crtYd, together with crtEb which exhibits a prenyl transferase motif, were involved in the conversion of C40 acyclic lycopene to cyclic C50 carotenoids. Using functional complementation in Escherichia coli, it could be shown that the elongation of lycopene to the acyclic C50 carotenoid flavuxanthin by the addition of C5 isoprenoid units at positions C-2 and C-2' is catalyzed by the crtEb gene product. Subsequently, the gene products of crtYe and crtYf in a concerted action convert the acyclic flavuxanthin into the cyclic C50 carotene, decaprenoxanthin, forming two epsilon-ionone groups. The mechanisms, involving two individual steps for the formation of cyclic C50 carotenoids from lycopene, are proposed on the basis of these results.  相似文献   

13.
《Gene》1997,189(2):169-174
Two genes which encode the enzymes lycopene cyclase and phytoene desaturase in the aerobic photosynthetic bacterium Erythrobacter longus sp. strain Och101 have been cloned and sequenced. The gene for lycopene cyclase, designated crtY, was expressed in a strain of Escherichia coli which contained the crtE, B, I and Z genes encoding geranylgeranyl pyrophosphate synthase, phytoene synthase, phytoene desaturase, and β-carotene hydroxylase, respectively. As a result, zeaxanthin production was observed in E. coli transformants. In addition, expression of the E. longus gene crtI for phytoene desaturase in E. coli containing crtE and B resulted in the accumulation of lycopene in transformants. Zeaxanthin and lycopene were also determined by mass spectrum. Nucleotide sequence similarities between E. longus crtY gene and other microbial lycopene cyclase genes are 40.2% (Erwinia herbicola), 37.4% (Erwinia uredovora) and 22.9% (Synechococcus sp.), and those between phytoene desaturase genes are 50.3% (E. herbicola), 54.7% (E. uredovora) and 39.6% (Rhodobacter capsulatus).  相似文献   

14.
ABSTRACT: BACKGROUND: Corynebacterium glutamicum contains the glycosylated C50 carotenoid decaprenoxanthin as yellow pigment. Starting from isopentenyl pyrophosphate, which is generated in the non-mevalonate pathway, decaprenoxanthin is synthesized via the intermediates farnesyl pyrophosphate, geranylgeranyl pyrophosphate, lycopene and flavuxanthin. RESULTS: Here, we showed that the genes of the carotenoid gene cluster crtE-cg0722-crtBIYeYfEb are co-transcribed and characterized defined gene deletion mutants. Gene deletion analysis revealed that crtI, crtEb, and crtYeYf, respectively, code for the only phytoene desaturase, lycopene elongase, and carotenoid C45/C50 epsilon-cyclase, respectively. However, the genome of C. glutamicum also encodes a second carotenoid gene cluster comprising crtB2I2-1/2 shown to be co-transcribed, as well. Ectopic expression of crtB2 could compensate for the lack of phytoene synthase CrtB in C. glutamicum DeltacrtB, thus, C. glutamicum possesses two functional phytoene synthases, namely CrtB and CrtB2. Genetic evidence for a crtI2-1/2 encoded phytoene desaturase could not be obtained since plasmid-borne expression of crtI2-1/2 did not compensate for the lack of phytoene desaturase CrtI in C. glutamicum DeltacrtI. The potential of C. glutamicum to overproduce carotenoids was estimated with lycopene as example. Deletion of the gene crtEb prevented conversion of lycopene to decaprenoxanthin and entailed accumulation of lycopene to 0.03 +/- 0.01 mg/g cell dry weight (CDW). When the genes crtE, crtB and crtI for conversion of geranylgeranyl pyrophosphate to lycopene were overexpressed in C. glutamicum DeltacrtEb intensely red-pigmented cells and an 80 fold increased lycopene content of 2.4 +/- 0.3 mg/g CDW were obtained. CONCLUSION: C. glutamicum possesses a certain degree of redundancy in the biosynthesis of the C50 carotenoid decaprenoxanthin as it possesses two functional phytoene synthase genes. Already metabolic engineering of only the terminal reactions leading to lycopene resulted in considerable lycopene production indicating that C. glutamicum may serve as a potential host for carotenoid production.  相似文献   

15.
In Myxococcus xanthus, all known carotenogenic genes are grouped together in the gene cluster carB-carA, except for one, crtIb (previously named carC). We show here that the first three genes of the carB operon, crtE, crtIa, and crtB, encode a geranygeranyl synthase, a phytoene desaturase, and a phytoene synthase, respectively. We demonstrate also that CrtIa possesses cis-to-trans isomerase activity, and is able to dehydrogenate phytoene, producing phytofluene and zeta-carotene. Unlike the majority of CrtI-type phytoene desaturases, CrtIa is unable to perform the four dehydrogenation events involved in converting phytoene to lycopene. CrtIb, on the other hand, is incapable of dehydrogenating phytoene and lacks cis-to-trans isomerase activity. However, the presence of both CrtIa and CrtIb allows the completion of the four desaturation steps that convert phytoene to lycopene. Therefore, we report a unique mechanism where two distinct CrtI-type desaturases cooperate to carry out the four desaturation steps required for lycopene formation. In addition, we show that there is a difference in substrate recognition between the two desaturases; CrtIa dehydrogenates carotenes in the cis conformation, whereas CrtIb dehydrogenates carotenes in the trans conformation.  相似文献   

16.
17.
The pyrG gene of the fungus Blakeslea trispora, encoding orotidine-5'-monophosphate decarboxylase (OMPD) enzyme, was cloned by heterologous hybridization of a genomic library with the Mucor circinelloides pyrG gene. The deduced amino acid sequence of the B. trispora pyrG gene is highly similar to the OMPD from other organisms. Hybridization analyses revealed that the only copy of this gene present in the genome of B. trispora is constitutively expressed. Heterologous complementation of a mutant of M. circinelloides deficient in OMPD activity with the B. trispora pyrG gene and promoter sequence confirmed the function of this gene. This functional complementation demonstrates that heterologous expression in M. circinelloides might be used to investigate the function of genes of B. trispora.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号